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Abstract 16 

The human skeletal form underlies our ability to walk on two legs, but unlike standing 17 
height, the genetic basis of limb lengths and skeletal proportions is less well understood. Here we 18 
applied a deep learning model to 31,221 whole body dual-energy X-ray absorptiometry (DXA) 19 
images from the UK Biobank (UKB) to extract 23 different image-derived phenotypes (IDPs) 20 
that include all long bone lengths as well as hip and shoulder width, which we analyzed while 21 
controlling for height. All skeletal proportions are highly heritable (~40-50%), and genome-wide 22 
association studies (GWAS) of these traits identified 179 independent loci, of which 102 loci 23 
were not associated with height. These loci are enriched in genes regulating skeletal development 24 
as well as associated with rare human skeletal diseases and abnormal mouse skeletal phenotypes. 25 
Genetic correlation and genomic structural equation modeling indicated that limb proportions 26 
exhibited strong genetic sharing but were genetically independent of width and torso proportions. 27 
Phenotypic and polygenic risk score analyses identified specific associations between 28 
osteoarthritis (OA) of the hip and knee, the leading causes of adult disability in the United States, 29 
and skeletal proportions of the corresponding regions. We also found genomic evidence of 30 
evolutionary change in arm-to-leg and hip-width proportions in humans consistent with striking 31 
anatomical changes in these skeletal proportions in the hominin fossil record. In contrast to 32 
cardiovascular, auto-immune, metabolic, and other categories of traits, loci associated with these 33 
skeletal proportions are significantly enriched in human accelerated regions (HARs), and 34 
regulatory elements of genes differentially expressed through development between humans and 35 
the great apes. Taken together, our work validates the use of deep learning models on DXA 36 
images to identify novel and specific genetic variants affecting the human skeletal form and ties 37 
a major evolutionary facet of human anatomical change to pathogenesis. 38 
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Introduction 39 

Humans are the only primates who are normally biped, due to our unique skeletal form 40 
which stabilizes the upright position. Bipedalism is enabled by unique anatomical properties of 41 
the human skeleton, including shorter arms relative to legs, a narrow body and pelvis, and 42 
orientation of the vertebral column (1–3). These broad changes to skeletal proportions likely 43 
began to occur around the separation of the human and chimp lineages and as a result, may have 44 
facilitated the use of tools and accelerated cognitive development (4, 5). Fossil evidence showing 45 
major morphological changes in the length of the limbs, torso, and body width suggest that these 46 
changes were gradual, with incremental development over the course of several million years (6, 47 
7). Perhaps one of the first bipedal hominins, A. afarensis, dated to 3.2 million years before 48 
present, exhibited skeletal adaptations such as a shorter iliac blade and wider sacrum in the pelvis 49 
as well as a human-like bicondylar angle of the femur and talocrural joint, all of which are 50 
crucial for bipedal movement (8, 9). Another major change in skeletal proportions can be seen in 51 
H. ergaster, which exhibit modern human-like intermembral proportions with longer legs 52 
relative to the torso and arms than compared to great apes (6, 10). However, despite over a 53 
hundred years of effort in paleoanthropology documenting morphological change in human 54 
evolution, evidence of genomic change shaping the human skeletal form has been elusive. 55 
Separately, human body proportions have been the subject of the study of art for several 56 
millennia. The Italian polymath Leonardo Da Vinci famously drew one of the most enduring 57 
images of the Rennaiscance, the Vitruvian Man in 1490, which depicted a human male with arms 58 
and legs inscribed in a circle and a square reflecting the artist's idealization of the human form. 59 
 60 

In developmental biology, the mechanisms and processes underlying animal limb 61 
development, morphology, and broad body plan have been studied extensively. Early work using 62 
forward genetic screens in Drosophila identified homeobox genes as key regulators of large-scale 63 
anatomical development in invertebrates (11). Subsequent experiments in a large number of 64 
vertebrates including fish, chickens, and mice, identified additional gene families crucial in limb 65 
formation and skeletal form regulation (12, 13). In addition to this, comparative genomic and 66 
evolutionary developmental biology approaches have examined genetic variation or gene 67 
expression between related species with differing phenotypes to pinpoint genes associated with 68 
the skeletal form. This line of work has produced several insights into the genetic basis of 69 
skeletal structure from the underpinnings of convergent limb loss in snakes and limbless lizards 70 
(14, 15) to increased limb lengths in jerboas when compared to mice (16). Analyses studying 71 
differences in gene expression and regulation in skeletal tissues between humans and other 72 
primates have recently identified a gene involved in tail loss in great apes (17), as well as shown 73 
that open chromatin regions specific to the human knee and hip joint overlap with regions that 74 
are evolutionarily accelerated in humans (18). However, these approaches do not provide an 75 
unbiased and comprehensive map of genetic variants regulating skeletal proportions and overall 76 
body plan, especially in humans. Furthermore, many of these approaches largely focus on 77 
examining the impact of loss-of-function mutations, which often have widespread effects on the 78 
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entire skeleton. The subset of genes responsible for differential and specific growth of individual 79 
bones remains unknown. 80 
 81 

Genome-wide association studies of human skeletal traits are a direct and complementary 82 
approach to identifying biological mechanisms and processes that underlie limb proportions, 83 
development, and morphology. Twin studies suggest that the heritability of skeletal proportions 84 
range between 0.40 - 0.80 (19), about as heritable as standing height (20), a skeletal trait that has 85 
served as an exemplary quantitative trait in human genetics. Meta-analysis of over 5 million 86 
individuals has identified 12,111 independent single nucleotide polymorphisms (SNPs) 87 
associated with standing height (21). However, height is amongst the most straightforward and 88 
accurate of quantitative traits to measure. Other skeletal elements, such as limb, torso, and 89 
shoulder lengths, are not typically or comprehensively measured in large sample sizes (22, 23). 90 
As a result, the genetic basis of such proportions and lengths remains understudied. Furthermore, 91 
anthropometric traits, like hip and waist circumference, are measured externally and therefore are 92 
intrinsically tied to body fat percentage and distribution, which fails to isolate genetic effects 93 
specific to the skeletal frame (24, 25).  94 
 95 
 Applying deep learning methods to non-invasive medical imaging is a powerful way to 96 
extract skeletal measures in an accurate and scalable manner. Furthermore, the collection of 97 
genetic, phenotypic, and imaging data by national biobanks provides an opportunity to run 98 
GWAS for IDPs with sufficiently large sample sizes. Several genetic studies have successfully 99 
applied computer vision to generate IDPs of the retina, distribution of body fat, heart structure, 100 
and liver fat percentage, and linked significant loci to various disorders (26–29). 101 

 102 
In the context of musculoskeletal disease, epidemiological data suggests that disorders 103 

such as osteoarthritis – the leading cause of adult disability in the United States (30, 31) are 104 
thought to be influenced by a variety of risk factors ranging from obesity, mechanical stresses, 105 
genetic factors, and even the geometric structure of certain bones (32). While some small sample 106 
studies have examined the relationship of certain skeletal element lengths such as leg length 107 
discrepancy and osteoarthritis (33), how the skeletal frame may exacerbate an individual’s 108 
development of osteoarthritic disease has not been fully studied (32, 34). 109 

