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A B S T R A C T   

Secondary white matter degeneration is a common occurrence after ischemic stroke, as identified by Diffusion 
Tensor Imaging (DTI). However, despite recent advances, the time course of the process is not completely un-
derstood. The primary aim of this study was to assess secondary degeneration using an approach whereby we 
create a patient-specific model of damaged fibers based on the volumetric characteristics of lesions. We also 
examined the effects of secondary degeneration along the modelled streamlines at different distances from the 
primary infarction using DTI. Eleven patients who presented with upper limb motor deficits at the time of a first- 
ever ischemic stroke were included. They underwent scanning at weeks 6 and 29 post-stroke. The fractional 
anisotropy (FA), mean diffusivity (MD), primary eigenvalue (λ1), and transverse eigenvalue (λ23) were measured. 
Using regions of interest based on the simulation output, the differences between the modelled fibers and 
matched contralateral areas were analyzed. The longitudinal change between the two time points and across five 
distances from the primary lesion was also assessed using the ratios of diffusion quantities (rFA, rMD, rλ1, and 
rλ23) between the ipsilesional and contralesional hemisphere. At week 6 post-stroke, significantly decreased λ1 
was found along the ipsilesional corticospinal tract (CST) with a trend towards lower FA, reduced MD and λ23. At 
week 29 post-stroke, significantly decreased FA was shown relative to the non-lesioned side, with a trend towards 
lower λ1, unchanged MD, and higher λ23. Along the ipsilesional tract, the rFA diminished, whereas the rMD, rλ1, 
and rλ23 significantly increased over time. No significant variations in the time progressive effect with distance 
were demonstrated. The findings support previously described mechanisms of secondary degeneration and 
suggest that it spreads along the entire length of a damaged tract. Future investigations using higher-order 
tractography techniques can further explain the intravoxel alterations caused by ischemic injury.   

1. Introduction 

Ischemic stroke disrupts cerebral white matter, which can cause 
disability (Langhorne et al., 2011). Following injury, secondary degen-
eration occurs, defined as neurodegeneration of the proximal and distal 
parts of axons (Egorova et al., 2020). Secondary degeneration is divided 
into anterograde (or Wallerian) and retrograde. Anterograde degener-
ation proceeds from the primary stroke area in the direction of the 
axon’s terminals (Pierpaoli et al., 2001), whereas retrograde degenera-
tion advances proximally towards the cell body (Jindahra et al., 2012). 
Within days after injury, axonal structures start to disintegrate, followed 

by myelin degradation, cytokine upregulation and macrophage infil-
tration after several weeks, and finally, fibrosis and atrophy of the 
affected tracts (Johnson et al., 1950; Lampert and Cressman, 1966). 

Secondary degeneration of the pyramidal tract is a well-known 
phenomenon after motor pathway infarction, which can be character-
ized using diffusion tensor imaging (DTI) (Thomalla et al., 2004; Tho-
malla et al., 2005; Werring et al., 2000). DTI can quantify white matter 
integrity using the parameters of fractional anisotropy (FA; scalar 
measure of directional bias ranging from 0 to 1), mean diffusivity (MD; 
average molecular diffusion), axial diffusivity (AD; diffusion parallel to 
fibers, equivalent to the primary eigenvalue λ1), and radial diffusivity 
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(RD; diffusion perpendicular to fibers, an average of the medium and 
minimum eigenvalues λ23) (Basser and Pajevic, 2003; Pierpaoli and 
Basser, 1996). In an undamaged white matter tract, water diffuses 
rapidly along the principal directions of axons and more slowly 
perpendicular to them, resulting in anisotropic diffusion. In contrast, 
pathological processes alter diffusion, making DTI a suitable modality to 
study structural degeneration of long descending tracts after stroke 
(Werring et al., 2000). 

Several studies have examined secondary degeneration of the pyra-
midal tract using DTI (Liang et al., 2007; Pierpaoli et al., 2001; 
Radlinska et al., 2010). For example, Thomalla et al. (2004) assessed 
anterograde degeneration in 9 ischemic stroke patients and found 
decreased FA and λ1, unchanged MD, and increased λ23 within 2 weeks 
after stroke onset. Significant FA decreases have also been demonstrated 
from week 1 to week 12 post-stroke upstream and downstream from the 
primary lesion in patients with pontine infarction (Liang et al., 2008). A 
similar dynamic pattern was revealed by Yu and colleagues (2009) who 
reported that diffusion quantities fluctuated during the first 3 months 
following injury and then stabilized. Concerning retrograde degenera-
tion, time-dependent optic tract degeneration has been identified after 
occipital lobe damage (Cowey et al., 2011; Jindahra et al., 2012). One of 
the first reports involving the corticospinal tract (CST) discovered up-
stream degeneration after a pontine lesion, which extended to the ce-
rebral peduncle and internal capsule four years following infarction 
(Kobayashi et al., 2005). These findings indicate the presence of 
continuous secondary degeneration remote from a lesion. However, data 
on further distal changes are limited (Wang et al., 2016) and the spatio- 
temporal progression of the process remains elusive. 

