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Abstract: Light-emitting diodes (LED) can be utilized as tailorable artificial light sources for the
cultivation of cyanobacteria such as Arthrospira platensis (AP). To study the influence of different LED
light colors on phototrophic growth and biomass composition, AP was cultured in closed bioreactors
and exposed to red, green, blue, or white LED lights. The illumination with red LED light resulted in
the highest cell growth and highest cell densities compared to all other light sources (order of cell
densities: red > white > green > blue LED light). In contrast, the highest phycocyanin concentrations
were found when AP was cultured under blue LED light (e.g., order of concentrations: blue > white
> red > green LED light). LED-blue light stimulated the accumulation of nitrogen compounds in
the form of phycobiliproteins at the expense of cell growth. The results of the study revealed that
exposure to different LED light colors can improve the quality and quantity of the biomass gained in
AP cultures.

Keywords: Arthrospira platensis; Spirulina; colored illumination; light emitting diode; LED;
phycobiliprotein; biomass; yield

1. Introduction

The increase in the world’s population in combination with a climate change-induced
decrease in fertile arable land has been counterbalanced by the intensification of agriculture
and maritime economy over recent decades [1,2]. Now, the protein supply is gradually
being jeopardized, particularly in developing countries [3]. One example is the drastic
collapse of cod stocks in Newfoundland (since 1992), which has not recovered, despite an
absolute ban on fishing and farming activities [4]. The situation is similar for cod stocks in
the North Sea and the Baltic Sea. Furthermore, the rice production is anticipated to decline
by up to 40% by the end of this century [5]. Losses of food stock are expected in other
regions as a result of the desertification of arable land [2,6].

Thus, one of the greatest global challenges is the supplementation of the world’s
population with protein-rich food [7]. To ensure protein supply, Arthrospira platensis
(AP, commonly referred to as Spirulina platensis or Spirulina microalgae) are particularly
suitable as a renewable raw material, as they are extremely superior to plant protein
production [8,9]. Total yields estimated for the Lake Texcoco in Mexico or production
plants in Israel range between 40 tons/ha per year (A. maxima) and 60–70 tons/ha per year
(A. platensis), respectively [8–10].
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AP produces a significantly higher yield of protein per hectare than conventional
agricultural crop production methods (Protein yield A. maxima: 28 tons/ha per year, A.
platensis: 39–45 tons/ha per year) [8–10]. About 250 times more protein can be produced
on one hectare compared to the intensive rearing of cattle [11]. Moreover, the cultivation
of AP is possible on land that cannot be used for agricultural purposes. The production
of 1 kg of protein by AP requires 7.4 times less water compared to soy and 14.4 times less
water is needed for cultivation compared to intensive cattle farming [12–14].

AP has a very high protein content of 60–70% of dry matter (about 30–35% for soy). The
amino acid composition of the proteins obtained from AP is nutritionally close to the World
Health Organization (WHO)/Food and Agriculture Organization of the United Nations
(FAO) standard for an optimal protein composition [15]. Thus, AP is considered one of the
most nutritious foods in the world [16], with proteins containing all essential amino acids
that meet the requirements of the Food and Agriculture Organization (FAO) [17]. AP is also
rich in B-vitamins, iron, magnesium, potassium and many other vitamins and minerals,
as well as antioxidants. The cyanobacterium is generally considered safe as a food by the
European Food Safety Authority (EFSA) [15]. In addition, AP contains an abundant source
of different classes of ingredients [18] of interest for nutraceutical applications [19–21] or
even as pharmaceuticals with potential biological effects on tissue or blood cells [22–25].
Due to the very alkaline pH, AP cultures can be maintained without the supplementation
of biocide treatments in the growth medium, which is a clear advantage with respect to
food safety and environmental issues.

Worldwide, AP is produced in open or covered ponds, with sunlight as the primary
photosynthetic energy source. Although sunlight is more cost-effective, illumination
with artificial light sources, such as light-emitting diodes (LED), is still economically
feasible when the generated biomass is used as a feedstock for high-value products, such
as phycocyanin, carotenoids, n-3-polyunsaturated fatty acids or nutraceuticals [26,27].

