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Measurement of the bound-electron 
g-factor difference in coupled ions

Tim Sailer1 ✉, Vincent Debierre1, Zoltán Harman1, Fabian Heiße1, Charlotte König1,  
Jonathan Morgner1, Bingsheng Tu1, Andrey V. Volotka2,3, Christoph H. Keitel1, Klaus Blaum1 & 
Sven Sturm1

Quantum electrodynamics (QED) is one of the most fundamental theories of physics 
and has been shown to be in excellent agreement with experimental results1–5. In 
particular, measurements of the electron’s magnetic moment (or g factor) of highly 
charged ions in Penning traps provide a stringent probe for QED, which allows testing 
of the standard model in the strongest electromagnetic fields6. When studying the 
differences between isotopes, many common QED contributions cancel owing to the 
identical electron configuration, making it possible to resolve the intricate effects 
stemming from the nuclear differences. Experimentally, however, this quickly 
becomes limited, particularly by the precision of the ion masses or the magnetic field 
stability7. Here we report on a measurement technique that overcomes these 
limitations by co-trapping two highly charged ions and measuring the difference in 
their g factors directly. We apply a dual Ramsey-type measurement scheme with the 
ions locked on a common magnetron orbit8, separated by only a few hundred 
micrometres, to coherently extract the spin precession frequency difference. We have 
measured the isotopic shift of the bound-electron g factor of the isotopes 20Ne9+ and 
22Ne9+ to 0.56-parts-per-trillion (5.6 × 10−13) precision relative to their g factors, an 
improvement of about two orders of magnitude compared with state-of-the-art 
techniques7. This resolves the QED contribution to the nuclear recoil, accurately 
validates the corresponding theory and offers an alternative approach to set 
constraints on new physics.

The theory of quantum electrodynamics (QED) describes the interac-
tion of charged particles with other fields and the vacuum surrounding 
them. State-of-the-art calculations of these effects allow for stringent 
tests of fundamental physics, the search for physics beyond the stand-
ard model or the determination of fundamental constants1–5. One quan-
tity that can be used to perform such tests is the magnetic moment of 
an electron bound to a nucleus, expressed by the Landé or g factor in 
terms of the Bohr magneton. It can be both experimentally accessed 
and predicted by theory to high precision. In particular, hydrogen-like 
ions, with only a single electron left, provide a simple bound-state sys-
tem that allows for testing the standard model in the extremely strong 
electric field of the nucleus. In this case, the g factor of a free electron 
is modified by the properties of the nucleus, foremost the additional 
electric field, but also parameters such as the nuclear mass, polariz-
ability and the charge radius have to be considered. However, studying 
these effects explicitly proves to be difficult, as the QED contributions 
and their uncertainties are significantly larger than many of the nuclear 
effects, resulting in limited visibility (‘g-factor calculation’ in Methods).

One idea to overcome this limitation is to compare the g factors of 
similar ions, by studying the isotopic shift. Here the common identical 
contributions and their uncertainties do not have to be considered, 
emphasizing the differences owing to the nucleus. In Table 1, the 

theoretical contributions and uncertainties to the individual g factors 
of 20Ne9+ and 22Ne9+ and their differences are summarized. For the cal-
culated difference Δg = g(20Ne9+) − g(22Ne9+), the QED contribution to 
the nuclear recoil can be resolved and tested independently from all 
common QED contributions. This QED recoil effect arises from the 
quantized size of the momentum exchange between the electron and 
the nucleus, and requires a fully relativistic evaluation that goes beyond 
the Furry picture9 and the usual external-field approximation10. Under-
standing and confirming this contribution is essential for future 
g-factor measurements of heavier ions or when trying to improve on 
the precision of the fine-structure constant α (ref. 11). Furthermore, a 
precise measurement of the isotopic shift allows searching for physics 
beyond the standard model, by means of looking for a deviation from 
the calculated effect. In particular, a mixing of a new scalar boson and 
dark-matter candidate, the relaxion, of unknown mass mΦ, with the 
Higgs boson would mediate an interaction between nucleons and elec-
trons. Such a mixing with different coupling strengths ye and yn for 
electrons and nucleons, respectively, could potentially be directly 
observed in the isotopic shift owing to the different number of neu-
trons. Specifically, such a measurement would exhibit a strong sensitiv-
ity of the g-factor difference12 for heavy bosons, with a specific energy 
range of 20 MeV to 1 GeV owing to the close proximity of the electron 
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to the nucleus in a highly charged ion (HCI) (‘Setting constraints on 
new physics’ in Methods). The relaxion, if found, could potentially 
provide a solution to the long-standing electroweak hierarchy prob-
lem13. To explicitly study the isotopic shift with formerly unavailable 
resolution, we report on the application of a technique developed to 
measure the difference between the g factors directly. This method 
depends on coupling two ions as a well controlled ion crystal within 
the magnetic field of a Penning trap. In this way, the ions are close 
enough to be subject to the identical fluctuations of this magnetic field, 
which otherwise pose strong limitations for the achievable precision. 
We performed such a measurement in the ALPHATRAP setup6. This 
apparatus consists of a Penning trap14 in a superconducting 4-T magnet, 
where the trap and all detection electronics are cooled by liquid helium 
to about 4.2 K. By combining the magnetic field B and a suitable elec-
trostatic potential, ions can be stored almost indefinitely, limited only 
by the vacuum quality. A trapped ion’s motion can be parametrized by 
splitting the trajectory into three independent harmonic oscillations 
that are related to the free cyclotron frequency ν B=

q
mc 2π
ion

ion
, with the 

ion charge and mass qion and mion respectively, via14:

ν ν ν ν= + + . (1)zc
2

+
2 2

−
2

For this measurement on 20Ne9+ and 22Ne9+, the modified cyclotron 
frequencies v+ amount to roughly 27 MHz and 25 MHz, the axial frequen-
cies (parallel to the magnetic field) vz to about 650 KHz and 620 KHz, 
and both magnetron frequencies v− to 8 kHz, respectively. These fre-
quencies can be measured non-destructively through the image cur-
rents induced by the oscillating charged particle15,16. In addition, the 
presence of the magnetic field results in an energy splitting ΔE = hvL of 
the ms = ±1/2 electronic spin states with the Larmor frequency  
ν =

geB
mL 4π e

 amounting to about 112 GHz, with the electron charge  
and mass e and me, respectively (h is Planck’s constant). The orientation 
ms of the spin with respect to the magnetic field can be determined by 
means of the continuous Stern–Gerlach effect17 in the dedicated anal-
ysis trap (AT) (Fig. 1). Here, in addition to the homogeneous magnetic 
field B0, a quadratic magnetic field gradient or magnetic bottle 
B(z) = B0 + B1z + B2z2 with B2 ≈ 45 kT m−2 is produced by a ferromagnetic 
ring electrode. This exerts an additional spin-dependent force on the 
ion that results in an instantaneous shift of the axial frequency when 
a millimetre-wave (photon around vL is absorbed. As this magnetic 
bottle hinders precise frequency measurements, the spectroscopy is 
performed in the homogeneous magnetic field6 of the precision  
trap (PT), where also the cyclotron frequency can be measured 

simultaneously to the millimetre-wave excitation. The AT is then solely 
used for the detection of the spin state and the separation of the ions. 
The g factor can be extracted from the frequencies3,7,18

g
ν
ν

m
m

q

e
= 2 . (2)L

c

e

ion

ion

Consequently, the independently measured ion masses, as well as the 
electron mass, pose direct limits on the achievable precision of abso-
lute g-factor measurements. In addition, the inherent magnetic-field 
fluctuations render it impossible to determine the Larmor frequency 
coherently on the timescales required to accurately measure the cyclo-
tron frequency. This limits such measurements statistically to low 10−11 
relative precision even with several months of measurement time, 
and renders an investigation of the small nuclear effects impractical.