 110 
In this study, we adapt, test, and apply methods in computer vision to derive 111 

comprehensive human skeletal measurements from full body DXA images of tens of thousands 112 
of adult participants. We then perform genome-wide scans on 23 generated phenotypes to 113 
identify loci associated with variation in the skeletal form. Using summary statistics from these 114 
IDPs, we identify biological processes linked with human skeletal proportions and study the 115 
phenotype and genetic correlation between these measures and a range of external phenotypes, 116 
with an emphasis on musculoskeletal disorders. Finally, we investigate the impact of natural 117 
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selection on these traits to understand how skeletal morphology is linked to human evolution and 118 
bipedalism. 119 

Results 120 

A deep learning approach for quality control and quantification of biobank scale 121 
imaging data 122 

To study the genetic basis of human skeletal proportions, we jointly analyzed DXA and 123 
genetic data from 42,284 individuals in the UKB. Individuals from this dataset are aged between 124 
40 to 80 and reflect adult skeletal morphology. We report baseline information about our 125 
analyzed cohort in Methods: UKB participants and dataset and in Table S1. We acquired 126 
328,854 DXA scan images across eight imaging modalities comprising full-body transparent 127 
images, full-body opaque images, anteroposterior (AP) views of the left and right knees, AP 128 
views of the hips, and AP and lateral views of the spine. For quality control, we first developed a 129 
deep learning-based multi-class predictor to select full body transparent images from the pool of 130 
eight total imaging modalities. We developed a second deep learning classifier to remove 131 
cropping artifacts. Finally, we excluded images with atypical aspect ratios and padded them to 132 
uniform lengths (Methods: Classification of DXA Images by body part, Removal of poorly 133 
cropped X-rays, Image standardization, Fig. 1A). After our quality control process, we were left 134 
with 39,469 images for analysis. 135 
 136 

After image QC, we manually labeled 14 landmarks at pixel-level resolution on 297 137 
images for use as training data. These labels were independently validated by an orthopedic 138 
team. The 14 landmarks include major joints comprising the wrist, elbow, shoulder, hip, knee, 139 
ankle, and positions of the eyes. Each landmark represents major joints in the body, and the 140 
segments connecting them reflect natural measurements for long bone lengths or body width 141 
measures. We assessed the replicability of manual annotation by inserting 20 duplicated images 142 
from the 297 training images without the knowledge of the annotator and found that repeat 143 
measurements resulted in less than 2 pixels of difference at any landmark (Methods: Manual 144 
annotation of human joint positions, Fig. 1B).  145 
 146 

We adapted and applied a new computer vision architecture, High-Resolution Net 147 
(HRNet), for landmark estimation, or the prediction of the location of human joints (35). Our 148 
choice was guided by four main reasons. First, HRNet maintains high-resolution representations 149 
throughout the model (Methods: A deep learning model to identify landmarks on DXA scans), 150 
and we wanted to utilize the high-resolution medical images produced by the DXA scanner to 151 
obtain precise measurement information of bone lengths. Second, the architecture had already 152 
been trained on two large imaging datasets, first on imageNet (36), a general natural image 153 
dataset, and then subsequently on Common Objects in Context (COCO) (37), a dataset of over 154 
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200,000 images of humans in natural settings with joint landmarks classified. These two 155 
previous layers of training enabled us to perform transfer learning to fine tune the architecture on 156 
our training data and reduce the total amount of manual annotation to just 297 images. Third, 157 
HRNet has among the best performance for a similar task of labeling human joints on two large-158 
scale benchmarking data sets of human subjects (38, 39). Finally, we directly compared the 159 
performance of the HRnet architecture with a more traditional architecture on our dataset 160 
(ResNet-34) (40) and obtained significantly better results across different training parameter 161 
choices (Methods: A deep learning model to identify landmarks on DXA scans, Table S2). Upon 162 
training, the model achieved greater than 95% average precision on hold-out validation data 163 
across all body parts (Table S2). 164 

Validation of human skeletal length estimates 165 

After training and validating the deep learning model on the 297 manually annotated 166 
images, we applied this model to predict the 14 landmarks on the rest of the 39,172 full body 167 
DXA images. We then calculated pixel distances between pairs of landmarks that corresponded 168 
to 7 bone and body lengths segments (Fig. 1B, Methods: Obtaining skeletal element length 169 
measures, Obtaining a set of body proportion traits from raw length measures, Table S3). We 170 
also computed an angle measure between the tibia and the femur (tibiofemoral angle or TFA) 171 
(Fig. 1B). To standardize images with different aspect ratios, we rescaled pixels into centimeters 172 
for each image resolution by regressing height in pixels against standing height in centimeters as 173 
measured by the UKB assessment (Methods: Adjusting for scaling differences across imaging 174 
sizes and modes). We then removed individuals with any skeletal measurements that were more 175 
than 4 standard deviations from the mean (Methods: Removal of image outliers).  176 

 177 
After outlier removal, we validated the accuracy of our measurements on the remaining 178 

samples in four ways. First, the error rate for segment length from the model compared to 179 
manual annotation was at maximum 3 pixels or 0.7 cm, which is similar to the variation from 180 
manual annotation of the 20 duplicate images. Reliability (100%-variance in 181 
measurement/variance of a segment length) was greater than 95% across all length measures 182 
(Fig. 1C, Methods: Validation metrics comparing automated annotation to manual annotation, 183 
Table S4-Table S6). Second, the correlation between long bone lengths and height as measured 184 
in the UKB was around ~0.88, which falls within expectation observed in the literature (22) (Fig. 185 
1D). Third, the correlation between left and right limb lengths was above 0.99 (Fig. 1E). Fourth, 186 
a subset of 667 individuals had undergone repeat imaging an average of two years apart, with 187 
different image aspect ratios, DXA machines, software models, and technicians carrying out the 188 
imaging (Fig. 1F). The correlation in these technical replicates across skeletal elements was also 189 
above 0.99. Taken together, these results suggest that the IDPs from our deep learning model are 190 
highly accurate and highly replicable. 191 

 192 
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 193 
Fig. 1. Deep learning-based image quantification. (A) Quality control. Deep learning-based 194 
classifiers to select full body images from a pool of DXA images of different body parts, as well 195 
as to remove images with artifacts, resolution, or cropping issues. Full body images were then 196 
padded to standardize image pixel size before phenotyping (current image shows padding of 5 197 
pixels on each side). (B) Image quantification. Deep learning-based image landmark estimation 198 
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using the HRNet architecture. 297 training images annotated with specific landmarks were used 199 
to train the model to perform automatic annotation of landmarks on the rest of images in the 200 
dataset from which measurements of skeletal length and other measurements were calculated. 201 
(C) Average HRNet measurement error when compared to human-derived measurements of the 202 
tibia across 100 validation images. (D) Correlation of length measurements and height. (E) 203 
Correlation between left and right-side measurements of the femur, humerus, forearm, and tibia. 204 
(F) Correlation of lengths measured from the first imaging visit and second imaging visit for the 205 
same individual. 206 

Characteristics and correlations of human skeletal proportions with sex, age, and 207 
height 208 