In the present investigation, we introduce a custom-developed 
approach to quantify axonal injury caused by secondary degeneration. 
Using a DTI tractography database of healthy volunteers, we can model 
damaged fibers based on the volumetric lesion characteristics of indi-
vidual patients. In principle, this method has several advantages. First, it 
considers the inter-subject variability in lesion size and location, and 
thereby, effectively handles the heterogeneity pertinent to stroke pop-
ulations. Second, by using a tractography database of healthy partici-
pants to examine secondary degeneration, our approach circumvents 
several challenges associated with current procedures for region of in-
terest (ROI) definition. One of them is the imprecision and laboriousness 
of manual tract delineation in pure ROI analysis (Froeling et al., 2016), 
which has been adopted in several former examinations of secondary 
degeneration (Liang et al., 2007; Liang et al., 2008; Thomalla et al., 
2004; Thomalla et al., 2005; Yu et al., 2009). While being easy to 
perform, this approach requires good anatomical knowledge to carefully 
determine the ROIs position given the often-ill-defined boundaries of 
fiber tracts (Froeling et al., 2016). Other shortcomings of commonly 
employed ROI methods include the ambiguity in the selection of path-
ways and tracking parameters, such as seeding and stopping criteria in 
tract ROI approaches (Knösche et al., 2015; Maier-Hein et al., 2017; 
Schilling et al., 2019), the sequence of ROI positioning, which can 
compromise tract reconstruction accuracy (Hattingen et al., 2009), or 
the tract displacement and edema in the vicinity of lesions (Jellison 
et al., 2004). Recently, some solutions have been designed to estimate 
how focal lesions might exert pathological effects distally from the pri-
mary site of infarction (e.g., Foulon et al., 2018; Griffis et al., 2021). 
These tools have enabled the study of stroke as a network connectivity 
disorder and have been applied for various purposes: to identify white 
matter damage in the context of stroke aphasia (Forkel and Catani, 
2018), to relate structural disconnection to post-stroke behavioral def-
icits (Salvalaggio et al., 2020) or executive dysfunction (Hobden et al., 
2021), or to reveal links between white matter connections and the 
brain’s functional segregation (de Schotten et al., 2020). 

In this study, we use our approach for the identification of more 
restricted damage to specific fiber tracts, offering an alternative method 
to investigate secondary degeneration along entire modelled pathways, 
as well as at several distances from the primary lesion. In addition, we 

assess the output of modelled streamlines in relation to the neurological 
deficit observed in our study population. Using a non-invasive proced-
ure to map fibers where degeneration is expected to occur has important 
clinical implications. It can illustrate the potential of studying white 
matter degeneration as a prognostic marker of stroke-induced symp-
toms, which may be more reliable than lesion size or location alone. 
Estimating damaged streamlines can also contribute knowledge about 
the extent of structural pathology, providing a comprehensive set of 
affected voxels for finding correlations with functional outcomes. In 
turn, this has the potential to aid prognosis about long-term post-stroke 
impairment (Lin et al., 2019) and treatment response (Puig et al., 2017). 

First, we created a patient-specific model of the fibers affected by a 
stroke to maximize our sensitivity and then we examined the effects of 
secondary degeneration on the DTI signals in the simulated white matter 
regions. 

2. Methods 

2.1. Subjects 

Fourteen ischemic stroke patients were recruited as part of the 
EXPLICIT-stroke trial from 2009 to 2012. This was a Dutch translational 
research program including two multi-center single-blinded randomized 
trials aimed at elucidating the mechanisms that underlie post-stroke 
recovery of upper extremity (details of the design and interventions 
are described in Kwakkel et al., 2008). All patients presented with mild- 
to-moderate upper limb paresis following a clinically primary brain 
infarction and had high probability of return of dexterity. They were 
enrolled in the ‘favorable prognosis’ group within one of the trial’s 
projects, which involved motor functional magnetic resonance imaging 
(fMRI) tasks and detailed kinematic measurements of upper limb 
movements, where a full paresis would have resulted in non-compliance 
with the research protocol. The timepoints were chosen within the 
context of the trial and represent an interval during which clinical 
changes are observed, and effects of secondary degeneration are antic-
ipated. Patients were included if they (a) had experienced a first-ever 
ischemic stroke that resulted in hospitalization, verified by computer 
tomography (CT) or MRI examination; (b) presented with upper ex-
tremity mono- or hemiparesis at stroke onset, determined by a National 
Institute of Health Stroke Score (NIHSS) of 4 points or less on item 5 
(Brott et al., 1989); (c) were aged between 18 and 80 years; (d) were able 
to understand instructions as indicated by a Mini-Mental State Exami-
nation (MMSE) score of 23 or higher (Folstein et al., 1975); (e) were able 
to provide written consent for participation. Exclusion criteria were: (a) 
inability to perform flexion–extension finger movements or reach-to- 
grasp movements with the paretic upper limb in week 6 post-stroke; 
(b) orthopedic restrictions of upper extremities; (c) pacemakers or 
other metallic implants incompatible with the MRI scanner; (d) botuli-
num toxin injections or other medication that may affect upper limb 
function; (e) communication restrictions as denoted by a score of 3 or 
less on the Utrecht Communication Observation (UCO) (Pijfers et al., 
1985). Three subjects were excluded due to uncertainties about pre- 
existing pathology, namely: one has suffered a hemorrhage close to 
the area of infarction; another patient had a prominent subcortical, as 
well as cortical lesion, and we could not determine which one resulted in 
hospitalization; a third patient exhibited pathology consistent with 
cortical laminar necrosis. All included patients were Dutch nationals, 
without former neurological or neuropsychiatric conditions. Consent 
forms were obtained in accordance with the Declaration of Helsinki 
(2013). Patients’ characteristics are summarized in Table 1. To create 
the tractography database for modelling damaged streamlines in pa-
tients, we also used data of a control group of 78 subjects of comparable 
age. Healthy participants were required to not have a history of 
neurological and/or psychiatric illnesses, to be aged between 18 and 80 
years, and to not have any metallic implants incompatible with the 
scanner’s environment. Data of the control group were collected as part 
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of the creation of an fMRI and DTI database for BrainCarta B.V. (Utrecht, 
The Netherlands; https://braincarta.com/). 

2.2. Scanning protocol 

Images were acquired on two Philips Achieva 3.0 Tesla MRI scanners 
(Philips Healthcare, Eindhoven, The Netherlands) located at the Uni-
versity Medical Center Utrecht (UMCU) and at the Leiden University 
Medical Center (LUMC). Seven patients were recruited from hospitals 
near Utrecht and scanned at the UMCU, and the other four were 
recruited near Leiden and scanned at the LUMC. The scanner model, 
imaging protocol, and quality control parameters across the two sites 
were identical. Patients’ T1-weighted images and diffusion MRI images 
were collected at week 6 (time point 1) and week 29 (time point 2) post- 
stroke. Control subjects all underwent scanning at the UMCU. The head 
was fixed by vacuum fixation cushions before scanning. High-resolution 
whole-brain anatomical scans were obtained for all participants for 
anatomical reference (3D T1-weighted scan: TR = 9806 ms; TE = 4.59 
ms, flip angle = 8◦, 140 slices, 0.875 × 0.857 × 1.2 mm, FOV(AP, FH, 
RL) = 224 × 168 × 177 mm). 