Coupled ions
To overcome these limitations, we have developed a measurement 
technique based on the principle of the two-ion balance8,19. Here the 
ions are first prepared separately in the AT to a known electron spin 
orientation and subsequently merged by placing them in the same 
potential well of the PT (this process takes about 10 min). After cooling 
the axial motion of the ions individually, they become coupled on a 
common magnetron orbit owing to the almost identical frequencies 
of this mode (Δv− ≈ 200 mHz), whereas the axial and modified cyclotron 
motions remain uncoupled owing to their large frequency discrepancy 
(Δvz ≈ 30 kHz and Δv+ ≈ 2.5 MHz). The combined motion, as shown in 
Fig. 1b, can be parametrized as a superposition of a rotation of both 
ions with a quasi-static separation distance dsep around a common guid-
ing centre and a rotation of this guiding centre around the trap centre 
on a radius rcom. The coupling interactions have been mathematically 
described and used for mass comparison measurements in ref. 8. Now, 
we determine the initial values of dsep and rcom by measuring the axial 
frequency shift resulting from the Coulomb interaction of the ions, as 
well as the individual absolute magnetron radii (merging and determin-
ing the initial configuration takes about 10 min). Subsequently, we are 
able to transfer canonical angular momentum, or effectively mode 
radius, from the common mode to the separation mode20 (see ‘Mixing 
and preparing the coupled state’ in Methods), as well as directly cool 
the separation mode by coupling it to the axial mode. In this way, we 
have full control over all modes as the axial and cyclotron modes of 
both ions can still be addressed individually. We apply these tools to 
prepare the ions with a magnetron separation distance dsep ≈ 400 μm 
and a comparably small common mode radius rcom (see ‘Mixing and 
preparing the coupled state’ in Methods; about 20 min). Now, we per-
form simultaneous Ramsey-type measurements on the electron spins 
by irradiating a single millimetre-wave π/2 pulse (see ‘Rabi frequency 
measurement’ in Methods) for both ions simultaneously. We then wait 
for the evolution time τevol, during which both magnetic moments are 
freely precessing with their individual Larmor frequencies and finally 
irradiate the second π/2 pulse (this takes about 5 min, including a deter-
mination of vc). Subsequently, the ions are separated again (see ‘Sepa-
ration of ions’ in Methods; duration 10 min). Finally, the cycle is 
completed by determining and comparing the spin orientation to the 
initial state for each ion individually in the AT again. This whole process 
has been fully automatized, requiring about 1 h to complete a cycle. In 
total, we have performed 479 cycles for the main measurement as well 
as 174 for the systematic uncertainty analysis. Owing to the fast Larmor 
precession of 112 GHz, the inherent magnetic-field fluctuations lead 
to decoherence of the applied millimetre-wave drive frequency with 
respect to the individual spin precessions already after some 10 ms, as 
also observed in ref. 21. However, as the ions are spatially close together, 
the spins stay coherent with respect to each other as they both experi-
ence identical fluctuations. For each evolution time τevol of the Ramsey 

Table 1 | Contributions to the g-factor difference of 20Ne9+ 
and 22Ne9+ and the final experimental result

g-factor theory (×10−9)
20Ne9+ 1,998,767,277.112(117)
22Ne9+ 1,998,767,263.638(117)

Difference

FNS 0.166(11)

Recoil, non-QED 13.2827

Recoil, QED 0.0435

Recoil, (α/π)(me/M) −0.0103

Recoil, (me/M)2 −0.0077

Nuclear polarization 0.0001(3)

Δg Total theory 13.474(11)FNS

Δg Experiment 13.475 24(53)stat(99)sys

The dominating uncertainty stems from the FNS. All digits are significant when no uncertainties  
are given. me and M are the electron and nuclear mass, respectively. For the individual  
contributions, see Extended Data Table 1.
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scheme, the individual measurement points are distributed over 
roughly one period of the difference frequency ν ν νΔ = − ≈ 758 HzL L1 L2 . 
The coherent difference of the precession frequencies can now be 
extracted from the correlated spin transition probability P. Here, the 
ions behave identically when their individual spins are in phase, or 
opposite to each other when the spins are out of phase after the evolu-
tion time. We can therefore define

P p p p p= × + × , (3)1,SF 2,SF 1,noSF 2,noSF

where pn,SF and pn,noSF are the probabilities for ion n to undergo or not 
undergo a spin transition, respectively (see ‘Fitting function for the 
Larmor frequency difference’ in Methods). This relation encodes the 
relative phases of the spins to each other but, owing to the loss of coher-
ence with respect to the applied microwave drive, the modulation 
amplitude A is only ±25%. This joint transition probability is therefore 
directly modulated by the differential phase of the spins and follows

P t A ν t ϕ( ) = cos(2π(Δ ) + ) +
1
2

, (4)τL ,0

with an additional phase ϕτ,0 encoding the difference of the Larmor 
frequencies.

Data analysis
We have performed measurements for five different sets of evolution 
times and three different separation distances. Figure 2 shows the 
modulated probability of a coincidental spin transition occurring for 
all of these measurements. To extract the Larmor frequency difference, 
first the total accumulated phase has to be unwrapped. We perform 
a maximum likelihood fit with a fixed frequency difference, fitting 