From the 7 bone and body segment lengths, to examine these IDPs as proportions instead 209 
of lengths (or to control for variation in overall height which is highly correlated with each of 210 
these lengths) we took simple ratios of each IDP with overall height (Fig. 1B, Methods: 211 
Obtaining a set of body proportion traits from raw length measures). As expected, this greatly 212 
reduced the overall correlation of our traits with height (Table S7). We also carried out this 213 
normalization analysis in alternate ways, including using height as a covariate in association tests 214 
as well as regressing each IDP with height and obtaining residuals. All three approaches were 215 
highly correlated, and we used the simple approach of taking proportions for most analyses 216 
(Methods: Adjusting for height correlation in GWAS using ratios). In addition to obtaining 217 
ratios of each segment length with overall height, we also computed ratios of segments with each 218 
other obtaining a total of 21 different ratio IDPs along with the angle measure, TFA (Table S3). 219 
These ratios are referred to in the text as Segment:Segment (Hip Width:Height, Torso 220 
Length:Legs, etc). In Fig. 3B, we show our mean proportions of each skeletal element across all 221 
of our individuals of white British ancestry (41). 222 
 223 

We then examined differences in skeletal proportions across sex and age. In line with 224 
well-known observations, Hip Width:Height (t-test p < 10-15) and Torso Length:Height (t-test p < 225 
10-15) were significantly larger in women than in men (42), but we also observed that 226 
Humerus:Height was also significantly larger in women than in men (t-test p = 1.45 × 10-5) 227 
(Methods: Correlations of skeletal proportions with age and sex, Table S8). In addition, we 228 
found that all body proportions vary slightly but significantly as a function of age (Methods: 229 
Correlations of skeletal proportions with age and sex, Table S9). We also examined how body 230 
proportions vary as a function of overall height and found that Torso Length:Legs decreases with 231 
height (Pearson correlation r = -0.21), suggesting that increases in height are driven more by 232 
increasing leg length rather than torso length (Fig. 2A). Arms:Legs also decreases with height 233 
(Pearson correlation r = -0.02) meaning that leg length also outpaces arm length as height 234 
increases. Within each limb, for both arms and legs, lower to upper limbs ratios (Tibia:Femur, 235 
Forearm:Humerus) increase with overall limb length. These increases also correspond with 236 
correlations with height, with Tibia:Femur increasing when height increases (Pearson correlation 237 
r = 0.12). 238 
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GWAS of human skeletal proportions 239 

We performed GWAS using imputed genotype data in the UKB to identify variants 240 
associated with each skeletal measure. We applied standard variant and sample QC and focused 241 
our analyses on 31,221 individuals of white British ancestry as determined by the UKB genetic 242 
assessment and 7.4 million common bi-allelic SNPs with minor allele frequency > 1% (41) 243 
(Methods: Genetic data quality control, Heritability analysis and GWAS, Table S1 and Table 244 
S10). We used Bolt-LMM (43) to regress variants on each skeletal measure using a linear mixed-245 
model association framework (Methods: Heritability analysis and GWAS). After generating 246 
summary statistics for each skeletal measure, we estimated SNP heritability using LD Score 247 
regression (LDSC) (44) and GCTA-REML (45). All traits were highly heritable, with SNP 248 
heritability 30% - 60% for LDSC and 40% - 70% for GCTA-REML (Table S11 and Table 249 
S12). We detected inflation in test statistics in our QQ plots (mean lambda = 1.20); however, 250 
minimal deviation of univariate LDSC intercepts from 1.0 suggested that this inflation was 251 
consistent with polygenicity rather than confounding (Methods: Heritability analysis and 252 
GWAS, Fig. 3B). 253 
 254 

In the seven skeletal proportions as a ratio of height (Forearm:Height, Humerus:Height, 255 
Tibia:Height, Femur:Height, Hip Width:Height, Shoulder Width:Height, Torso Length:Height) 256 
and TFA, we identified 223 loci at p < 5 × 10-8 and 150 loci at p < 6.25 x 10-9 (Bonferroni 257 
correction for eight traits). Of these loci, 179 are independently significant across all eight 258 
phenotypes (116 after Bonferroni correction for eight traits) (Methods: Heritability analysis and 259 
GWAS, Supplementary Data - GWAS Summary statistics). Of the 179 independent loci, 77 260 
are also associated with standing height, and 102 loci are only significant in skeletal proportions 261 
or TFA (Methods: Clumping, independence analysis and removing previous height associated 262 
loci). As sensitivity analysis we also examined the genetic effect of skeletal lengths before and 263 
after height adjustment and found that 95% of genome-wide significant loci had the same 264 
direction of effect when carrying out GWAS in these alternate ways (Methods: Sensitivity 265 
analysis for height adjustment). 266 

Genetic correlations and factor analysis of skeletal proportions 267 

We calculated the genetic correlation between each pair of traits to investigate the degree 268 
of genetic sharing between each skeletal measure. Estimates from LDSC and GCTA-REML 269 
were virtually identical (Fig. S10); here we report estimates from GCTA-REML. Limb 270 
proportions had positive genetic correlations with each other (rg = 0.34-0.55). Upper arms and 271 
legs (Humerus:Height-Femur:Height rg = 0.55, p = 1.59 × 10-66 ) and lower arms and legs 272 
(Forearm:Height-Tibia:Height rg = 0.51, p = 6.01 × 10-50) were significantly more correlated than 273 
upper arms and lower legs (Humerus:Height-Tibia:Height rg = 0.38, p = 5.18 × 10-23) or lower 274 
arms and upper legs (Forearm:Height-Femur:Height rg = 0.34, p = 1.49 × 10-18). Body width 275 
proportions, Hip Width:Height and Shoulder Width:Height, were largely uncorrelated with limb 276 
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length proportions. No correlations involving any pairwise combination of arm and width traits 277 
were significant (minimum p-value across all such correlations was ≥ 0.0022, above our 278 
Bonferonni threshold). Correlations between leg and width traits were marginally significant in 279 
three out of four comparisons with the maximal correlation (Hip Width:Height-Tibia:Height) 280 
being 0.23 (Fig. 2B , Table S13). In addition, we also computed phenotypic correlations 281 
between our traits which were highly concordant with genetic correlations (r = 0.98). 282 

We used Genomic Structural Equation Modeling (Genomic SEM) to identify latent 283 
factors that represent shared variance components between skeletal proportions (46) (Methods: 284 
Multivariate genetic architecture of skeletal endophenotypes). We performed exploratory factor 285 
analysis to identify the likely number of factors and built confirmatory models using odd-286 
numbered chromosomes for model building and even-numbered chromosomes for validation, 287 
which we compared using a range of model fit indices. Our preferred model of the genetic 288 
covariance structure of the seven skeletal proportions indicates that all limb traits (both arms 289 
(Humerus:Height and Forearm:Height) and legs (Femur:Height and Tibia:Height) load positively 290 
on a general skeletal factor (on which Torso Length:Height loads negatively) and that the arm 291 
traits additionally load on a second general factor, whereas torso length and body width traits 292 
(Hip Width:Height and Shoulder Width:Height) only load appreciably on trait-specific factors 293 
(Fig. 2C). This analysis reinforces our observations from the univariate genetic correlation 294 
analysis, in which arm and leg proportions exhibited strong genetic sharing but were largely 295 
independent of torso and body width proportions. 296 

Sex-specific heritabilities and genetic effects of skeletal proportions 297 

Anthropometric and skeletal traits, such as hip width, are common examples of sexual 298 
dimorphism. We found that for most traits, the genetic correlation of skeletal proportions 299 
between males and females was not statistically different from 1 except for TFA (rg = 0.89) 300 
(Methods: Sex-specific analysis, Fig. S16). For five out of the seven skeletal proportions, the 301 
sex-specific SNP heritabilities were both greater than the heritability estimated jointly with both 302 
sexes (Fig. S17).  303 