Diffusion-weighted imaging (DWI) data were acquired in transverse 
orientation using parallel imaging sensitivity encoding (SENSE) (p 
reduction = 2). For patients, the following parameters were used: TR =
8481 ms; TE = 60 ms, FOV(AP, FH, RL) = 224 × 120 × 224 mm; voxel 
size = 2.00 × 2.00 × 2.00; 60 slices; 32 diffusion gradients; b = 800 s/ 
mm2. Data of the control group were collected outside the trial with a 
different imaging protocol. While two complete DWI datasets were ob-
tained for the control subjects, as opposed to a single set for the patients 
at each measurement point, the other acquisition parameters did not 
substantially differ. Parameters of the sequence for obtaining diffusion- 
weighted images in control subjects were: TR = 7110 ms; TE = 69 ms, 
FOV(AP, FH, RL) = 240 × 150 × 240 mm; isotropic voxel size = 1.88 ×
1.88 × 2.00 mm; 75 slices; 32 diffusion gradients; b = 1000 s/mm2; 2 
series with opposing phase-encoding blip (ap/pa). Slices were acquired 
with no inter-slice gap. All diffusion series included a reference image 
without diffusion weighting as well (b = 0 s/mm2). 

2.3. Simulation approach 

To define the specific ROIs where secondary degeneration effects 
would be expected in the diffusion data of the patients, we superimposed 
lesion volumes on the tractograms of control subjects and selected 
streamlines passing through each lesion. This required the creation of 
(1) lesion segmentation volumes of the patients and (2) tractograms of 
the control subjects in Montreal Neurological Institute (MNI) space. 

2.3.1. Lesion segmentation on Patients’ images 
Lesions were manually delineated on each slice of subjects’ T1- 

weighted images using ITK-Snap 3.6.0. (www.itksnap.org) by two re-
searchers blinded to patients’ former medical history (primary rater I.K.; 
secondary rater A.K.), according to the protocol described by Yushke-
vich et al. (2006). The anatomical scans from the second time point were 
used to capture any tissue degeneration occurring between the two 
measurements. Any uncertainties regarding lesion location and extent 
were discussed with a third expert (M.R.). Segmentation reproducibility 
was determined using the Dice Similarity Coefficient (DSC), where a 
score of 0 indicates no spatial overlap and a score of 1 denotes perfect 
match (Crum et al., 2006). High correspondence was shown between the 
segmentations of the two raters (DSC = 0.76). Fig. 1 displays the lesion 
locations in all included patients. 

2.3.2. Lesion volumes post-processing 
Next, the native space T1-weighted patient images from time point 2 

and the corresponding lesion maps were coregistered to the b =
0 reference images from time point 1. Subsequently, the coregistered 
lesion volumes were spatially normalized to the elderly template in MNI 
space of the Clinical toolbox integrated in SPM12 (Statistical Parametric 
Mapping, https://www.nitrc.org/projects/clinicaltbx/), which is spe-
cifically designed for normalizing structural scans from older people, 
including those with brain injury (Rorden et al., 2012). Regularization 
was reduced by an order of magnitude to ensure proper fit of the ven-
tricles and surrounding white matter. Quality checks of the registration 
and normalization procedures were performed by visual inspection. 
Then, the generated streamline and distance volumes were inverse 
normalized back to native space, and resliced to the volume and reso-
lution of the diffusion scans. The resulting images were used for all 
subsequent statistical analyses. 

2.3.3. Creation of tractograms of control subjects 
Initially, the DWI images were denoised (Veraart et al., 2016a; 

Veraart et al., 2016b) and geometry corrected using the b = 0 images of 
the series with opposed traversal of k-space in the phase-encoding di-
rection (Andersson et al., 2003). Both series included a single b0 image. 
Then, DWI data were corrected for eddy currents and head motion 
(Andersson and Sotiropoulos, 2016) using the multi-processor variant of 
FSL’s ‘eddy’. A mean b0 image was calculated and stored as a reference 
for registering other images to the DWIs. A response function for con-
strained spherical deconvolution (CSD) was created based on the 
diffusion data on every individual subject (Dhollander et al., 2016, 
September; Dhollander et al., 2018, June) and subsequently applied for 
estimating the fiber orientation distribution (FOD) of each voxel 
(Tournier et al., 2004). We created our response function per subject to 
optimize the validity of each individual tractography. 

Table 1 
Patient characteristics at weeks 6 and 29 after stroke (n=11).  

Patient Age (years) Sex Ipsilesional hemisphere Lesion location Lesion volume (mm3) FMA-UE week 6 FMA-UE week 29 

1 64 M R IC, BG, CR 11.510 62 63 
2 71 M L P 426 65 66 
3 73 M L BG 5432 46 61 
4 63 M R P 218 51 65 
5 66 M R BG 7877 63 61 
6 59 M L Thalamus, IC 360 62 65 
7 60 M R IC, extending to cortex 3296 57 60 
8 37 F R BG 1669 59 63 
9 54 M R IC, BG, CR 1037 44 57 
10 57 F R BG 5961 54 56 
11 45 M R P 920 14 58 
Mean 59       
SD 10.68       
Total  2F, 9M 3L, 8R 3P, 8SC    

Note. F, female; M, male; L, left; R, right; BG, basal ganglia; CR, corona radiata; IC, internal capsule; P, pontine; SC, subcortical. FMA-UE, upper extremity section of the 
Fugl-Meyer Assessment of Motor Recovery after Stroke. 
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Five million streamlines were generated for each subject using a 
deterministic CSD algorithm (Tournier et al., 2012) with the following 
parameters: step size of 0.1 times the voxel size; minimum streamline 
length of 5 times the voxel size; tracking cut-off at an FOD of 0.1; 
maximum angle of 9 degrees per step. Seeds were selected randomly 
throughout the brain. To improve the biological plausibility of the 
tractograms, the 5 million streamlines were filtered down to 1 million, 
so that the FOD lobe integrals would better match the streamline den-
sities (Smith et al., 2013). To normalize the tractograms to MNI space, 
they were first registered to the structural images applying the param-
eters derived from the registration procedure using the b = 0 images. 
Displacement maps for moving the tractogram coordinates to MNI space 
were obtained based on the T1-weighted images and spatially normal-
ized with the ‘unified segmentation’ procedure in SPM12 (Ashburner 
and Friston, 2005), using the same regularization settings and template 
as for the patients. 