only the phase ϕτ,0 and amplitude A, separately for each evolution 
time. For all six measurements, the observed amplitude is compatible 
with a modulation amplitude A = 25%, which confirms the coherent 
behaviour of the two quantum states for at least up to τevol = 2.2 s, which 
is more than a factor 20 longer than the coherence time of the indi-
vidual spins with respect to an external drive. After unwrapping, a 
linear fit to those phases measured with the separation distance 
dsep = 411(11) μm as well as the calculated initial phase difference (see 
‘Calculation of the initial phase difference’ in Methods) is used to 
determine the frequency difference and the statistical uncertainty. 
Systematic shifts are expected to arise owing to the small imbalance 
of the coupled magnetron motion, which is a consequence of the dif-
ferent ion masses. This causes the ions to experience slightly different 
magnetic fields and alters their individual Larmor frequencies. The 
two main contributions are: first, this radial imbalance in combination 
with a residual B2; and second, a slight shift of the axial equilibrium 
position caused by a residual deviation from the perfect symmetry of 
the electrostatic trapping potential, leading to an unequal change of 
the Larmor frequencies in the presence of a linear axial B1 field gradi-
ent. The combined systematic shift has been evaluated (see ‘Calcula-
tion of the initial phase difference’ in Methods) as 6(5) × 10−13 relative 
to the mean Larmor frequency. We specifically stress that our method, 
although currently experimentally limited by magnetic-field inhomo-
geneities, could be significantly improved by implementing active 
compensation coils for B1 and B2 (ref. 22), possibly extending the 
precision to the 10−15 regime. The bottom plot of Fig. 2 shows the 
residual deviation of each extracted phase with respect to the final 
frequency difference and uncertainty, corrected for this systematic 
shift. The grey highlighted data points are for the two measurements 
performed at a different separation distance, corrected for their 
expected systematic shift. The agreement of these measurements 
clearly confirms the systematic correction independently from the 
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Fig. 1 | Experimental setup and measurement scheme. a, The Penning-trap 
setup, with the coupled ions in the centre of the precision trap. b, The ions are 
prepared on a common magnetron orbit, with a separation distance of 
dsep ≈ 400 μm and a common mode rcom < 100 μm. The cyclotron radius rp of 
each ion is cooled to rp ≈ 3 μm and the axial amplitude to rz ≈ 18 μm when in 
thermal equilibrium with the resonator circuit at T = 4.2 K. c, The pulse scheme 

of the millimetre-wave irradiation. d, The change of axial frequency after each 
attempt to induce a spin transition. Here 20Ne9+ was found to be in the ‘up’ state 
and 22Ne9+ was found to be in the ‘down’ state after the measurement sequence, 
as can be deduced from the observed change. e, After several repetitions of 
such cycles, the coincidental behaviour of the spin-transition rate modulation 
P(t) is fitted, error bars represent the 68% confidence interval.
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calculated correction derived from independent single-ion measure-
ments. The frequency difference of νΔ = 758.752(30) (56) HzL stat sys , 
which corresponds to gΔ = 13.475 24(53) (99) × 10exp sys

−9 (‘Calcula-
tion of the g-factor difference’ in Methods), is in agreement with the 
theoretical calculation of gΔ = 13.474(11) × 10FNS

−9, limited in precision 
solely by the uncertainty of the charge-radius difference (finite nuclear 
size) of the isotopes rδ⟨ ⟩ = 0.0530(34) fm2 1/2

 (ref. 23). Taking theory as 
an input instead, our result can thus be applied to improve on the 
precision of the charge-radius difference by about one order of mag-
nitude rδ⟨ ⟩ = 0.0533(4) fm2 1/2

. With the agreement between theory 
and the experimental result, we can set constraints for the scale of the 
yeyn coupling constants, which appear in the new physics search in the 
Higgs-relaxion mixing scenario (‘Setting constraints on new physics’ 
in Methods). Although the bounds obtained here do not improve on 
already existing bounds (Fig. 3), they are derived using an alternative 
approach and do not rely on King plot linearity and hence offer a more 
direct12 and less ambiguous24,25 way to search for new physics. The 
obtained bounds are shown in Fig. 3, along with bounds from other 
fields of physics (see caption). At the present, our method and H–D 
spectroscopy are both dependant on charge radii determined by 
muonic spectroscopy23,26. When combining our method with measure-
ments on the g factor of lithium-like ions27 or the ground-state energy 
isotope shifts of hydrogen-like ions, improved competitive bounds 
could be envisaged28 while additionally gaining independence from 
assumptions on new physics coupling to muons. The (g − 2)en bounds 
are independent from muonic radii, but rely on a combination of mul-
tiple neutron-scattering measurements as well as the free-electron g 
factor29.

 
Conclusions and outlook
We have demonstrated and applied our method to directly measure a 
g-factor difference coherently to high precision. This is a direct test 
and validation of the hitherto untested QED contribution to the nuclear 
recoil and paves the way towards further high-precision measurements 
on heavier ions where this contribution becomes even larger. Further-
more, we are able to improve on the precision of the charge-radius 
difference by about one order of magnitude using this method, which 
could be similarly applied to other systems. In addition, we have applied 
the result of this single isotopic-shift measurement to strengthen the 
limits on the parameters for the new-physics search via the Higgs-
relaxion mixing, showcasing the potential of this approach. Further-
more, this method provides a crucial step towards accessing the 
weighted difference of g factors11,30, which has the potential to signifi-
cantly improve on the precision of the fine-structure constant α. Here, 
the difference between two ions of different nuclear charge Z will have 
to be measured for both their hydrogen-like (1s) and lithium-like (2s) 
states using this method. In addition, a single absolute g factor of low 
10−11 precision is required when choosing ions of the medium Z range, 
which has already been shown to be experimentally feasible3. However, 
the theoretical calculation of this g factor has to achieve similar preci-
sion, which will still require significant work and time. Finally, the pos-
sibility to directly compare matter versus antimatter with highly 
suppressed systematics should be investigated. This method could 
possibly be applied to directly compare the anti-proton and H− g fac-
tors. In this case, the Larmor frequency difference would be mostly 
defined by the electronic shielding of the H− ion, which would have to 
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be calculated to similar precision as shown for 3He (ref. 31). Similar to 
the mass comparison that was already performed32, this could enable 
a direct g-factor comparison with significantly reduced systematic 
effects. If a further comparison of proton and positive anti-hydrogen 
H

+ becomes experimentally feasible in the future, even the uncertainty 
of the shielding could be dramatically reduced as well.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-022-04807-w.

1.	 Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic 
moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008).

2.	 Sturm, S. et al. g factor of hydrogen-like 28Si13+. Phys. Rev. Lett. 107, 023002 (2011).
3.	 Sturm, S. et al. High-precision measurement of the atomic mass of the electron. Nature 

506, 467–470 (2014).
4.	 Parker, R., Yu, C., Zhong, W., Estey, B. & Müller, H. Measurement of the fine-structure 

constant as a test of the standard model. Science 360, 191–195 (2018).
5.	 Morel, L., Yao, Z., Cladé, P. & Guellati-Khélifa, S. Determination of the fine-structure 

constant with an accuracy of 81 parts per trillion. Nature 588, 61–65 (2020).
6.	 Sturm, S. et al. The ALPHATRAP experiment. Eur. Phys. J. Spec. Top. 227, 1425–1491  

(2019).
7.	 Köhler, F. et al. Isotope dependence of the Zeeman effect in lithium-like calcium. Nat. 

Commun. 7, 10246 (2016).
8.	 Rainville, S., Thompson, J. & Pritchard, D. An ion balance for ultra-high-precision atomic 

mass measurements. Science 303, 334–338 (2004).
9.	 Furry, W. On bound states and scattering in positron theory. Phys. Rev. 81, 115–124 (1951).