 304 
To test for pervasive differences in the magnitude of genetic effects, we performed sex-305 

specific GWAS of all the skeletal traits and evaluated these polygenic scores in both sexes in a 306 
hold-out data set (Methods: Sex-specific analysis). This method had recently been applied to 307 
examine sex specific effects in biobank traits (47). Across all skeletal proportions that we tested, 308 
polygenic scores had a significantly larger standardized effect size (standardized in males and 309 
females separately) in males compared with females (t-test p < 1 × 10-3 for all comparisons) (Fig. 310 
2D). These results are in-line with previous work suggesting that skeletal proportions, like other 311 
anthropometric traits, have clear differences in the magnitude of sex-specific effects when 312 
compared to other quantitative traits in the UKB (47).  313 
 314 
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 315 
Fig. 2. Genetic architecture. (A) Correlation of skeletal proportions and overall height. Bars 316 
show ±2 SE. (B) Genotype (lower-left triangle) and phenotype (upper-right triangle) correlation 317 
of skeletal proportions. Overall correlation is shown in color and the p-value of the correlation is 318 
visualized by size. A Bonferroni-corrected threshold is also shown. (C) Solution for a genomic 319 
SEM model for the genetic covariance structure shown in B shows one common factor loading 320 
for arms, an additional factor for legs, and finally independent factors for each of the torso-321 
related traits (hip width, shoulder width, and torso length). (D) Sex-specific analysis showing the 322 
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ratio of the standardized effect size of the polygenic score on each trait (±2 SE) in males to the 323 
effect in females in a hold-out dataset. 324 

Biological insights from skeletal associations 325 

We performed gene set enrichment analyses in 10,678 gene sets using FUMA to identify 326 
biological processes and pathways enriched in each skeletal trait (48) (Methods: Functional 327 
mapping and gene enrichment analysis). After FDR correction (FDR < 0.05), we found 195 gene 328 
sets to be significantly enriched across our 7 skeletal traits. Several gene sets related to 329 
development were common across the majority of traits such as skeletal system development, 330 
connective tissue development, chondrocyte differentiation, and cartilage development (Table 331 
S14). 332 

 333 
 Furthermore, common alleles associated with skeletal proportions were significantly 334 
enriched in 701 autosomal genes linked to “Skeletal Growth Abnormality” in the Online 335 
Mendelian Inheritance in Man (OMIM) (49) database (p < 5.0 × 10-2) except for torso length (p 336 
= 0.22) (Methods: OMIM gene set enrichment analysis, Table S15 and Table S16). Combined, 337 
these results indicate that common variants associated with skeletal proportions pinpointed genes 338 
in which rare coding variants contribute to Mendelian musculoskeletal disorders. 339 
  340 

Out of the 223 total loci identified across GWAS (Table S17), 45 loci overlapped a 341 
single protein-coding gene within 20 kb of each clumped region. Notably, of these 45 genes, 32 342 
(or 71%) resulted in abnormal skeletal phenotypes when disrupted in mice using the Human-343 
Mouse Disease Connection database (50). Four of these genes (COL11A1, SOX9, FN1, 344 
AGDRD6) were associated with rare skeletal diseases in humans, annotated in OMIM (Table 345 
S18). In some cases, a gene linked with a specific skeletal proportion in our GWAS resulted in a 346 
defect in the same skeletal trait in mouse models. We found a common variant (rs6546231) near 347 
MEIS1, a homeodomain transcription factor, is associated with increased Forearm:Height. 348 
Mouse models of MEIS-/- mice are specifically associated with abnormal forelimb development 349 
(51). Similarly, a common variant (rs1891308) near ADGRG6, a G protein-coupled receptor, is 350 
associated with increased torso length. Mice with conditional knockouts in ADGRG6 have spine 351 
abnormalities and spine alignments directly correlated with reduced torso length (52). Thus, 352 
GWAS of skeletal proportions pinpoints genes previously associated with skeletal developmental 353 
biology and Mendelian skeletal phenotypes and identifies candidates for future functional and 354 
knockout studies. 355 

 356 
Next, we conducted a transcriptome-wide association study (TWAS), linking predicted 357 

gene expression in skeletal muscle (based on the Genotype-Tissue Expression project (GTEx 358 
v.7) (53) with our skeletal proportion GWAS (Methods: Transcriptome-wide associations 359 
(TWAS)). In total we identified 30 genes that were significantly associated with any one of our 360 
skeletal traits at a Bonferroni-corrected significance threshold across the total number of gene 361 
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and trait combinations (Table S19). Among the strongest TWAS associations were PAX1 362 
(TWAS z-score = 12.6, p = 1.31 × 10-36), a transcription factor critical in fetal development and 363 
associated with development of the vertebral column, and FGFR3 (TWAS z-score = 6.5, p = 364 
8.52 × 10-11), a fibroblast growth factor receptor that plays a role in bone development and 365 
maintenance. 366 
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 367 
Fig. 3. Genome-wide association results. (A) Manhattan plot of GWAS performed across 7 368 
skeletal proportions and TFA, with the lowest p-value for any trait at each SNP annotated. Loci 369 
over the genome-wide significance threshold that are in close proximity to only a single gene are 370 
annotated. Colors show the traits for which each SNP is genome-wide significant. (B) Mean 371 
values of proportion and angle traits across individuals, total number of genome-wide significant 372 
loci per trait, heritability, lambda (from LDSC), and associated genes of loci independent of 373 
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height that are specific to each skeletal trait (again annotating only loci that map to a region with 374 
a protein-coding gene within 20 kb of each clumped region). 375 

Genetic and phenotypic association of skeletal phenotypes with musculoskeletal 376 
disease 377 

To investigate the clinical relevance of human skeletal proportions, we examined their 378 
genetic and phenotypic associations with musculoskeletal disease and with joint and back pain. 379 
We used logistic regression to examine phenotypic associations between skeletal morphology 380 
and these musculoskeletal disorders (Fig. 4A) while controlling for age, sex, bone mineral 381 
density, BMI, and other major risk factors for OA (54) (Methods: Phenotypic association of 382 
skeletal phenotypes with musculoskeletal disease). We found one standard deviation in Hip 383 
Width:Height was associated with increased odds of hip OA (p = 3.16 × 10-5, OR = 1.34). 384 
Similarly, Femur:Height, Tibia:Height, and the TFA, skeletal measures of the knee joint, were 385 
associated with increased risk of knee OA (p = 2.24 × 10-15, OR = 1.34; p = 6.09 × 10-5, OR = 386 
1.16; p = 1.64 × 10-35, OR = 1.49). Femur:Height and the TFA were also significantly associated 387 
with internal derangement of the knee (p = 4.03 × 10-6, OR = 1.19; p = 1.43 × 10-17, OR = 1.34). 388 
Pain phenotypes for hip and knee joints, were also associated with the specific skeletal 389 
proportions that make up each joint (hip pain with Hip Width:Height: p = 8.53 × 10-5, OR = 1.12; 390 
knee pain with Femur:Height, Tibia:Height, and TFA: p = 8.13 × 10-6, OR = 1.09; p = 2.89 × 10-391 
5, OR = 1.09; p = 1.66 × 10-46, OR = 1.31) (Fig. 4A) (Table S20).  392 
 393 