Studies on optimizing the production yield of AP show that, among other factors,
the light color (and of course intensity [28]) can influence the build-up of biomass but
also of various ingredients [29–31]. On a molecular level, pigments and phycobiliproteins
play a pivotal role for these processes. In cyanobacteria, the green gap in the absorption
spectrum of chlorophyll-a is filled by phycobiliproteins, which show a high absorption in a
broad wavelength range (495–650 nm) [32]. Phycoerythrin (PE) absorbs green wavelengths
(495–570 nm), while phycocyanin (PC) and allophycocyanin (APC) absorb green-yellow
(550–630 nm) and orange-red (650–670 nm) wavelengths, respectively [33].

Thus, it appears feasible that the biomass productivity of AP can be significantly
influenced by the light spectrum of the light source applied for the cultivation. However,
the literature data regarding this aspect are not entirely clear [30,34–39]. Therefore, the
influence of LED light color on the biomass and various ingredients of AP was studied
within the scope of this work.

2. Materials and Methods
2.1. Microalgae Strain and Growth Medium

The Arthrospira platensis strain (SAG 21.99) used for cultivation experiments was
obtained from the Department of Experimental Phycology and Culture Collection of
Algae at Goettingen University (EPSAG). The stock cell suspension of AP was cultured in
fresh water supplemented with Zarrouk medium [40]. Zarrouk medium consisted of the
following ingredients (per liter): 16.8 g NaHCO3, 0.5 g K2HPO4, 2.5 g NaNO3, 1 g K2SO4,
1 g NaCl, 0.2 g MgSO4·7H2O, 0.04 g CaCl2, 0.01 g FeSO4·7H2O, 0.08 g Na2EDTA and 1 mL
of trace metal solution. The trace metal solution consisted of (per liter): 2.86 g H3BO3,
1.81 g MnCl4·4H2O, 0.22 g ZnSO4·4H2O, 0.0177 g Na2MoO4, 0.079 g CuSO4·5H2O. The
growth medium was initially sterilized at 121 ◦C in an HV-50 autoclave (SYSTEC VX-95,
Systec GmbH, Linden, Germany) for 15 min.
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2.2. Experimental Design

For all experiments, AP was taken from a backup bubble column bioreactor, which
was in the stationary phase. In this backup reactor, the cells were cultured in Zarrouk full
medium with an aeration rate of 20 L/h. The series of experiments (n = 3 in parallel) were
conducted in aerated (20 L/h) glass bioreactors with Zarrouk full medium (Figure 1). The
photon flux density was 12 µE/(m2·s). The temperature in the bioreactors was 25 ◦C. The
cultivation time in the full Zarrouk medium was 8.7 days. Stirring was carried out by
ambient air injection, which was pumped through a membrane filter (Millipore; 0.45 µm
pore size, 10 cm diameter) and with an air bubble diameter of 1.5 cm. As light sources,
white, red, green, and blue LEDs (5050 SMD LEDs) were used. Figure 1A,B show the
light boxes in which the bioreactors were illuminated. The peak wavelength emissions (λ)
from the LED light colors used in the study were at 466.9 nm for the blue LED light, at
514.1 nm for the green LED light and at 632.9 nm for the red LED light. The white LED
light exhibited multiple peaks in the blue and green wavelength range (see Figure 2). The
light intensity could be varied by pulse-width modulation via a microcontroller. The same
photon flux density was adjusted and lowered to the maximum capability of the lowest
one (green), so that the light intensity was equal for all cultures (on average, 12 µE/(m2·s)
near the bioreactor surface). The glass bioreactors were illuminated 24 h per day.
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Figure 1. Representative images of light boxes with white, (A) red and (B) green LED lights. Each
experiment comprised three glass bioreactors of Arthrospira platensis, strain SAG 21.99 per LED type.

The emission spectra of the four LEDs were measured using a spectrometer (Kvant,
21-2301 Spectra 1, Spectral range: 360–940 nm; Bratislava, Slovakia; Figure 2).