10.	 Malyshev, A., Glazov, D. & Shabaev, V. QED calculations of the nuclear recoil effect on the 
bound-electron g factor. Phys. Rev. A 101, 012513 (2020).

11.	 Yerokhin, V., Berseneva, E., Harman, Z., Tupitsyn, I. & Keitel, C. g-factor of light ions for an 
improved determination of the fine-structure constant. Phys. Rev. Lett. 116, 1–5 (2016).

12.	 Debierre, V., Keitel, C. & Harman, Z. Fifth-force search with the bound-electron g factor. 
Phys. Lett. B 807, 135527 (2020).

13.	 Graham, P., Kaplan, D. & Rajendran, S. Cosmological relaxation of the electroweak scale. 
Phys. Rev. Lett. 115, 221801 (2015).

14.	 Brown, L. & Gabrielse, G. Geonium theory: physics of a single electron or ion in a Penning 
trap. Rev. Mod. Phys. 58, 233–311 (1986).

15.	 Cornell, E., Weisskoff, R., Boyce, K. & Pritchard, D. Mode coupling in a Penning trap:  
π pulses and a classical avoided crossing. Phys. Rev. A 41, 312–315 (1990).

16.	 Sturm, S., Wagner, A., Schabinger, B. & Blaum, K. Phase-sensitive cyclotron frequency 
measurements at ultralow energies. Phys. Rev. Lett. 107, 143003 (2011).

17.	 Dehmelt, H. Continuous Stern–Gerlach effect: principle and idealized apparatus. Proc. 
Natl Acad. Sci. USA 83, 2291–2294 (1986).

18.	 Arapoglou, I. et al. g factor of boron-like argon 40Ar13+. Phys. Rev. Lett. 122, 253001 (2019).
19.	 Cornell, E., Boyce, K., Fygenson, D. & Pritchard, D. Two ions in a Penning trap: implications 

for precision mass spectroscopy. Phys. Rev. A 45, 3049–3059 (1992).
20.	 Thompson, J. Two-Ion Control and Polarization Forces for Precise Mass Comparisons 

(Massachusetts Institute of Technology, 2003).
21.	 Britton, J. et al. Vibration-induced field fluctuations in a superconducting magnet. Phys. 

Rev. A 93, 062511 (2016).
22.	 Rau, S. et al. Penning trap mass measurements of the deuteron and the HD+ molecular 

ion. Nature 585, 43–47 (2020).
23.	 Angeli, I. & Marinova, K. Table of experimental nuclear ground state charge radii: an 

update. At. Data Nucl. Data Tables 99, 69–95 (2013).
24.	 Yerokhin, V., Müller, R., Surzhykov, A., Micke, P. & Schmidt, P. Nonlinear isotope-shift 

effects in Be-like, B-like, and C-like argon. Phys. Rev. A 101, 1–7 (2020).
25.	 Müller, R., Yerokhin, V., Artemyev, A. & Surzhykov, A. Nonlinearities of King’s plot and their 

dependence on nuclear radii. Phys. Rev. A 104, L020802 (2021).
26.	 Pohl, R. et al. Laser spectroscopy of muonic deuterium. Science 353, 669–673 (2016).
27.	 Shabaev, V. et al. g factor of high-Z lithium-like ions. Phys. Rev. A 65, 062104 (2002).
28.	 Debierre, V., Keitel, C. & Harman, Z. Tests of physics beyond the standard model with 

single-electron ions. Preprint at https://arxiv.org/abs/2202.01668 (2022).
29.	 Berengut, J. et al. Probing new long-range interactions by isotope shift spectroscopy. 

Phys. Rev. Lett. 120, 091801 (2018).
30.	 Shabaev, V. et al. g-factor of heavy ions: a new access to the fine structure constant. Phys. 

Rev. Lett. 96, 5–8 (2006).
31.	 Wehrli, D., Spyszkiewicz-Kaczmarek, A., Puchalski, M. & Pachucki, K. QED effect on the 

nuclear magnetic shielding of 3He. Phys. Rev. Lett. 127, 263001 (2021).
32.	 Ulmer, S. et al. High-precision comparison of the antiproton-to-proton charge-to-mass 

ratio. Nature 524, 196–199 (2015).
33.	 Bordag, M., Klimchitskaya, G., Mohideen, U. & Mostepanenko, V. Advances in the Casimir 

Effect (Oxford Univ. Press, 2009).
34.	 Redondo, J. & Raffelt, G. Solar constraints on hidden photons re-visited. J. Cosmol. 

Astropart. Phys. 2013, 034 (2013).
35.	 Solaro, C. et al. Improved isotope-shift-based bounds on bosons beyond the standard 

model through measurements of the 2D3/2−2D5/2 interval in Ca+. Phys. Rev. Lett. 125, 123003 
(2020).

36.	 Delaunay, C., Frugiuele, C., Fuchs, E. & Soreq, Y. Probing new spin-independent 
interactions through precision spectroscopy in atoms with few electrons. Phys. Rev. D 96, 
115002 (2017).

37.	 Counts, I. et al. Evidence for nonlinear isotope shift in Yb+ search for new boson. Phys. 
Rev. Lett. 125, 123002 (2020).

38.	 Berengut, J., Delaunay, C., Geddes, A. & Soreq, Y. Generalized King linearity and new 
physics searches with isotope shifts. Phys. Rev. Res. 2, 1–11 (2020).

39.	 Figueroa, N. et al. Precision determination of isotope shifts in ytterbium and implications 
for new physics. Phys. Rev. Lett. 128, 1–15 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons license, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons license and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this license, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

105104

m (keV/c2)

Yb+ IS-NL

Ne9+ g IS

y e
y n

10210110010–1 103

10–4

10–12

10–10

10–8

10–6

CF GC

106

Ar15/17+ g IS

Ca+ IS-NL
(g – 2)en
H–D 1S–2S IS

GCCF

Fig. 3 | New physics exclusion plot. Bounds at the 95% confidence level  
on the NP coupling constant (Methods) as a function of the mass of a  
new scalar boson. Other shown limits are derived from Casimir force (CF) 
measurements33, globular cluster (GC) data34, isotopic-shift measurements in 
Ca+ (ref. 35) and in H–D (ref. 36), and a combination of neutron-scattering data 
with the free-electron g factor ((g − 2)en (ref. 29)). The orange region indicates 
possible values of the coupling constant derived from isotopic-shift 
measurements in transition frequencies in Yb+ (ref. 37), under the assumption 
that the observed King nonlinearity is caused by NP (see also refs. 38,39). The 
solid green line shows the limits derived in this work. The dashed green line 
shows a projected bound from isotopic-shift measurements of the g factor of 
hydrogen-like and lithium-like argon.

https://doi.org/10.1038/s41586-022-04807-w
https://arxiv.org/abs/2202.01668
http://creativecommons.org/licenses/by/4.0/