Next, we analyzed 361,140 UKB participants who had not undergone DXA imaging and 394 
were of white British ancestry for predictive risk based on polygenic scores derived from our 395 
GWAS on skeletal proportions on the imaged set of individuals (Fig. 4B). We generated 396 
polygenic scores via Bayesian regression and continuous shrinkage priors (55) using the 397 
significantly associated SNPs and ran a phenome-wide association study of the generated risk 398 
scores and traits, adjusting for the first 20 principal components of ancestry, and imputed sex 399 
(Methods: Polygenic risk score (PRS) prediction in UKB). Polygenic scores of Hip 400 
Width:Height and TFA were associated with increased incidence of hip and knee OA 401 
respectively (p = 7.92 × 10-5, OR = 1.04; p = 1.73 × 10-4, OR = 1.04) in line with the phenotypic 402 
associations. In addition, we also saw significant association between back pain (both recorded 403 
on the ICD-10 code and self-reported) and Torso Length:Height (p = 5.59 × 10-5, OR = 1.05; p = 404 
5.71 × 10-6, OR = 1.02) (Table S21). Neither OA nor musculoskeletal pain phenotypes we tested 405 
were significantly associated with overall height in this analysis (phenotypic associations: 1.10 × 406 
10-2 < p < 8.51 × 10-1; PRS associations: 2.17 × 10-3 < p < 3.88 × 10-1) except for polygenic risk 407 
score (PRS) of height and back pain (p = 5.76 × 10-10) (Table S20 and Table S21). In Genomic 408 
SEM analyses, we observed similar patterns of genetic associations with musculoskeletal 409 
diseases at the level of general genetic factors (Table S22, Fig. S13) 410 

 411 
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Taken together, these analyses suggest that increases in the length of skeletal elements 412 
associated with the hip, knee and back as a ratio of overall height were exclusively associated 413 
with increased risk of arthritis and pain phenotypes in those specific areas. 414 

 415 
Fig. 4. Association between skeletal traits and musculoskeletal disease. For both panels 416 
associations that are significant after Bonferroni correction are annotated with a *. Odds ratios 417 
for the phenotypic associations and PRS are shown in colors, and the p-values are represented by 418 
size. (A) Phenotypic associations from logistic regression analysis of musculoskeletal disease 419 
traits on skeletal phenotypes. (B) Polygenic risk score associations between musculoskeletal 420 
disease traits and skeletal phenotypes. 421 

Evolutionary Analysis 422 

As human skeletal proportions are an important part of our transformation to bipedalism, 423 
we next investigated whether variants associated with skeletal proportions have undergone 424 
accelerated evolution in humans in two ways. First, following a procedure by Richard et al. (18) 425 
and Xu et al. (56), we examined if genes associated with skeletal proportions overlapped human 426 
accelerated regions (HARs) more than expectation. HARs are segments of the genome which are 427 
conserved throughout vertebrate and great ape evolution but strikingly different in humans. We 428 
generated a null distribution by randomly sampling regions matched for overall gene length (Fig. 429 
5A, Methods: Enrichment analysis for HARs). For comparison, we also performed the same 430 
analysis on summary statistics from the ENIGMA consortium (57), and several quantitative and 431 
common quantiative and disease traits from the UKB (Table S23). Genetic signals from several 432 
of the skeletal proportion traits, in particular arm or leg length, were significantly enriched in 433 
HARs (Arms:Legs, Humerus:Height, Arms:Height, Hips:Legs, Tibia:Femur, Hip Width:Height, 434 
had FDR-adjusted p < 0.05). We also observed nominal enrichment for traits related to hair 435 
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pigmentation (FDR-adjusted p = 0.013), which has also changed dramatically compared with the 436 
great apes, and for schizophrenia (FDR-adjusted p = 1.61 × 10-34). However, no enrichment 437 
(FDR-adjusted p > 0.05) was observed for HARs in autoimmune disorders, cardiovascular 438 
disease, cancer, and overall height (Fig. 5A). 439 

 440 
 Second, we examined heritability enrichment using LD score regression on genomic 441 

annotations reflecting divergence at different time points in human evolution (Fig. 5B) following 442 
an approach outlined in Sohail and Hujoel et al. (58, 59). These annotations include regions that 443 
differ in gene regulation between humans and primates through stages of early development (60), 444 
regions that differ in expression between adult humans and macaques (61), and regions that are 445 
enriched and depleted of ancestry from archaic humans (62, 63) (Methods: LDScore heritability 446 
enrichment in regions of evolutionary context). We then computed heritability enrichment, h2(C), 447 
that measures the proportion of heritability in an annotation set divided by the proportion of 448 
SNPs in the annotation (Methods: LDScore heritability enrichment in regions of evolutionary 449 
context). In our analysis we also simultaneously incorporated other regulatory elements, 450 
measures of selective constraint, and linkage statistics (baselineLDv2.2 with 97 annotations) (59, 451 
64–66) to estimate heritability enrichment h2(C) while minimizing bias due to model 452 
misspecification. 453 

 454 
Meta-analyzing across all our skeletal proportion traits we found enrichment in fetal 455 

human-gained enhancers and promoters in early time points (7, 8.5, and 12 post-conception 456 
weeks (PCW), h2(C) = 8.08, p = 5.91 × 10-44; h2(C) = 3.60, p = 2.55 × 10-4; h2(C) = 3.65, p = 457 
3.55 × 10-4 , Table S24) but not in adults suggesting that genes associated with skeletal 458 
proportions are differentially expressed in early development between apes and humans. While 459 
we acknowledge that the annotations of differentially regulated elements are from developing 460 
brain and not skeletal tissues, fetal human-gained brain regulatory elements and adult human 461 
skeletal regulatory elements are correlated at 58% (58, 67). Moreover, our observation of only 462 
observing enrichment in developing but not adult tissues suggests that enrichment is not driven 463 
by confounders of tissue type but by differences in development between the two species. As a 464 
second line of analysis, we also examined enrichment of individual traits across the different 465 
annotations controlling for multiple hypothesis correction at the level of FDR<0.05. 9 out of 21 466 
of our skeletal proportion traits (Hip Width:Height, Hip Width:Shoulder Width, Arms:Legs, 467 
Shoulder Width:Torso Length, Hip Width:Arms, Shoulder Width:Height, Hip Width:Legs, 468 
Shoulder Width:Legs, Shoulder Width:Arms) were significantly enriched at 7 weeks PCW at 469 
FDR < 0.05 (Fig. 5C, Table S25). In addition, we saw depletion for enrichment in regions of the 470 
genome that were depleted for Neanderthal and Denisovan ancestry, particularly for overall leg 471 
length (h2(C) = 0.44, p = 5.89 × 10-5) (Table S25). These results were consistent with other 472 
analysis which showed a depletion of Neanderthal informative markers in contrast with modern 473 
human mutations particularly for anthropometric traits (68) and are suggestive of purifying 474 
selection.  475 
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 476 
The proportion traits that were significantly enriched across both types of evolutionary 477 

analysis were associated with Arms:Legs and Hip Width ratios (Fig. 5D). These results suggests 478 
that specific skeletal proportions, but not overall height or several other quantitative and disease 479 
traits examined by us or (58) underwent human lineage-specific evolution since the separation of 480 
humans from the great apes.  481 