The light intensity was measured using an LI-250 light meter with an LI-190SA pyra-
nometer sensor (LI-COR, Inc., Lincoln, NE, USA). The optical density (OD, Thermofisher,
Genesys 100 Bio, Waltham, MA, USA), temperature (PT1000, Wernberg, Germany), and pH
values of the culture medium (EGA 133, Sensortechnik Meinsberg, Meinsberg, Germany)
were measured every day during the cultivation time.
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2.3. Determination of Arthrospira Platensis Dry Weight

Cell pellets were prepared by centrifugation at 17,000× g. The pellets were washed
with distilled water and centrifuged a second time. The pellets remained in the glass tubes.
After removing the aqueous supernatant, they were dried in an oven at 103 ◦C for 24 h.
Finally, the dried biomass was weighed.
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Figure 2. Light spectra of the four LED lamps: (A) white LED light, (B) green LED light, (C) blue
LED light and (D) red LED light (5050 SMD LEDs, spectra were determined with a spectrometer
Kvant, 21-2301 Spectra 1, Spectral range: 360–940 nm; Bratislava, Slovakia).

2.4. Preparation of Arthrospira Platensis Extracts for Pigment Measurements

AP dry biomass (100 mg AP powder/25 mL extract volume) was stirred once for
48 h at 4 ◦C in sterile phosphate buffered saline (onefold, B. Braun, Melsungen, Germany).
Afterwards, the extract was centrifuged at 17,000× g for 20 min. The extract was stored at
−80 ◦C until further processing.

The concentrations of PC, PE and the APC (mg/mL) were calculated according to the
following equations [41]:

PC [mg/mL] = (OD615−0.474·OD652)/5.34

APC [mg/mL] = (OD652−0.208·OD615)/5.09

PE [mg/mL] = (OD562−2.41·PC−0.849·APC)/9.62

OD562, OD615 and OD652 represent the optical absorptions at the wavelengths of
562 nm, 615 nm and 652 nm, respectively.

2.5. Statistical Analysis

For all samples, the arithmetic means ± standard deviations are given. The yield
under the different colored LEDs was related to the yield under white light. The differences
were tested against white light using paired t-tests. Significance levels lower than 0.05 were
considered significant.

3. Results

As experiments were conducted for a period of three months, the experimental con-
ditions such as the room temperature, scattered light intensity (from other neighboring
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experiments) and CO2 concentration in the room air varied slightly over time, which
could influence the growth of AP. These variations were compensated by calculating the
differences in the optical densities at 760 nm (∆OD) of AP produced under colored LED
light and those produced under white LED light (measured in parallel in each individ-
ual experiment). These values were normalized to the ODs of the respective white light
(Normalized ∆OD = (ODcolor − ODwhite)/ODwhite·100). In each case, three bioreactors il-
luminated with colored light and three bioreactors illuminated with white LED light were
averaged. Figure 3 shows the biomass yield after the exposure of AP to different LED-light
colors in relation to the yield after white LED light illumination (normalized ∆OD values).
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Figure 3. Normalized mean differences in optical densities of Arthrospira platensis cultures during the
cultivation period of 8.7 days.

At the end of the cultivation period, more biomass (+24.50%, p = 0.0052) was achieved
with red LED light illumination in comparison to white LED light. On the other hand, the
exposure of AP to blue LED light resulted in a significantly lower biomass yield (−56.28%, p
= 0.00134; the cultivation was stopped after 141 h) than during illumination with white LED
light. Additionally, when illuminated with green LED light, significantly less AP biomass
(−14.56%, p = 0.00134) was gained compared to the illumination with white LED light.

The dry weight biomasses collected at the end of the cultivation period of 8.7 days are
compiled in Table 1A. The coefficients of variation (CV) for the dry weight biomasses ranged
from 0.038 to 0.080 between the four experiments with the white LED light. The highest
CVs were observed after the illumination of the cultures with blue LED light (CV = 0.216).
The illumination with green LED light (CV = 0.139) and red LED light (CV = 0.102) revealed
lower CV values compared to blue LED light but were higher compared to the values
obtained with white LED light.
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Table 1. (A) Dry biomasses of Arthrospira platensis at the end of the cultivation period (n = 3 for each
experiment). (B) Differences of pigment concentrations in relation to the pigment concentration of the
respective extracts obtained by white LED light (in percent). Significance levels (p) of the statistical
analyses of the raw data according to pigment concentrations obtained by white light (n = 3 for
each experiment).