Article
Methods

Mixing and preparing the coupled state
After determining the spin orientations of the individual ions, one 
ion is excited to a magnetron radius r− ≈ 600 μm to prepare for the 
coupling of the ions. They are now transported into electrodes next 
to each other, with only a single electrode in between to keep them 
separated. Subsequently, this electrode is ramped down as quickly as 
experimentally possible, limited by d.c. filters to a time constant of 
6.8 ms to keep any voltage change adiabatic compared with the axial 
frequencies of several 10 kHz. The potentials are also optimized to 
introduce as little axial energy as possible during this mixing. Subse-
quently, both ions are brought into resonance with the tank circuit one 
at a time by adjusting the voltage to repeatedly cool their axial modes. 
Once thermalized, the axial frequency is automatically measured and 
adjusted to the resonance frequency. From the observed shift in axial 
frequency compared with a single cold ion, the separation distance dsep 
of the ions can already be inferred, without gaining information about 
the common mode. At this point, both ions are cooled in their respec-
tive cyclotron motions via sideband coupling15. The common-mode 
radius rcom of the coupled ions can be measured by applying a C4 field 
contribution, causing the axial frequency to become dependent on 
the magnetron radius. With the amplitudes of the axial and reduced 
cyclotron motion being small, this frequency shift allows for the deter-
mination of the root-mean-square (r.m.s.) magnetron radius of each 
ion. If the common mode is large, the modulation of the magnetron 
radius, owing to slightly different frequencies of separation and com-
mon mode, will lead to visible sidebands owing to the axial frequency 
modulation.

For small common mode radii, we will simply measure half the sep-
aration radius for each ion. In combination with the known separation 
distance, the common mode radius can now be determined; however, 
owing to limited resolution of the axial frequency shift and the quad-

ratic dependency, ( )r r d≈ −com r.m.s.
2 1

2 sep

2
, a conservative uncertainty 

after the ion preparation of rcom = 0(100) μm is assumed. For consist 
ency, we have prepared the ions in the final state and again excited the 
common mode to a known radius that could be confirmed using this 
method. In case of a large initial common mode, we first have to cool 
it. Unfortunately, addressing it directly is complicated, as the separa-
tion mode will always be cooled as well. However, using the method 
described in ref. 20, we are able to transfer the common-mode radius 
to the separation mode. This requires a non-harmonic trapping field 
with a sizeable C4, combined with an axial drive during this process. 
The axial frequency will now be modulated owing to the detuning with 
C4 in combination with the modulated radius owing to the common 
mode. As the ion will be excited only when close to the drive, we gain 
access to a radius-dependant modulation force, which finally allows 
the coupling of the common and separation modes.

Finally, with the common mode thus sufficiently cooled, we directly 
address the separation mode, cooling it to the desired value. Owing 
to the strong axial frequency change during cooling, scaling with 
dsep

3  and typically being in the range of Δv ≈ 150 Hz, the final radius 
cannot be exactly chosen but rather has a distribution that scales 
with the power of the cooling drive used. Therefore, one can chose 
to achieve more stable radii at the cost of having to perform more 
cooling cycles, ultimately increasing the measurement time. We 
choose a separation distance dsep = 411(11) μm, with the uncertainty 
being the standard deviation of all measurements as an acceptable 
trade-off between measurement time and final separation distance 
distribution. Furthermore, although a smaller separation distance 
directly corresponds to a decreased systematic uncertainty (Meth-
ods), the increased axial frequency shift as well as a deteriorating 
signal quality of the coupled ions result in a practical limit around 
dsep = 300 μm.

Measurement sequence
Before irradiating the microwave pulses, the cyclotron frequency is 
measured via the double-dip technique using 22Ne9+. This measurement 
is required to be accurate to only about 100 mHz, which corresponds to 
a microwave frequency uncertainty of about 400 Hz, which is neglecta-
ble considering a Rabi frequency of over 2 kHz for a spin transition. The 
microwave pulse is applied at the median of the Larmor frequencies of 
22Ne9+ and 20Ne9+ and therefore detuned from each Larmor frequency 
by about 380 Hz. This detuning is taken into account when calculating 
the required time for a π/2 pulse.

Separation of ions
The strong magnetic bottle, or B2 contribution, that is present in the 
AT gives rise to a force that is dependent on the magnetic moment of 
the ion. The main purpose is to allow for spin-flip detection via the 
continuous Stern–Gerlach effect. In addition, this B2 can be utilized to 
create different effective potentials for the ions depending on their 
individual cyclotron radii r+. These give rise to the magnetic moment 
μ ν q r= πcyc + ion +

2 , which then results in an additional axial force in the 
presence of a B2. To use this effect to separate the coupled ions, one of 
them is pulsed to r+ ≈ 800 μm at the end of the measurement in the PT. 
Subsequently, both ions are cooled in their magnetron modes, result-
ing in a state where one ion is in the centre of the trap at thermal radii 
for all modes while the other is on the large excited cyclotron radius. 
We verify this state by measuring the radii of both ions to confirm the 
successful cooling and excitation. Now, we use a modified ion-transport 
procedure, with the electrode voltages scaled such that the ion with 
r+ > 700 μm cannot be transported into the AT but rather is reflected 
by the B2 gradient, whereas the cold ion follows the electrostatic poten-
tial of the electrodes. The hot ion is transported back into the PT and 
can be cooled there, leaving both ions ready to determine their electron 
spin orientation again, completing a measurement cycle. This separa-
tion method has worked flawlessly for over 700 attempts.

Rabi frequency measurement
To determine the required π/2-pulse duration, a single ion, in this case 
22Ne9+, is used. We determine the spin orientation in the AT, transport to 
the PT, irradiate a single microwave pulse and check the spin orientation 
again in the AT. Depending on the pulse duration t, the probability of 
achieving a change of spin orientation follows a Rabi cycle as

P t
Ω
Ω

Ω t

Ω Ω Ω

( ) =
′

sin ( ′ π ),

′ = ( + Δ ) .
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Here, ΩR is the Rabi frequency and ΔΩL is the detuning of the micro-
wave drive with respect to the Larmor frequency. With a measured Rabi 
frequency of ΩR = 2,465(16) Hz, we can irradiate the mean Larmor fre-
quency of the two ions, with the difference being about 758 Hz. Thereby, 
we are able to use a single pulse simultaneously for both ions while 
accounting for the detuning to achieve a π/2 pulse of 101.1 μs for both 
ions simultaneously. The corresponding data are shown in Extended 
Data Fig. 1. The fit includes a shot-to-shot jitter of the microwave offset 
δΩL to account for the uncertainty of the magnetic field. The measure-
ment is performed on a magnetron radius of r− = 200(30) μm to achieve 
similar conditions to those in the coupled state.

Determination of charge-radii differences
We would in principle be able to improve on any charge-radii differ-
ences, where this is the limiting factor for the theoretical calculation 
of g. This holds true for most differences between nuclear spin-free 
isotopes, as well as differences between different atoms, provided they 
are either light enough for theory to be sufficiently precise or close 



enough in nuclear charge Z such that the corresponding uncertainties 
are still strongly suppressed.