 482 
 483 

 484 
Fig. 5. Evolutionary analyses. (A) P-values of enrichment for overlap of HARs with genes 485 
associated with skeletal proportions, autoimmune, dermatological, neurological, endocrine, 486 
gastrointestinal, metabolic, psychiatric, and cancer-related traits compared to randomly sampled 487 
genes of comparable length. Traits above the FDR-corrected threshold (0.05) shown in orange, 488 
and non-significant traits shown in blue. (B) Meta analysis of LDScore Heritability Enrichment 489 
across 21 skeletal proportion traits for different evolutionary annotations representing different 490 
divergence points in human evolution. Annotations represented in colors refer to fetal human-491 
gained enhancers and promoters (blue), adult human-gained enhancers and promoters (orange), 492 
ancient selective sweeps (red), putatively introgressed variants from Neanderthals (teal), and 493 
genomic regions depleted in Neanderthal and Denisovan ancestry (teal). Blue and orange 494 
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intervals mark epigenetic annotations while the other color intervals mark genetic annotations. 495 
Asterisks show significance at FDR < 0.05. A dashed line is drawn at y = 1 (no heritability 496 
enrichment). This analysis was jointly performed with all genomic annotations in the baseline 497 
LDv2.2 model. (C) Heritability enrichment analysis in human-gained enhancers and promoters 498 
at 7 PCW for each trait analyzed. Asterisks show significance at FDR < 0.05 across all genomic 499 
annotations and traits analyzed in this study. A dashed line is drawn at x=1 (no heritability 500 
enrichment). Error bars show 1 standard error around each estimate. (D) Arm:Leg ratio and Hip 501 
Width:Height are the only two skeletal traits that show significant enrichment in both types 502 
(HARs and heritability across differentially regulated regions at 7 PCW) of evolutionary analysis 503 
showing convergence of genomic change and some of the best-known anatomical differences 504 
between in humans and the great apes as shown by illustrations of ape and human skeletons. 505 

Discussion 506 

In this study, we used deep learning to understand the genetic basis of skeletal elements 507 
that make up the human skeletal form using DXA imaging data in a large population-based 508 
biobank. We demonstrate that deep learning is useful not just in phenotyping individuals, but 509 
also as a tool for quality control at scale, including the capture of heterogeneous types of error 510 
modes. Our work also demonstrates the importance of having an interconnected dataset 511 
incorporating 3 different types of data - imaging, genetic, and health record/metadata - to best 512 
leverage biological insights - the scaling and resolution issues presented by the imaging data 513 
would have been impossible to correct for without external information about individual height 514 
in the biobank metadata. Through transfer learning we also show that accurate and replicable 515 
phenotyping can be achieved despite limited manual annotation. The fast and flexible 516 
architectures we present here can be deployed rapidly at population scale enabling their utility 517 
for automated phenotyping as imaging data becomes more integrated into large population 518 
biobanks. 519 

 520 
Beyond methodological improvements for biobank-scale analysis, our results provide 521 

new insights into musculoskeletal biology. Despite over a century of work in genetics 522 
investigating the development of limbs and the overall body plan, beginning first in invertebrates 523 
and then later in vertebrate model organisms, a comprehensive genetic map of variation that 524 
shapes the overall skeletal form has been absent. More importantly, how the expression of 525 
various genes regulates modular development of the forelimb, hindlimb, and other long bones 526 
has not been fully characterized. Additionally, the broad set of genes and genetic variants that are 527 
responsible for the morphological changes in body proportions that allow us to walk upright has 528 
remained unknown. To the best of our knowledge, our work provides the largest genome-wide 529 
genotype to phenotype map of skeletal proportions in any vertebrate and lays the foundation for 530 
future functional assays of the genes discovered to understand how they contribute 531 
mechanistically to overall phenotype. 532 

 533 
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The moderate genetic correlations (a maximum of 0.55) observed between skeletal 534 
proportions indicates genetic sharing, particularly among limb length traits, while also 535 
highlighting the unique biology behind the growth of each element. Our results for genetic 536 
correlations are in line with artificial selection experiments in multiple mouse lines showing that 537 
selection for tibia length increased the trait by more than 15% across 14 generations but did not 538 
result in significant change in overall body mass (69) - a trait highly correlated with body width 539 
(rg = 0.25, p-value = 1 × 10-21) but not limb length (rg = -0.01, p-value = 0.53) proportions. Thus, 540 
these genetic correlation and factor analysis models provide insight into constraints placed on the 541 
evolutionary trajectory of the skeletal form both in humans and in vertebrates more broadly. 542 

 543 
One important issue that affects the interpretation of our results is the normalization for 544 

height for each skeletal length measure we obtained. We did this to look at our primary outcome 545 
of interest, skeletal proportions that are independent of height. Several papers have cautioned 546 
that the interpretation of associations studies performed with adjustment should be carefully 547 
considered (70, 71). While this issue affects virtually every genome-wide association study that 548 
uses age as a covariate in the model (where age is a proxy for survivability - a complex trait with 549 
a heritable basis), our analysis is most similar to GWAS conducted for BMI, also a trait where 550 
body weight is computed as a proportion of height. Our results largely showed consistent 551 
direction of effect for loci before and after height adjustment. This suggests our GWAS for 552 
skeletal proportions are largely identifying loci that are directly associated with overall length of 553 
that particular skeletal element. However, a minority of these signals could still arise from 554 
pleiotropic increases or decreases in other skeletal elements that affect overall height. Thus, in 555 
interpreting our results, it is important to only view each of our phenotypes as proportions of 556 
height rather than directly associated with particular skeletal element lengths themselves. 557 

 558 
Epidemiological studies indicate that OA of the hip as well as the knee frequently occur 559 

in the absence of OA in each other as well as other large joints, suggesting that local factors are 560 
important in OA pathogenesis (72–77). Specific abnormalities in skeletal morphology are now 561 
recognized as major biomechanical risk factors for the development of OA. Based on improved 562 
understanding of these morphological variations, parameters have been introduced to quantify 563 
them and enable classification of patients presenting with early OA (78–83). The findings 564 
presented here of the association between skeletal proportions, but not overall height, and joint-565 
specific osteoarthritis highlight the biomechanical role these proportions play in shaping stresses 566 
on the joints themselves and highlight unique risk factors of clinical relevance. 567 

 568 
 Across both types of evolutionary analyses, the most significant skeletal proportion traits 569 

were those associated with the proportions of arms and legs, as well as proportions of hip width. 570 
These results are concordant with some of the most striking morphological differences between 571 
the two species being arm-to-leg ratio, as well as the change in the human pelvis which has 572 
allowed for a transition from knuckle-based walking to bipedalism (Fig. 5D). In addition, our 573 
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results for heritability depletion in leg length-related traits in regions depleted for archaic 574 
ancestry are consistent with skeletal differences between anatomically modern humans and 575 
Neandertals – who have shorter total limb length relative to body size and lower distal to 576 
proximal limb proportions (84, 85). Numerous studies have proposed a thermo-regulatory 577 
hypothesis that accompanied the primary biomechanical energy efficiency hypothesis for the 578 
evolution of these traits in early homonin evolution as well as to explain differences in anatomy 579 
between humans and Neanderthals (86, 87). However, only one extremely small sample study of 580 
20 individuals, has been conducted to attempt to test these thermo-regulatory theories (88). Here, 581 
we conducted large sample size genetic correlation analysis between skeletal proportions and 582 
basal metabolic rate as well as whole-body fat-free mass in humans using genetic correlation 583 
(Methods: Genetic correlation of skeletal proportions with external phenotypes). We found that 584 
increased Arms:Legs ratio was associated with lower basal metabolic rate and lower whole-body 585 
fat-free mass (p = 9.37 × 10-16; p = 4.05 × 10-16) in line with the theory that these changes in 586 
early human evolution would have also increased heat dissipation in early hominins (Table S26). 587 
Similarly, increased distal to proximal limb proportion (Tibia:Femur) was associated with 588 
increased basal metabolic rate and increased whole-body fat-free mass (p = 2.23 × 10-14; p = 1.18 589 
× 10-14) also consistent with the theory of Neanderthals being selected for survival in cold 590 
climates adding additional support to a thermo-regulatory mechanism for evolution of these traits 591 
(Table S26).  592 