2.3.4. Modelling damaged fibers in patients 
The fibers predicted to be damaged by a specific stroke were selected 

by including streamlines from the tractograms for which at least one 
coordinate was positioned within a voxel marked as part of a lesion. 
These streamlines were mapped onto a volume representing the number 
of affected fibers passing through each voxel. For each lesion, this pro-
cess was repeated for every tractogram of the control subjects, resulting 
in 75 volumes per patient. An average was produced of these 75 vol-
umes, representing the final model of damaged fibers in a given patient. 
Note that two simulation models were created for every patient, each 
based on the normalized lesion segmentation volumes of one of the two 
raters. The DSC was used to evaluate the similarity between the gener-
ated output images. Inter-rater agreement was excellent (DSC = 0.89), 
suggesting high reproducibility of the models. Thus, we continued only 

with the images of the primary rater (I.K.). 
Furthermore, an additional volumetric output was created for every 

patient, which included the corresponding distance from a lesion along 
the length of the streamlines for every voxel containing at least a single 
affected streamline. The latter output was also the average of all simu-
lations (n = 75) in the control subjects and was used to assess a possible 
degenerative process advancing upstream or downstream from the 
respective lesion location. Fig. 2 depicts a schematic representation of 
the simulation pipeline. 

2.4. Diffusion data pre-processing 

Diffusion images of patients were denoised and corrected for motion 
artifacts and eddy currents using the same algorithms as for the control 
subjects. After that, tensor models were fitted for each subject’s first and 
second time point scan and maps of FA, MD, λ1, and λ23 were generated 
with the MRtrix3 package (Tournier et al., 2019). The diffusion tensor of 
each voxel was calculated, and the eigenvalues were extracted. From 
them, the FA, MD, and RD (λ23) were computed according to the 
following equations: 

FA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(λ1 − λ2)
2
+ (λ1 − λ3)

2
(λ2 − λ3)

2

2(λ1 + λ2 + λ3)
2

√

MD =
λ1 + λ2 + λ3

3  

RD =
λ2 + λ3

2 

In addition, for each patient, the b = 0 image from time point 2 was 
coregistered and resliced to the b = 0 reference image from time point 1 

Fig. 1. Axial structural T1-weighted anatomical scans at the level of maximum infarct volume for each stroke patient obtained at week 29 post-stroke. Arabic 
numbers denote the case numbers of patients. L = left; R = right. 
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using a rigid body transformation. The derived transformation matrix 
was applied to the corresponding volumes including the diffusion pa-
rameters using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/ 
spm12/). The resulting images were normalized to MNI space using 
the voxel displacement maps that were previously established with the 
Clinical toolbox. 

2.5. Group-wise analysis for modelling damaged fibers 

To assess if the modelling procedure would produce results consis-
tent with the upper limb deficit exhibited in the study population, we 
performed a group-wise analysis using the volumetric images from the 
simulation’s output, comprising the number of damaged streamlines 
passing through each lesion voxel, as input. For this analysis, the Sta-
tistical nonParametric Mapping (SnPM) toolbox was employed 
(SnPM13.1.06, http://www.nisox.org/Software/SnPM13/) (Winkler 
et al., 2014). SnPM provides a framework for voxel-wise inference using 
a non-parametric multiple comparisons method with permutations. It 
uses the General Linear Model to construct pseudo t-statistic images, 
which are then assessed for significance using a standard non- 
parametric multiple comparisons procedure based on permutation 
testing. This approach was chosen due to the non-Gaussian distribution 
of the simulation output at the voxel level when comparing across 
patients. 

First, the damaged streamline models for patients with a right-sided 
motor deficit were flipped along the x-axis. This ensured that the 
assumed lesioned hemisphere corresponded to the right side of the brain 
for all subjects. Then the images were entered into SnPM, and a one 
sample t test was carried out with a threshold of p < .05 (family-wise 
error, FWE) based on 2048 permutations. According to the results, the 
modelled fibers mapped onto the CST to a large extent, as would be 
expected considering the hand mono- or hemiparesis that patients 

presented with at stroke onset (Fig. 3). 

2.6. Tract region of interest-based analysis 

Next, a tract ROI-based analysis was conducted on the diffusion 
parameters in the ipsilesional (side of the lesion) and contralesional 
(opposite side of the lesion) hemisphere. To establish the ROI where 
degeneration was expected to occur, we thresholded the modelled 
output streamlines (>3 damaged fibers per voxel). Voxels inside the 
primary lesion or where the FA was < 0.1 were excluded. The contra-
lateral ROI was used as a reference area, which was generated by flip-
ping the left–right orientation of the simulation output (Fig. 4). Values of 
FA, MD, λ1, and λ23 were obtained by averaging across all voxels within 
each ROI. In addition, for each diffusion metric and time point, the ratio 
(rFA, rMD, rλ1, and rλ23) between the ipsilesional and contralesional side 
was calculated (e.g., rFA = FAipsilesional side/FAcontralesional side). This is a 
common approach in DTI studies investigating secondary degeneration, 
based on the premise that diffusion indices along tracts on the left and 
right sides do not differ, and that their values in the non-lesioned 
hemisphere remain stable after stroke (e.g., Pierpaoli et al., 2001; 
Thomalla et al., 2005; Yu et al., 2009). To confirm whether this condi-
tion was met, we assessed the fluctuation in diffusion quantities on the 
contralesional side prior to using the ratios. Then the rFA, rMD, rλ1, and 
rλ23 of the ROI of the ipsilesional tract between the two time points were 
compared to examine any longitudinal change. Diffusion parameters 
and their respective ratios were also computed for the ROI of the pri-
mary infarction. 