Fitting function for the Larmor frequency difference
To derive the fitting function of the correlated spin behaviour of the 
two ions, we first assume that both ions have been prepared initially 
in the spin-down state, indicated as ↓. The probability to find each ion 
individually in the spin-up state (↑) then follows the probability of a 
Rabi oscillation with the frequency of the difference between the ion’s 
Larmor frequency ωL1 or ωL2, respectively, and the common microwave 
drive frequency ωD. The probability of finding both ions after the meas-
urement sequence in the spin-up state follows as
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Similarly, the probability of finding both ions in the spin-down state 
can be written as
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Both cases, where either both ions are in the spin-down or the 
spin-up statehave to be considered, as we cannot perform a coherent 
measurement of the individual Larmor frequencies with respect to 
the microwave drive. As a result, the information about the Larmor 
frequency difference is encoded only in the common behaviour of 
the spins. Therefore, we have to look at the combined probability 
of both ions either ending up both in the spin-up or spin-down state 
(case 1; Extended Data Fig. 2), or the complimentary case, where the 
two spins behave differently, with one ion in the spin-up state and  
the other ending in the spin-down state. The joint probability is 
given by
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where, owing to the loss of coherence with respect to the drive 
frequency, the term in the middle line of equation (8) averages to 
1/2. The same formula can be derived for any known initial spin  
configuration.

Calculation of the g-factor difference
The g-factor difference can be directly calculated from the determined 
relation given by

g
ω

m
m

q

e
ωΔ =

2
Δ . (9)

c

e

ion

ion
L

Although the input parameters of mass and cyclotron frequency of 
one of the ions are still required, the precision relative to Δg is only of 
about 7 × 10−5, strongly relaxing the need for ultraprecise masses and 
a cyclotron frequency determination. In contrast, when measuring 
absolute g factors, the precision of the mass and cyclotron frequency 
typically limit the achievable precision to the low 10−11 level.

Setting constraints on new physics
Measuring the g factor allows for high-precision access to the proper-
ties of very tightly bound electrons, and hence to short-range phys-
ics, including potential new physics (NP). Bounds on NP can be set 
with isotopic-shift data on the g factor of hydrogen-like neon. The 
Higgs-relaxion mixing mechanism, in particular, involves the mix-
ing of a potential new (massive) scalar boson, the relaxion, with the 
Higgs boson. It has been proposed as a solution to the long-standing 
electroweak hierarchy problem13 with the relaxion as a dark-matter 
candidate40. Constraints on this proposed extension of the standard 
model can be set with cosmological data, as well as with particle col-
liders, beam dumps and smaller, high-precision experiments (see, for 
example, ref. 41 and references therein).

The most common approach in atomic physics is to search for devia-
tions from linearity on experimental isotopic-shift data in a so-called 
King plot analysis29,35,41–44, which can be a sign of NP, although nonlineari-
ties can also happen within the standard model12,24,37,44, which limits the 
bounds that can be set on NP parameters. The King plot approaches 
also suffer from strong sensitivity on nuclear-radii uncertainties25. Here 
we present constraints on NP from data on a single isotope pair. The 
influence of relaxions (scalar bosons) on atoms can be expressed29,41,43,44 
by a Yukawa-type potential (often called the ‘fifth force’) exerted by the 
nucleus on the atomic electrons:

V ħc α A( ) = −
e

, (10)
HR HR

−
mϕc

ħ
r

r

r

where mϕ is the mass of the scalar boson, αHR = ye yn/4π is the NP coupling 
constant, with ye and yn the coupling of the boson to the electrons and 
the nucleons, respectively, A is the nuclear mass number and ħ is the 
reduced Planck’s constant. Yukawa potentials naturally arise when 
considering hypothetical new forces mediated by massive particles. 
The corresponding correction to the hydrogen-like g factor is given by12
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where γ Zα= 1 − ( )2 . The mass scale of the hypothetical new boson is not 
known41, apart from the upper bound m < 60 GeVϕ . In the small-boson- 
mass regime m Zαmϕ e≪ , the contribution to the g factor simplifies to

≪g α A
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γ
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In the large-boson-mass regime ≫m Zαmϕ e, we obtain
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We can set bounds on the NP coupling constant by comparing 
the measured and calculated values of the g-factor isotopic shift  
(see refs. 12,45 for an implementation of the same idea with transition 
frequencies in atomic systems). Uncertainties from theory are a 
source of limitation in this approach. The standard-model contri-
butions to the isotopic shift of the g factor of hydrogen-like neon 
are given in Extended Data Table 1, as calculated in this work based 
on the approaches developed in the indicated references. As can 
be seen, the largest theoretical uncertainty comes from the leading 
finite nuclear-size correction, and is due to the limited knowledge of 
nuclear radii (the uncertainty on the finite nuclear-size correction 
owing to the choice of the nuclear model is negligible at this level of 
precision). We note that the standard source for these nuclear radii 
is data on X-ray transitions in muonic atoms23.
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In the NP relaxion scenario, the energy levels of these muonic atoms 

are also corrected by the relaxion exchange. Another source of r.m.s. 
charge radii and their differences is optical spectroscopy. The elec-
tronic transitions involved are far less sensitive to hypothetical NP than 
muonic X-ray transitions. The radius difference between 20Ne and 22Ne 
extracted from optical spectroscopy46 agrees with the one determined 
from muonic atom data within the respective uncertainties, which 
shows that NP need not be taken into account to extract nuclear radii 
from these experiments at their level of precision. To conclude, for our 
purposes, hypothetical contributions from NP do not interfere with the 
interpretation of muonic atom data for the extraction of nuclear radii.

Taking gΔ = 1.1 × 10′AA
theo

−11  as the theoretical error on the isotopic shift, 
it can be seen from equation (12) that this corresponds to an uncertainty 
of Δye yn ≈ 7.1 × 10−10 (and a 95% bound on ye yn twice as large as this) in the 
small-boson-mass regime ≪m Zαmϕ e, which is weaker than the current 
most stringent bounds coming from atomic physics (H–D 1S–2S, ref. 36). 
In the large-boson-mass regime m Zαmϕ e≫ , our bound remains weaker, 
but becomes more competitive and is more stringent than those of  
ref. 35, owing to two favourable factors. First, the nuclear charge Z in equa-
tion (13) is larger than the screened effective charge perceived by the Ca+ 
valence electron, and larger than the charge of the hydrogen nuclei, which 
also enter the scaling of the bound obtained with these respective ions29. 
Second, when carrying out a King analysis as done in ref. 35, one works 
with two different transition frequencies, and the leading term in the 
hypothetical NP contribution in the large-boson-mass regime, which is 
the equivalent of the right-hand side of equation (13), is cancelled out in 
the nonlinearity search, owing to its proportionality to the leading finite 
nuclear-size correction29, leaving the next term, which scales as 
m Zαm( /(2 ))ϕ

γ
e

−1−2 , as the first non-vanishing contribution.
In the present case, the g factor of a single electronic state is consid-

ered (for a single isotope pair), and this cancellation does not occur. 
This leads to competitive bounds in the large-boson-mass regime with 
the simple g factor isotopic shift of hydrogen-like ions, as shown in 
Fig. 3 (where we used the exact result, equation (11)). We compare our 
bounds on the coupling constant yeyn = 4παHR, to the bounds obtained 
in refs. 35,36, through isotopic-shift measurements in Ca+ (see the curve 
Ca+ IS-NL in Fig. 3) and H (with nuclear radii extracted from muonic 
atom spectroscopy), as well as to the bounds obtained through Casimir 
force measurements33, globular cluster data34 and a combination35) of 
neutron scattering47–50 data and free-electron g factor1 (g − 2)en.