 593 
To our knowledge, these results provide the first genomic evidence of selection shaping 594 

some of the most fundamental anatomical transitions that have been observed in the fossil record 595 
in human evolution - changes in the overall skeletal form which confers the unique ability of 596 
humans to walk upright.  597 
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Materials and Methods 598 

UKB participants and dataset 599 

All analyses were conducted with data from the UKB unless otherwise stated. The UKB 600 
is a richly phenotyped, prospective, population-based cohort that recruited 500,000 individuals 601 
aged 40–69 in the UK via mailer from 2006 to 2010 (41). In total, we analyzed 487,283 602 
participants with genetic data who had not withdrawn consent as of April 9, 2021, out of which 603 
42,284 had available DXA imaging data. Access was provided under application number 65439. 604 
The baseline participants metadata including age and sex and other variables related to our study 605 
are in Table S1. 606 

Dual-energy X-ray Absorptiometry (DXA) Imaging 607 

The UKB has released DXA imaging data for a total of 50,000 participants as part of 608 
bulk data field ID (FID) 20158. The DXA images were collected using an iDXA instrument 609 
(GE-Lunar, Madison, WI). A series of 8 images were taken for each patient: two whole body 610 
images - one of the skeleton and one of the adipose tissue, the lumbar spine, the lateral spine 611 
from L4 to T4, each knee, and each hip. Dual-energy X-ray absorptiometry (DXA) images were 612 
downloaded from the UKB bulk data FID 20158. The bulk download resulted in 42,284 zip files, 613 
each corresponding to a specific patient identifier otherwise known as each patient’s EID, and 614 
each file contained several DXA images of the patient as described above. All images were 615 
exported and stored as DICOM files which were later converted to high resolution JPEG files for 616 
image analysis and quantification. 617 

Phenotype and clinical data acquisition 618 

The binary classification of patient disease phenotypes was obtained from a combination 619 
of primary and secondary ICD-10 codes (FID 41270) and the non-cancer self-assessment (FID 620 
20002). Self-assessment codes were translated to three-character ICD-10 codes (Coding 609) and 621 
ICD-10 codes were truncated to only be the initial three characters. Patients received one if a 622 
disease code appeared in either self-assessment visit or their hospital records and zero otherwise. 623 
Reports of a fracture from a simple fall (FID 3005) or within the last 5 years (FID 2463) of any 624 
visit (instance 0 to 3) was considered a case. Falls in the last year (FID 2296) from any visit were 625 
considered a single case, regardless of a patient having more than one fall within the year. Our 626 
classification of fractures and falls increases case counts while excluding any childhood 627 
incidence. Table S27 and Table S28 contain all ICD-10 and FID codes we used in our analysis. 628 
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Computing infrastructure 629 

All analysis was carried out on the Corral and Frontera system of the Texas Advanced 630 
Computing Cluster. The deep learning analysis was carried out on NVIDIA Quadro RTX 5000 631 
GPUs using the CUDA version 11.1 toolkit.  632 

Classification of DXA Images by body part 633 

Each individual had a DXA image folder containing up to 8 different body parts. In order 634 
to check the labels of these body parts that were defined using their file name, we built a 635 
convolutional neural network (CNN) to sort the images by body part through the use of a multi-636 
class classification model using Python libraries FastAIv2 (89) and pydicom (90). We selected 637 
1,600 total images - around 200 images per body part - and randomly split them into 1,280 638 
images for training and 320 images for validation. These training and validation images were 639 
labeled by hand and cross-referenced with the label associated with the DXA image metadata. 640 
Training was run for 3 epochs using ResNet-152 (40) as the CNN and we obtained a validation 641 
accuracy of 100%. This classifier was run on all DXA images obtained from the UKB and 150 642 
images were discovered that were correctly identified by the classifier, but incorrectly labeled in 643 
the DXA metadata. These images were removed from all future analyses. After sorting and 644 
removal of images, we were left with 42,228 full skeleton x-rays (Table S29). 645 

Removal of poorly cropped X-rays 646 

After we determined the final set of full body x-ray images, we performed additional quality 647 
control to remove images that were poorly cropped and cut off parts of the arms on the image. 648 
To do this we created a binary classifier using FastAIv2 to differentiate between cropped and 649 
non-cropped images. 600 images were selected by hand - evenly split between cropped and non-650 
cropped images - to use for training and validation. These images were randomly split into 480 651 
training images and 120 validation images. The images were also all labeled by hand and trained 652 
for 30 epochs using a CNN with a ResNet-152 architecture. The final results had an accuracy on 653 
validation data of 100% on validation data. Removal of all the cropped images resulted in a total 654 
of 39,644 full-body images that we used for analysis (Table S29). 655 

Image standardization 656 

From the pool of remaining full-body x-ray images, we discovered that the images varied 657 
in both pixel dimension and background. Broadly, the images fell into two main categories: (a) 658 
images that were on a black background with sizes between 600-800 by 270 pixels and (b) 659 
images on a white background with sizes between 930-945 by 300-370 pixels. The overall 660 
distribution of images by pixel ratio and an example of each type of image is shown in Table 661 
S30 and Fig. S1. In order to process these images and remove effects of scaling and resolution 662 
change during the deep learning process, we chose to pad all the images to be of consistent size. 663 
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We removed images that had sizes far out of the normal range and processed each of the two 664 
categories of images separately. The black background images were padded equally on all sides 665 
of the image to a final resolution size of 864×288 pixels while the white background images 666 
were padded in the same fashion to a resolution size of 960×384 pixels. We carried this out by 667 
converting each of individual DICOM files obtained from the UKB into numpy arrays and added 668 
additional rows and columns of black or white pixels as appropriate using standard functions 669 
from numpy (91), scipy (92), and skimage (93). These final resolution sizes were chosen based 670 
upon image size requirements for our deep learning model for landmarking and image 671 
quantification. Padding and removing individuals with sizes that did not fit into the two major 672 
categories resulted in a final total of 39,469 images - 21,981 images of 864×288 and 17,488 673 
images of 960×384. In our deep learning model for landmarking, we trained two separate 674 
models, one for each pixel ratio, as these images were different not just in their size but also in 675 
their background. 676 
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 677 
Fig. S1. Types of DXA images acquired from the UKB. (Left) Image of patient imaged on 678 
white background. (Right) Image of patient imaged on black background. Sizes of images are 679 
true to scale. 680 