A. Dry Weight [g/L]

LED Color Experiment 1 Experiment 2 Experiment 3

White 0.38 ± 0.02 0.33 ± 0.03 0.41 ± 0.02
Blue 0.21 ± 0.08

Green 0.29 ± 0.05
Red 0.52 ± 0.06

B. Differences of Pigment Concentrations [%]

LED color Phycocyanin (PC) Allophycocyanin (APC) Phycoerythrin (PE)
∆ Blue-White +15.73 p < 0.001 −0.675 ns +14.72 p < 0.001

∆ Green-White −8.53 p < 0.001 +0.92 ns +3.51 ns

∆ Red-White −6.97 p < 0.001 −1.63 ns −2.44 ns

ns = not significant.

The pH values over cultivation time (as average values over the three experiments
in each case) are shown in Figure 4A for colored LEDs and Figure 4B for white LEDs for
each of the three experiments. For all bioreactors, the pH values remained about pH 9
and reached a pH of 10 after 60 h. The values remained at this level until the end of the
cultivation period. The pH value increase during the illumination with white LED light
was very similar to what was observed for the colored LEDs. Thus, differences between the
single experiments can hardly be distinguished in the diagram (Figure 4).
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Figure 4. The pH values of the three experiments for (A) the red, blue, and green LEDs as well as
(B) the white LED lights (cultivation period of 8.7 days, n = 12). Each experiment is displayed by
different symbols, means and standard deviations. The respectively colored interconnecting lines
represent linear trendlines between single datapoints for each LED light color.

This confirms that the LED light color only had minor influences on the pH values.
To understand the relations between pigment concentrations under light sources with
different wavelengths, the PC, APC and PE contents were measured.
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Table 1B shows the pigment concentration in percent related to the illumination
with white LED light. The illumination with blue LED light led to a marked increase
of phycocyanin—in relation to warm white light, as a model for sunlight—(+15.73%,
p < 0.001), while it decreased under green LED (−8.53%, p < 0.001) or red LED lights
(−6.97%, p < 0.001).

The generation of APC was not affected differently under blue-, green-, and red-LED
light illumination in comparison to white LED light. The PE concentration only increased
during the illumination with blue LED light (14.72%, p < 0.001, differently to white light)
but remained unchanged during the green or red LED light illumination.

4. Discussion

The study provides important insights for the cultivation of AP under illumination
with artificial LED light sources. In Europe, large amounts of microalgae are required to
refill production ponds, especially in spring, as this requires about 0.1–0.2 g/L AP. However,
the necessary proliferation of AP at the end of winter is not possible without artificial
illumination. Among the various artificial light sources for AP cultivation [42], LEDs are
considered to be very promising [34]. Their life cycle is relatively long (up to 50,000 h),
and they exhibit low heat generation and high conversion efficiencies. In particular, the
selection of certain wavelengths allows for the maximization of light absorption efficiencies
and allows one to reach high energy to biomass conversion efficiencies. In comparison to
other light sources, LEDs are relatively inexpensive and can operate with a low electrical
voltage and current [42–44]. Therefore, knowledge about the influence of the spectral
composition of the illumination on the growth and biochemistry of AP is crucial for its
economic propagation.

In the present study, the illumination of AP with red LED light resulted in the highest
biomass yield (+24.50% after 211 h, Figure 3). In contrast, the blue LED light illumination
led to a drastic biomass decrease of −56.28% in relation to the cultivation under white LED
light. The latter was already observed after 141 h. The relatively low coefficients of variation
indicated a good reproducibility between the independent experiments, particularly for
those carried out with white LEDs. It is well known that the biomass productivity of AP is
related to the photon flux density provided by light, which is captured by the photosynthetic
apparatus of the photosynthetic microorganisms [36]. The main light-harvesting structures
in AP are phycobilisomes. These are complexes of phycobiliproteins, consisting of protein-
linked phycocyanobilins and phycoerythrobilins [45]. Arranged in regular arrays on the
thylakoid membrane surface, the phycobilisomes capture light from a relatively wide
spectrum [46]. The absorbed light energy is transferred to the reaction centers, which are
located in the photosynthetic membranes and converted into chemical energy [47].