We also reproduce the preferred range for the coupling constant 
obtained in ref. 37, through isotopic-shift measurements in Yb+ (Yb+ IS-NL). 
This range was obtained by assuming that the observed King nonlinear-
ity in the experimental isotopic-shift data is caused by NP. By contrast, 
all nuclear corrections to the g factor that are relevant at the achieved 
experimental precision were taken into account in our approach, allow-
ing for an unambiguous interpretation of the experimental data.

In Fig. 3, we also indicate projected bounds that could be obtained 
from isotopic-shift measurements of the g factors of both hydrogen-like 
and lithium-like argon. Combining both measurements allows the 
approximate cancellation of the leading finite nuclear-size correc-
tions through considering a weighted difference11,27 of hydrogen-like 
and lithium-like g factors. On the basis of our earlier discussion of the 
domination of theoretical uncertainties by the uncertainty on the lead-
ing finite nuclear-size correction (Table 1), the interest of this approach 
is readily understood. Our calculations indicate that argon is in the 
optimal range for setting bounds on αHR with this approach.

The weighted difference approach is not preferred in the 
large-boson-mass regime, however, because of strong cancellations 
of the NP contribution. A similar approach based on a weighted dif-
ference of the g factor and ground-state energies of hydrogen-like 
ions should yield even more stringent bounds28. Both these 
weighted-difference-based approaches are insensitive to uncertain-
ties on the nuclear radii, as such, the bounds that they can generate 
are fully independent of any assumptions on NP coupling to muons.

Calculation of the initial phase difference
As our method relies on a single external drive for this specific meas-
urement, used to drive both spins simultaneously, the drive has to 
be applied at the median Larmor frequency. This results in an addi-
tional phase difference that is acquired during the π/2 pulses. We 
have determined this phase to be Φinit = 35.8(50)° using a numerical 
simulation. Here we use the knowledge of the Rabi frequency as well 
as the uncertainty of the magnetic-field determination, which leads 
to an effective jitter of the microwave drive from cycle to cycle. The 
simulation is performed for different evolution times, extrapolating to 
the phase that would be measured for zero evolution time. Although 
the phase that we can extract from the measured data as a cross-check 
is consistent with this prediction, we still assign an uncertainty of ±5° 
to the simulation.

Analysis of systematic shifts of Δg of coupled ions
Here we evaluate the total systematic shift and its uncertainty for this 
method, specifically for the measurement case of 20Ne9+ and 22Ne9+. For 
this approach, we consider only a separation distance and no common 
mode. For small common-mode radii rcom ≤ 100 μm, which we give as an 
upper limit, the systematic effects discussed here are actually further 
reduced20. We have to consider multiple individual measurements 
performed with single ions to characterize these frequency shifts and 
experimental parameters. More explanation on the methods used can 
be found in ref. 6, and the individual frequency shifts are derived in ref. 51.  
We define our electric potential, and specifically the coefficients Cn as

∑Φ r θ
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with applied ring voltage Vr, the characteristic trap size dchar and the 
Legendre polynomials Pn. The magnetic-field inhomogeneities B1 and 
B2 are defined as
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where z is the axial position with respect to the electrostatic minimum 
of the trap. First, we consider the two main axial frequency shifts that 
depend on the magnetron radius of an ion:
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If the shift of vz is measured to be zero for any radius r−, these two shifts 
cancel and we can conclude that C =

C
C4

3
4 2

3
2

. As it is typically not feasible 
to tune this for arbitrary radii, especially as higher orders will have to 
be considered as well for larger radii, we allow a residual η rel, −

, which 
includes both the residual observed shift and all neglected smaller 
contributions. This is a relative uncertainty, scaling with r2:
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Similarly, we consider all frequency shifts that depend on the cyclo-
tron radius r+ of an ion:
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The electrostatic contributions are identical to those for the magne-
tron mode, and per the assumption above will also combine to the same 
η rel, +

, scaling with the cyclotron radius. However, we have to consider 
the additional terms that stem from the magnetic-field inhomogeneities, 
which are sizeable in this mode owing to the significantly higher fre-
quency:
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In addition, for large cyclotron excitations, we have to consider the 
relativistic effect of the mass increase, which also slightly shifts the 
axial frequency:
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The combined shift depending on magnetic inhomogeneities can 
be expressed as
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Although we cannot currently tune these contributions actively 
(which could be implemented by using active compensation coils22), 
we can slightly shift the ion from its equilibrium position to a more 
preferable position along the z axis to minimize the B2 coefficient. Doing 
so, we have achieved frequency shifts of vz close to zero for any cyclo-
tron excitations as well, which means these terms have to cancel as 
well. We will still allow for another residual error from higher orders, 
as well as a small residual shift, defined as ηmag. The observed difference 
in the frequency shift between cyclotron and magnetron excitations 
η η η+ −r rmag el, el,+ −

 can be used to cancel the identical electric contribu-
tions η rel, +

 and η rel, −
 when measuring at the same radius. If we solve this 

combined equation for C3, we are left with only the magnetic- 
field-dependent terms B1 and B2, which is what the Larmor frequency 
difference is sensitive to 
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where ξ summarizes the shifts depending on the radial modes of the 
ion. Now, instead of looking at frequency shifts of individual ions, we 
consider the effects on coupled ions. Owing to their mass difference, 
the coupled state is not perfectly symmetrical but slightly distorted 
owing to the centrifugal force difference. In the case of the neon 

isotopes, this leads to a deviation of δmag = 0.87%, with the definition 
of r d=

δ
1 sep

(1 − )

2
mag  and r d=

δ
2 sep

(1 + )

2
mag , when choosing ion 1 to be 20Ne9+ 

and ion 2 as 22Ne9+. Consequently, the frequency difference ν ν−L L1 2
 will 

be positive, as the g factor (and therefore the Larmor frequency) for 
20Ne9+ is larger than for 22Ne9+. We now consider the axial position shift 
as a function of the slightly different r −

2. This is given by
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Now we want to express all frequency shifts in terms of vL, which is to 
a very good approximation dependent on only the absolute magnetic 
field, first considering only the effect of B1 and all shifts along the z axis:
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The difference in the shift for the individual ions can then be written as
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We have now the additional uncertainties all summarized in the term 
scaling with the above-defined factor ξ. The final shift to consider is the 
same radial difference as mentioned before in the presence of B2. This 
leads to additional individual shifts in the vL of the ions as
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As a relative shift with respect to the measured Larmor frequency 
difference, this can be written as
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We find that, in the ideal case where neither magnetron nor cyclo-

tron excitations produce shifts of the measured axial frequency vz, 
the final difference of the Larmor frequency is also not shifted at all. 
Here we use the worst case, with a measured combined relative  
shift for ≈ .