2.7. Distance-based region of interest analysis 

Furthermore, to investigate the spatio-temporal changes along the 
ipsilesional tract, the original ROI was divided into five regions 

Fig. 2. Schematic representation of the simulation pipeline. Lesion areas are marked in a 3D volume for every patient and then projected onto MNI space. The 
normalized lesion volumes serve as input for the simulation. During the procedure, all the streamlines that pass through an infarct area are selected to generate a 
prediction model comprising voxels with damaged fibers. 
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representing segments of the damaged fibers at several distances from 
the primary infarction area. The included distances were 0–10, 10–20, 
20–30, 30–40, and 40–50 mm from the primary lesion, as calculated 
along the length of the streamlines. The ratios (rFA, rMD, rλ1, and rλ23) 
between the ipsilesional and contralesional hemisphere were computed 

for each distance and compared between the two time points. 

2.8. Statistical analysis 

Statistical analysis was performed using SPSS 25.0. for Windows 

Fig. 3. Lesion prevalence and modelled damaged fibers in patients (n = 11) visualized using MRIcron V2016. Panel A. Distribution of voxels affected by a lesion. The 
color bar indicates the number of subjects with a lesion in each voxel. Panel B. SnPM pseudo-T map displaying the results for the group-mean model comprising 
damaged fibers. The simulated streamlines map onto the CST, which carries movement-related information from the cerebral cortex to the brainstem. The color bar 
illustrates the number of subjects for whom fibers will be damaged by a lesion in each voxel. A = anterior; I = inferior; L = left; P = posterior; R = right; S = superior. 
Group average based on a threshold of p < .05 (FWE). 

Fig. 4. Modelled damaged fibers for a patient with right striatocapsular infarction, coronal slices. Red areas show the primary lesion. Blue areas illustrate the ROI in 
the ipsilesional hemisphere comprising the modelled damaged fibers. Green areas visualize the reference ROI on the contralateral side. ROIs are overlaid onto the 
patient’s coregistered T1-weighted image from week 29 post-stroke. Numbers above the slices denote Z coordinates. A = anterior; P = posterior. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(SPSS Inc., Chicago, IL). Side differences, as well as differences between 
the two time points, were analyzed using paired samples t tests for 
normally distributed data, and Wilcoxon signed-rank tests when the 
normality assumption was violated. To study the changes in diffusion 
quantities along the degenerating tract at different distances from the 
primary lesion, a two-way repeated measures ANOVA was carried out on 
the rFA, rMD, rλ1, and rλ23 of the ipsilesional ROIs. Distance (6 levels) 
and time point (2 levels) were inserted as within-subject factors. The 
significance level was defined as 2-tailed and the threshold was set at p 
= .05 for all statistical procedures. 

3. Results 

3.1. Differences between diffusion indices along the ipsilesional and 
contralesional tract 

To assess any diffusion abnormalities along the damaged streamlines 
at week 6 post-stroke, we examined the differences between the diffu-
sion indices in the ROIs of the lesioned and non-lesioned hemisphere. 
Then we carried out the same analysis on the parameters from week 29. 
Table 2 shows the FA, MD, λ1, and λ23 on both sides at each time point. 
At week 6 post-stroke, the λ1 of the ROI of the ipsilesional tract was 
significantly lower than the λ1 of the contralesional ROI. At week 29, the 
FA of the ROI of the ipsilesional tract was significantly lower than the FA 
of the contralesional tract. The differences between the two sides for the 
remaining comparisons of interest did not reach statistical significance. 

3.2. Longitudinal change in diffusion indices along the ipsilesional tract 

In the non-lesioned hemisphere, no significant differences were 

demonstrated between weeks 6 and 29 post-stroke for the FA, MD, λ1, 
and λ23, suggesting stability of the diffusion quantities across scans (see 
Inline Supplementary Table 1 for p values). This enabled us to use the 
ratios of diffusion metrics between the ipsilesional and contralesional 
side to study the longitudinal change along the modelled degenerating 
tract. The ratios for all parameters are presented in Table 3. The rFA 
along the ipsilesional tract decreased from the first to the second time 
point, albeit non-significantly. In comparison, the rMD, rλ1, and rλ23 all 
significantly increased over time. 

3.3. Changes in diffusion indices along the ipsilesional tract at different 
distances from the primary infarction 

Finally, to investigate the spatio-temporal changes in diffusion 
quantities along the modelled ipsilesional tract, we conducted a distance 
analysis on the rFA, rMD, rλ1, and rλ23 in five ROIs, comprising segments 
at 0–10, 10–20, 20–30, 30–40, and 40–50 mm from the primary lesion. 

The repeated measures ANOVA showed a significant main effect of 
time for the rFA (F(1,10) = 8.31, p = .016), rMD (F(1,10) = 16.10, p =
.002), rλ1 (F(1,10) = 9.88, p = .01), and rλ23 (F(1,10) = 25.00, p = .001). 
The rFA at week 29 post-stroke was significantly lower compared to 
week 6 across the five distances from the primary infarction. In contrast, 
the rMD, rλ1, and rλ23 were all significantly higher at week 29. 

Regarding the effect of distance, the rFA tended to be lower at week 
29 post-stroke at the most proximal and distal segments from the pri-
mary lesion, whereas the rMD and ratios of eigenvalues exhibited the 
opposite pattern (see Inline Supplementary Table 2 for values at each 
distance). However, no main effect of distance or interaction between 
time and distance were found (Fig. 5). 

Table 2 
Comparisons of diffusion parameters between the ipsilesional and contralesional side at two time points post-stroke in patients (n=11).  