Lacking chlorophyll-b, AP uses chlorophyll-a (λa ≈ 430 nm and 680 nm) and accessory
phycobiliproteins such as PC (λa ≈ 620 nm) and PE (λa ≈ 570 nm) as light-harvesting
protein–pigment complexes [48]. The effect of red LED light is probably due to the fact that
this light source emits in the frequency bands of two pigments—chlorophyll-a and PC. Both
are abundant in AP, while the other LEDs applied in this study emitted in wavelengths
that were relatively far from the peak absorption of any pigment [49]. Thus, it was very
likely that the different effects of colored LEDs were responsible for the highest and lowest
growth rates of AP under red and blue LED light, respectively.

However, earlier reports about the influence of light color on the quantity and qual-
ity of AP biomass are inconsistent. Most studies revealed that red light could induce
the strongest growth and blue light the least [34,37,50–54]. In contrast to these results,
Chainapong et al. reported a higher growth rate of AP under white light in comparison to
blue, red and yellow lights, while Ravelonandro found that the final biomass of AP exposed
to green or white light was higher compared to red light [38,55]. In complete contrast to
our results, in two studies the highest growth rate was found under blue light; Madhyastha
observed the greatest growth in A. fusiformis in blue light and the least in red light [36], and
Bahman et al. reported that—also for AP—the highest biomasses were observed under blue
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light [56]. These varying findings might result from differences in the microalgal strains
(slight differences are reported even among AP strains), experimental setup and realization
of the studies [51]. This may comprise differences in the light sources, cultured AP species
(A. platensis, A. maxima and A. fusiformis), composition of the culture medium, aeration
rates, pH value, culture temperature and/or illumination periods and intensities.

Previous studies—e.g., with Porphyra umbilicalis—revealed that red light could in-
crease cell division and consequently cell density, while blue light could stimulate the
accumulation of nitrogen compounds in the form of phycobiliproteins at the expense of
cell growth [57]. Our data support these earlier findings, especially for PC in AP. Here, the
illumination with blue LED light led to significantly higher PC concentrations compared
to white LED light. In contrast, significantly lower PC concentrations were observed after
the illumination with green LED light and red LED light (see Table 1B). The pigment
phycocyanin is the main photoreceptor of the light-harvesting complex in AP and is re-
sponsible for the transfer of the captured light energy to chlorophyl [58,59]. The absorption
of the impinging light was mainly in the red frequency range, which effectively promoted
photosynthesis. It is well known that cyanobacteria can respond to changes in light color
and light quantity by adjusting their relative photosynthetic pigment contents [60–62]. This
might explain the high PC content in cultures illuminated with blue LED light. Further-
more, the photon flux density was quite low, which, in addition to the illumination with
blue LED light [34,36,53], may also have contributed to a high PC concentration [63].

Boussiba and Richmond concluded that blue and green lights may not provide suffi-
cient light energy for the microalgal biomass synthesis [59]. The increases in chlorophyl
and phycocyanin contents—but not carotenoids—which occurred in cultures exposed to
these light colors were thus considered to be an adaptation to a relatively dark environment
and necessary for maintaining biomass generation. However, the results of the present
study indicate that these effects also occur when the intensities of the different light colors
are equal near the bioreactor surface (here, about 12 µE/(m2·s)).

5. Conclusions

In this experimental setup, we used the common production species AP in combination
with the widely used Zarrouk medium and investigated the influence of well-defined LED-
based light spectra on cyanobacterial growth and phycobiliprotein composition. The
generated data can be readily used to adjust AP production for the optimization of yields
under routine culture conditions.

In summary, the data of this study revealed that the illumination of AP with blue
LED light resulted in the highest phycocyanin concentrations per cell compared to all
other LED lights. However, due to the higher AP biomass production under red LED
light illumination, the total amount of PC was significantly higher under these conditions
compared to all other LED light sources tested. These results suggest that a sequential
illumination strategy—with red LED light in the first phase (growth) and blue LED light in
the second phase (PC generation)—could be beneficial for optimizing the production of PC
in AP. Future studies should clarify whether these results can also be achieved at higher
photon flux densities.
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