η

r

125 mHz
560

mag

+
2  This corresponds to a systematic shift of 

= 6 × 10 ,
ν

ν

Δ(Δ )

Δ
−13L,tot

L,tot
 which we did correct for in the final result. This  

has been confirmed by performing two measurements on different 
separation distances, of dsep = 340 μm and dsep = 470 μm. Both meas-
urements have been in agreement after correcting for their respec-
tively expected systematic shift. The uncertainty of this correction 
of 5 × 10−13 has been evaluated numerically by combining the uncer-
tainties of ηmag and the radii intrinsic to its determination, an uncer-
tainty of δmag and the potential of a systematic suppression of the 
systematic shift by a residual common-mode radius.

Different axial amplitudes
The measurement is performed by first thermalizing the 20Ne9+, then 
increasing the voltage to bring the 22Ne9+ into resonance with the tank 
circuit. This will slightly decrease the axial amplitude of the 20Ne9+, 
which nominally has the larger amplitude when cooled to the identical 
temperature, compared at the same frequency owing to its lower mass. 
The residual difference in amplitude will lead to a further systematic 
shift in the presence of a B2, which has been evaluated to about 3 × 10−14 
and can therefore safely be neglected at the current precision.

g-factor calculation
In Extended Data Table 1, the individual contributions to the g fac-
tors of both ions are shown. The main uncertainty, the higher-order 
two-loop QED contribution, is identical for both ions and does cancel 
in their difference and can therefore be neglected for the uncertainty 
of Δg. The finite nuclear size (FNS) correction gives the dominant 
uncertainty in Δg, which in turn is determined by the uncertainty of 
the r.m.s. radius23. The next error comes from the nuclear polarization 
correction, which sets a hard limit for a further improvement in the 
determination of the r.m.s. radius. The difference in the spectra of 
photonuclear excitations of 20Ne and 22Ne defines the contribution of 
the nuclear polarization to Δg. As the dominant contribution to the 
nuclear polarization of 20,22Ne comes from the giant resonances, one 
has to estimate the isotope difference of this part of the spectrum. 
The measurements of the absolute yields of the various photonuclear 
reactions are reported in refs. 52,53 for 20Ne and in refs. 54,55 for 22Ne. On 
the basis of these data, we conclude that the integrated cross-section 
for the total photoabsorption between 20Ne and 22Ne differs by less 
than 20%, which we take as the relative uncertainty of the nuclear 
polarization contribution to Δg. The hadronic vacuum polarization 
(see, for example, ref. 56) corresponds to the small shift of the g fac-
tor by the virtual creation and annihilation of hadrons and is largely 
independent of the nuclear structure. In the g-factor difference of 
20Ne9+ and 22Ne9+, the QED contribution to the nuclear recoil can be 
resolved independently from all common contributions. A test of 
this contribution by means of an absolute g-factor measurement 
is possible for only the small regime from carbon to silicon and for 
only stable isotopes without nuclear spin. For smaller Z ≤ 6, the QED 
contribution is too small to be resolved experimentally, and for Z > 14, 
the uncertainty of the two-loop QED contribution is too large to test 
the QED recoil. In addition, such an absolute g-factor measurement 
would also require the ion mass to similar precision, which is not 
the case for the approach via the direct difference measurement 
performed here.
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Extended Data Fig. 1 | The measured Rabi frequency ΩR on a single ion.  
The ion is excited to a magnetron radius of r = 200(30) μm− , to ensure similar 
conditions as in the coupled state. The probability of inducing a change of spin 
orientation PSF(t) is modulated by the pulse length of the microwave irradiation 

time. The fit includes a varying microwave offset δΩL to account for the 
uncertainty of the magnetic field determination. Error bars represent the  
68% CI.



Article

Inital state
After evolτ After second π/2 pulse

π/2 pulse

π/2 pulse

π/2 pulse

After first π/2 pulse

BRF

BRF

BRF

Extended Data Fig. 2 | Bloch sphere representation of two of the possible 
outcomes of the measurement for an initial configuration with both ions in 
spin-down state. After both spins are rotated around the applied drive vector 
(orange) to the equatorial plane (π/2 pulse), they precess freely for the 
evolution time τevol. As the coherence with the applied drive is lost, the phase of 

the second time the drive is applied is completely random, leading to a 
reduction in visibility. The relative phase of the spins with respect to each other 
is encoded in their probability to behave identically, maximised when they are 
in phase (upper scenario) and minimal when their phase difference is 180°.



Extended Data Table 1 | Contributions to the calculation of the g-factors of 20Ne9+ and 22Ne9+ and their difference and the final 
experimental result

20Ne9+ 22Ne9+

Dirac value (point nucleus) 1.996 445 170 898(2) 1.996 445 170 898(2)
Finite nuclear size, FNS 0.000 000 004 762(7) 0.000 000 004 596(12)
QED, one loop (α) 0.002 325 473 294(1) 0.002 325 473 294(1)
QED, two loop (α)2 − 0.000 003 547 780(117) − 0.000 003 547 780(117)
QED, ≥ three loop (α)3+ 0.000 000 029 524(1) 0.000 000 029 524(1)
Recoil

Non-QED 0.000 000 146 093 420 0.000 000 132 810 693
QED 0.000 000 000 477 954(1) 0.000 000 000 434 499(1)
(α/ π)(me/ M) − 0.000 000 000 113 2(6) − 0.000 000 000 102 9(5)
(me/ M)2 − 0.000 000 000 044 1(2) − 0.000 000 000 036 5(2)

Hadronic vacuum pol. 0.000 000 000 003 36(3) 0.000 000 000 003 36(3)
Nuclear polarization − 0.000 000 000 001 9(9) − 0.000 000 000 002 0(10)

g factor total theory 1.998 767 277 112(117) 1.998 767 263 638(117)

Difference (in 10− 9) Ref.
FNS 0.166(11) TW, [57]
Recoil, non-QED 13.2827 [58]
Recoil, QED 0.0435 [10]
Recoil, (α/ π)(me/ M) − 0.0103 [59]
Recoil, (me/ M)2 − 0.0077 [59]
Deformation < 0.0001 [60]
Polarization 0.0001(3) TW

Δg Total theory 13.474(11)FNS

Δg Experiment 13.47524(53)stat(99)sys

Each QED contribution in αn is calculated in orders of (Zα)n, scaling identically for both isotopes. The value of the fine-structure constant used in the calculation is α−1 = 137.03599911. me and M are 
the mass of the electron and the nucleus, respectively. Values presented without uncertainties are exact to all given digits10, 57–60. TW, this work.
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