Tract ROI Analysis           

Group comparison, P value 

Diffusion parameter Time post-stroke Ipsilesional side (IS) Contralesional side (CS) Test statistics IS vs CS 

FA (dimensionless) W6 
W29 

0.40±0.07 
0.39±0.06 

0.43±0.06 
0.43±0.07 

t(10) = 1.546 
t(10) ¼ 2.382 

0.153 
0.038 

MD (£10¡3mm2/sec) W6 
W29 

0.92±0.12 
0.97±0.12 

0.95±0.15 
0.96±0.18 

T = 24; z = -0.80†
t(10) = -0.434 

0.424y

0.674 
λ1 (£10¡3mm2/sec) W6 

W29 
1.30±0.18 
1.36±0.17 

1.38±0.20 
1.39±0.22 

t(10) ¼ 3.272 
t(10) = 1.439 

0.008 
0.181 

λ23 (£10¡3mm2/sec) W6 
W29 

0.73±0.11 
0.78±0.11 

0.74±0.14 
0.75±0.17 

T = 39; z = -0.533†
T = 49; z = 1.423†

0.594y

0.155y

Note. ROIs correspond to the modelled damaged tract on the ipsilesional side and the respective contralateral tract. Values denote mean ± standard deviation (SD). For 
comparisons with normally distributed data, test statistics are represented using t(degrees of freedom), where t is the test statistic. For comparisons with non- 
parametric data, T is the test statistic and z is the standardized test statistic, or z-score. FA, fractional anisotropy; MD, mean diffusivity; λ1, primary eigenvalue, 
corresponding to AD; λ23, transverse eigenvalue, corresponding to RD; W6, week 6 post-stroke; W29, week 29 post-stroke. Bolded values indicate significance at p <
.05. 
yWilcoxon signed-rank test. 

Table 3 
Diffusion parameters along the ipsilesional degenerating tract at two time points post-stroke in patients (n=11).  

Tract ROI Analysis    

Diffusion parameter Time post-stroke Test statistics Group comparison, P value  

W6 W29  W6 vs W29 

rFA 0.94±0.13 0.91±0.13 t(10) = 1.602 0.140 
rMD 0.98±0.08 1.02±0.09 t(10) ¼ 2.942 0.015 
rλ1 0.95±0.05 0.98±0.05 t(10) ¼ -2.479 0.033 
rλ23 1.01±0.12 1.07±0.13 t(10) ¼ -3.206 0.009 

Note. Ratios between the ipsilesional and contralesional side in the ROI of the modelled damaged tract at two time points post-stroke. Values denote mean ± standard 
deviation. Test statistics are represented using t(degrees of freedom), where t is the test statistic. FA, fractional anisotropy; MD, mean diffusivity; λ1, primary 
eigenvalue, corresponding to AD; λ23, transverse eigenvalue, corresponding to RD; W6, week 6 post-stroke; W29, week 29 post-stroke. Bolded values indicate sig-
nificance at p < .05. 
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4. Discussion 

In the present study, we introduced a custom-developed method for 
modelling damaged fibers after ischemic stroke based on the lesion 
volumetric characteristics of individual patients. Modelling was done by 
superimposing segmented lesion volumes onto the tractograms of 
healthy subjects from a large tractography database. By adopting this 
approach, we could generate a prediction of the white matter regions 
where degeneration is expected to occur, addressing some of the caveats 
of standard procedures for ROI definition. Using the model prediction, 
we examined diffusion changes along the simulated streamlines to 
further elucidate the spatio-temporal progression of secondary 
degeneration. 

4.1. Dynamic changes in the diffusion indices along the modelled white 
matter fibers damaged after stroke 

To assess differences between the ipsilesional and contralesional 
hemisphere, we compared diffusion quantities along the fibers predicted 
to be damaged by the model and matched contralateral regions. At week 
6 post-stroke, we found significantly decreased λ1 along the ipsilesional 
tract and the following non-significant tendencies for the remaining 
parameters: lower FA and diminished MD and λ23. At week 29, we 
documented significantly lower FA with a trend towards reduced λ1, 
preserved MD, and higher λ23 on the lesioned side. Although most 
comparisons did not reach statistical significance, diffusion indices 
changed in the anticipated directions. Given that secondary degenera-
tion is characterized by a series of simultaneous events, we discuss sig-
nificant and non-significant results concurrently to facilitate 
understanding of the molecular mechanisms underlying the observed 
changes. 

The decrease in the λ1 at week 6 could be accounted for by the 
fragmentation of axons, which restricts the longitudinal displacement of 
water molecules (Kerschensteiner et al., 2005; Sun et al., 2008). After 

that, myelin sheaths start to disintegrate, causing an elevation in λ23. 
Subsequently, the axonal fragments are cleared by infiltrating microglia 
and diffusion in the parallel direction is re-established (Johnson et al., 
1950; Lampert and Cressman, 1966), which may explain the increase in 
λ1 along the ipsilesional tract between week 6 and week 29 post-stroke. 
At the same time, the removal of the myelin debris enables water to 
diffuse more freely in the transverse direction (Song et al., 2003), 
causing λ23 to increase, which was observed between the two time 
points. These findings are in agreement with an earlier longitudinal 
investigation that demonstrated reduced λ1 at week 2, which elevated 
from 1 month to 3 months post-stroke, along with ongoing increases in 
λ23 (Yu et al., 2009). They suggest that axial diffusivity is a marker of 
axonal disruption, which precedes demyelination, whereas radial 
diffusivity changes reflect myelin loss, in line with evidence from animal 
studies (Beaulieu et al., 1996; Onuki et al., 2001; Song et al., 2005). 

We also discovered lower FA along the ipsilesional tract at both time 
points with reduced MD at week 6 post-stroke that increased to the 
values of the contralateral tract by week 29. This fluctuation pattern is 
consistent with existing knowledge about the cellular mechanisms of 
secondary degeneration. More specifically, approximately 1 week 
following injury, MD decreases due to cytotoxic edema. Subsequently, 
cell lysis and degradation of tissue architecture enable water to diffuse 
freely again, causing an elevation in MD (Ahlhelm et al., 2002; Eastwood 
et al., 2003), which was demonstrated from week 6 to week 29 post- 
stroke. This is accompanied by a replacement of anisotropic micro-
structures with disorganized glial proliferation (Graham and Luntos, 
2002), which may reduce FA. Despite the ongoing axonal and myelin 
disintegration, in the chronic stage of stroke, cellular debris and 
phagocytic microglia reintroduce barriers to water movement (Beaulieu 
et al., 1996). This may explain the preservation of MD along the ipsi-
lesional tract relative to the contralesional tract at week 29. Comparable 
trends of diminished FA, with slightly raised MD from 1 month to 3 
months (Yu et al., 2009) or unchanged MD 2 to 6 months following 
infarction (Werring et al., 2000), have formerly been reported. 

Fig. 5. Ratios of the fractional anisotropy (A), mean diffusivity (B), primary eigenvalue (rλ1), corresponding to AD (C), and transverse eigenvalue (rλ23), corre-
sponding to RD (D) between the ipsilesional and contralesional side in the ROIs of the primary lesion and at five distances along the modelled damaged tract at weeks 
6 and 29 post-stroke in patients (n=11). Error bars denote 95 % confidence intervals (CIs). 
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Retrograde degeneration is also caused by axonal destruction and 
demyelination, but it starts at the infarct site and advances upstream 
(Jindahra et al., 2012). Previously, Liang and colleagues (2007) fol-
lowed 12 patients with internal capsule lesions from week 1 to week 12 
post-stroke. They interpreted the time-dependent degeneration in the 
fibers above the internal capsule as retrograde and the one along the 
thalamic radiation as anterograde. Similarly, we regard our findings as 
reflecting both types of secondary degeneration. To illustrate, for pa-
tients with pontine infarcts, the model prediction included the proximal 
portion of the pyramidal tract (including the centrum semiovale, inter-
nal capsule, and cerebral peduncle) where degeneration is deemed 
retrograde, and the medulla – where degeneration is considered anter-
ograde (Liang et al., 2008). 

Altogether, the exhibited differences between the ipsilesional and 
contralesional tracts were in the anticipated directions but many com-
parisons did not reach statistical significance. One possibility is that the 
approach for creating regions of interest may have included multiple 
tracts with different diffusion indices, adding substantial noise to our 
metrics. Although this could be the case in theory, we consider such a 
possibility unlikely due to several reasons. While baseline parameters of 
tracts do vary, the resulting effects would not affect longitudinal mea-
surements in a within-subjects design considerably because diffusion 
changes related to secondary degeneration involve similar molecular 
mechanisms throughout the brain. In addition, the CST was largely 
represented in the prediction for most subjects, further limiting the 
contribution of inter-tract variations. A second putative explanation for 
the non-significant results could be the relatively mild-to-moderate 
lesion damage in our population. In this regard, it should be noted 
that the studied patients had different lesion locations with more 
prominent involvement of grey matter in some and white matter – in 
others. This can be relevant to our results since the pathological effects 
of grey matter injury could be exacerbated because damage to the cell 
soma causes the entire neuron to degenerate along with its axon. 
Nevertheless, the damaged streamlines model represented a group- 
mean, so the more pronounced effects from more severely affected in-
dividual cases could have been averaged out. Furthermore, our 
approach takes information about lesion extent into account in principle 
by modelling fewer damaged fibers for smaller lesions. However, some 
imprecision in the generated output for the smaller infarcts could have 
diluted the established effects. Another possibility is that the ipsilesional 
ROIs we analyzed comprised areas of crossing, where the preserved 
orientational coherence of the intact streamlines has offset the loss of 
anisotropy and increase in diffusivity (Pierpaoli et al., 2001). The latter 
underscores that the fibers’ structural morphology and spatial orienta-
tion should be taken into account when investigating secondary 
degeneration. 

Furthermore, to assess the evolution of the longitudinal changes 
along the degenerating tract, we compared the ratios of diffusion indices 
between the ipsilesional and contralesional side. Along the damaged 
tract, the rFA decreased, whereas the rMD, rλ1, and rλ23 significantly 
increased over time. In keeping with previously inferred mechanisms of 
secondary degeneration, this is likely due to the further replacement of 
anisotropic microstructures distally from the lesion and the enlargement 
of the extracellular space (Beaulieu, 2002; Sen and Basser, 2005). More 
concretely, the clearance of the fragmented damaged axons by microglia 
enables water molecules to start diffusing in the longitudinal direction 
once again, causing diffusion parallel to fibers to rise. At the same time, 
the further degradation of the myelin sheaths and corresponding 
clearance of myelin debris without apparent axonal regeneration and 
new myelin formation increases the magnitude of diffusion in the 
perpendicular direction. These processes are indicative of axonal and 
myelin loss, as well as reduction in the orientational coherence of axons 
and axonal packing density (Song et al., 2003), and could explain the 
higher rλ1 and the ongoing elevation in rλ23. In turn, the changes in 
diffusion tensor eigenvalues might result in decreased rFA and increased 
rMD over time, reflecting the overall higher directionally independent 

diffusion, as observed from 1 month to 3 months post-stroke by Yu et al. 
(2009). Collectively, the demonstrated reduction in FA, accompanied by 
initial decreases in the parallel and subsequent increases in the trans-
verse diffusivity, with small changes in MD, corroborate conclusions 
that secondary degeneration is characterized by fiber loss, as well as 
gliosis and extracellular matrix expansion (Pierpaoli et al., 2001; Tho-
malla et al., 2005; Werring et al., 2000). 

4.2. Secondary degeneration along the damaged streamlines at different 
distances from the primary infarction 

The used model also enabled an assessment of the changes in diffu-
sion parameters along the ipsilesional tract at several distances from the 
primary lesion. Despite consensus that fiber degeneration affects adja-
cent regions of the axon sequentially, inconsistencies concerning its 
progressive nature and directionality prevail (Beirowski et al., 2005). To 
address this question, we defined five segments along the modelled 
streamlines at successive distances from the primary infarction. This 
approach complemented the tract ROI analysis and provided additional 
insight into the spatio-temporal development of secondary degenera-
tion. While a longitudinal effect was revealed with lower rFA and 
significantly higher rMD, rλ1, and rλ23 at week 29 post-stroke, the 
established differences did not vary significantly with distance from the 
primary lesion. The progressive decrease in anisotropy and increase in 
diffusivity across the different segments of the damaged tract support 
the notion that degeneration affects the entire fiber’s length (Liang et al., 
2008). Still, some non-significant variation was observed at different 
locations along the ipsilesional tract with lower rFA and elevated rMD, 
rλ1, and rλ23 most proximally and remotely from the primary infarction. 
This fluctuation pattern may indicate more pronounced diffusion 
changes in these areas as existing literature has suggested that axonal 
degeneration is region-specific (Burzynska et al., 2010) and contingent 
upon factors, such as fiber type (Martinez and Canavarro, 2000), axonal 
diameter and packing density (Takahashi et al., 2002), membrane 
permeability (Beaulieu, 2002), and axonal arrangement within a voxel 
(Jones et al., 2013). Another potential explanation concerns inherent 
variations in white matter anatomy, particularly in areas of crossing 
fibers where tensor-derived scalar measures could reflect the degree of 
fiber dispersion (Dell’Acqua and Tournier, 2019), rather than constitute 
a reliable anatomical correlate of a clinical condition. Given that direct 
histopathological evidence cannot be provided, future research should 
further clarify whether areas most proximal and distal to a lesion are 
more susceptible to the influence of secondary degenerative processes. 

4.3. Methodological considerations 

Several limitations warrant consideration. It should be outlined that 
the tensor model provides a simplified description of the diffusion pro-
cess compared to the underlying histology (Alexander et al., 2002; Tuch 
et al., 2002). The ROIs we analyzed largely overlapped with the CST, 
which has highly oriented fibers suitable for DTI assessment (Yu et al., 
2009). Nevertheless, most white matter tracts do not remain within 
single-fiber voxels over their entire path (Jeurissen et al., 2013). Hence, 
it is likely that the model prediction comprised regions with contribu-
tions of crossing fibers, such as the rostral pons (Pierpaoli et al., 2001) or 
anterior limb of internal capsule (Schmahmann and Pandya, 2006) 
where secondary degeneration effects may be underestimated. Using a 
higher-order tractography technique in the future will provide a more 
sensitive measure of the stroke-induced changes at the intravoxel level 
(Dell’Acqua and Tournier, 2019). Second, control subjects in the data-
base were not age-matched to the patients, which in theory might have 
added noise to the prediction of the streamlines to be damaged by the 
lesions. Although we attempted to minimize such effects by adjusting 
the normalization procedure to account for age-related effects (i.e., 
ventricular size), we cannot exclude some residual bias. Ideally, separate 
databases should be created that fully match the demographic details of 
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the experimental population. Third, patients were allocated to the 
favorable prognosis group within the recruitment trial where ability to 
carry out voluntary flexion–extension and grasping movements was 
required, which could have introduced selection bias. Another consid-
eration is the lack of baseline data and limited sample size, which make 
it difficult to assess any diffusion alterations prior to week 6 post-stroke. 
These shortcomings may compromise the generalizability of our results, 
particularly to patients with more severe strokes. Lastly, it is worth 
noting that an examination of tract-related metrics in relation to neu-
ropsychological measures of upper limb motor recovery was beyond the 
scope of this study. Earlier investigations have discovered associations 
between FA values and clinical assessments, such as the NIHSS and 
Motricity Indices (Thomalla et al., 2004; Yu et al., 2009), and 
Fugl–Meyer (FM) scale (Liang et al., 2007). However, they linked their 
motor function measurements to diffusion parameters at earlier time 
points (within 2 days to 12 weeks post-stroke) when most spontaneous 
neurobiological recovery is thought to occur (Kwakkel et al., 2006). 
Future studies using longer observation periods, more intermediate time 
points for comparison, larger populations with varying degrees of motor 
impairment, combined with resting-state or task-related brain activation 
analyses, would help further disentangle the spatio-temporal develop-
ment of secondary degeneration and its relationship to functional 
recovery. 

4.4. Implications and conclusion 

Notwithstanding these concerns, the current study has important 
implications. First, a prominent contribution is the introduction of a 
non-invasive approach for modelling damaged fibers based on the lesion 
volumetric characteristics of individual patients. Despite the lesion 
heterogeneity found within our sample, results revealed a strong link 
between the simulated streamlines and the motor deficit that patients 
presented with at stroke onset. This demonstrates that our method can 
effectively handle the inter-subject variability in infarct size and loca-
tion, common to stroke. 

Second, the established relationship between the modelled damaged 
fibers and the upper limb paresis observed in patients implies that white 
matter degeneration can be used as a reliable predictor of stroke-related 
functional outcomes (Lin et al., 2019), in agreement with existing 
research. To illustrate, prior investigations among stroke patients have 
reported that the extent of CST damage and not infarct size per se are 
crucial determinants of post-stroke motor ability (Sterr et al., 2010; Zhu 
et al., 2010). Similarly, Chen et al. (2000) examined the impact of brain 
lesion factors on motor measures in hemiplegic stroke patients and 
documented that patients with poorer brain lesion profiles had worse 
motor recovery regardless of lesion location, possibly due to the 
involvement and destruction of the CST due to Wallerian degeneration. 
Building on such evidence about the key prognostic value of white 
matter degeneration, our method can provide a comprehensive set of 
affected voxels along modelled fibers for finding correlations with 
behavioral symptoms. In turn, this can assist early prediction of stroke- 
related impairment with the potential to facilitate hospital discharge 
planning (Kwakkel et al., 2011) and help stratify patients, allowing to 
optimize patient-specific prognosis (Selles et al., 2021) and rehabilita-
tion goals (Kwakkel et al., 2015). An additional merit of our modelling 
procedure is that it can enhance associations between lesions and white 
matter disruptions with respect to more complex functions, such as 
cognitive ability. We are therefore confident that our approach has 
promising future applications, both in neurological research and clinical 
practice. 

To conclude, we used a fiber modelling method to quantify white 
matter damage after ischemic stroke and explored the dynamic devel-
opment of secondary degeneration along the simulated streamlines. Our 
findings suggest that secondary degeneration spreads along the entire 
length of a damaged tract. Adopting more sophisticated diffusion im-
aging techniques in future examinations can further map the complex 

configurations of the living and diseased human brain. 
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