Manual annotation of human joint positions 681 

To train our deep learning model, we manually annotated a total of 297 images (with 148 682 
images padded to 960×384 pixels on a white background, and 149 images padded to 864×288 683 
pixels on a black background). We used 100 images of each type for training and the rest for 684 
validation. The images that were chosen for this training dataset had an equal number of male 685 
and female individuals, had equal numbers of individuals who had an OA diagnosis in their ICD-686 
10 codes, were from the white British population group (as determined by genetic PCA), and 687 
sampled equally across the age distribution of the UKB cohort. Out of the 297 total images, 10 688 
images were duplicated in each of the image sizes to measure the replicability of our process. We 689 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.521284doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.521284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 25 

used a single human annotator for all training data and provided an initial dataset of 317 (297 690 
+2×10 duplicate images) without the annotator's knowledge. We used a standard annotation 691 
scheme in computer vision, the Common Objects in Common (COCO) (37) scheme which 692 
provides a rubric for joint landmark estimation on the human body. The positions in the body we 693 
chose to annotate were the: left eye, right eye, left shoulder, right shoulder, left elbow, right 694 
elbow, left wrist, right wrist, left hip, right hip, left knee, right knee, left ankle, and right ankle, 695 
which have been long used in benchmarking analysis of human pose estimation - designed to 696 
label joints and other features in natural images of humans. For annotating each of these 697 
landmarks, the locations specified below were chosen because they were the easiest and most 698 
consistent to identify across all the images, which featured slightly different poses. The center of 699 
the orbit was chosen to be labeled for each of the eye landmarks. The center of the head of the 700 
humerus was chosen to be labeled for each of the shoulder landmarks. A location near the elbow 701 
joint closest to the olecranon fossa was chosen to be labeled for each of the elbow landmarks. A 702 
location near the scaphoid bone near the wrist was chosen to be labeled for each of the wrist 703 
landmarks. The topmost tip of the femur was chosen to be labeled for each of the hip landmarks. 704 
The middle of the femur and tibia was chosen to be labeled for each of the knee landmarks. The 705 
point where the ends of the tibia, fibula, and talus converge was chosen to be labeled for each of 706 
the ankle landmarks. An example of the annotation of one image is shown below in Fig. 1B with 707 
landmarks placed at each of the locations listed above. 708 
 709 

We measured the replicability of our annotations by taking the Euclidean distance of 710 
pixels between the corresponding key points across 10 images that were duplicated amongst the 711 
864×288 image set without knowledge of whether the image was a duplicate. Our replication 712 
analysis of 10 duplicate images was under 3 pixels across the different points that were 713 
estimated. Across the body parts, the farthest deviation across annotations was seen in the ankles, 714 
but the mean replicability across 10 images was under 3 pixels for both the right and left ankles. 715 
Table S31 shows the mean pixel differences of 10 images across these duplicate annotations in 716 
the 864×288 dataset. 717 

A deep learning model to identify landmarks on DXA scans 718 

In order to perform joint/landmark estimation on the entire UKB skeletal X-ray dataset 719 
using our manually annotated training data, we compared two different neural network 720 
architectures that have been used for previously for landmark detection on human subjects, 721 
ResNet-34 (40) and HRNet (35) Fig. S2. To arrive at the best possible architecture and training 722 
process for our task we utilized transfer learning and began with pre-trained models which were 723 
trained first on ImageNet and then trained on 123,847 images from the COCO dataset (37) which 724 
have been annotated with landmarks of humans performing tasks in various natural settings such 725 
as playing sports, driving, or seated indoors. On these pre-trained models, we adopted two 726 
approaches, one where we fine-tuned these networks using our manual annotation on the fully 727 
body X-rays as above, and one where we did not perform additional fine tuning/training. In 728 
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addition, for each architecture and each choice of training approach, we varied the heatmap 729 
resolution size (an area around each landmark that was predicted) and overall image size. Our 730 
results across architectures, including/not-including fine-tuning, heatmap resolutions and image 731 
size are in Table S2. Based on these results we found that larger image input sizes and heatmap 732 
resolution sizes performed better and that accuracy even with smaller input sizes were over 95% 733 
across body parts. We also found that the HRNet based architecture performed better across 734 
parameter choices and therefore for the final analysis, we used the HRNet model that had been 735 
pretrained on the COCO dataset, and then fine-tuned on our manually annotated images. We also 736 
used the two post-padded image sizes and used the largest heatmap size available to us. The 737 
864×288 and 960×384 models were run at a batch size per GPU of 12 and 8 respectively for 210 738 
epochs.  739 

 740 

 741 
Fig. S2. A comparison of HRNet and ResNet deep learning architectures. (A) High-742 
Resolution Network (HRNet) architecture maintains parallel high to low resolution subnetworks. 743 
(B) Simple Baseline deep learning architecture (ResNet) which relies on a high-to-low and low-744 
to-high framework. Both images are taken directly from Sun et al., (35) to illustrate the 745 
architectural differences between HRNet and a standard architecture for this prediction task. 746 
 747 
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Validation metrics comparing automated annotation to manual annotation 748 

As an initial examination of the performance of our model, we visualized the location of 749 
the landmarks on the original X-ray image to confirm that our labeling was qualitatively accurate 750 
on both imaging modes. We quantified the pixel-level accuracy of our model by comparing the 751 
automated annotation versus a set of 50 images that were manually annotated and computed 752 
landmark differences in pixels for each landmark. The results of this analysis for both image 753 
modes are shown in Table S5 and Table S6. Following the training process, we deployed our 754 
model on all 39,469 images of full body X-rays from the UKB. 755 

Adjusting for scaling differences across imaging sizes and modes 756 

A major issue in combining our analysis across input pixel ratios was that these pixel 757 
ratios represented different resolution scalings, perhaps due to distances that the scanner was 758 
held above the patient (Fig. S3). That is, in one image a pixel could represent 0.44 cm and in 759 
another 0.46 cm. To control for this scaling issue and to standardize the images, we chose to 760 
regress height measured directly on our image using the midpoint of the eyes and the midpoint of 761 
the two ankle landmarks that could be taken across all image pixel ratios and overall height (FID 762 
50) computed externally from the UKB (Fig. S4). While the height measure we utilized did not 763 
include the forehead, it was a relative measure that we used to obtain a scaling factor for each 764 
image pixel ratio that we could for normalization. Measurement error of individuals either in our 765 
image-based height measure or as reported in the UKB is not expected to affect our conversion 766 
from pixels to cms as we are regressing over many individuals. Importantly, we validated this 767 
regression and normalization using duplicate individuals taken by different scanners, imaging 768 
modes and technicians (Fig. 1D-F). 769 
 770 
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 771 
Fig. S3. DXA images from the UKB that have undergone different image scaling. Example 772 
of two individuals who were measured to be the same height in the FID 50 in the UKB (overall 773 
height) but pixel-based measurements of one image were considerably smaller than the other due 774 
to image scaling/resolution differences. 775 
 776 

Height: 160 cm Height: 160 cm

Pixel height: 665 px Pixel height: 720 px
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 777 
Fig. S4. A linear regression of image-measured height against UKB-measured height. For 778 
each image pixel-ratio, we regressed height measured in the UKB with height we calculated in 779 
pixels from the DXA scan. This provided a conversion from pixels to cm that we used as a 780 
normalization factor to correct for differences in resolution. 781 

Obtaining skeletal element length measures 782 

From each of the 14 landmarks, we generated a total of seven skeletal length measures 783 
and one angle measure in pixels which we converted to centimeters using coefficients from the 784 
regressions with height. 4 of these measures were for each bone that makes up the limbs, the 785 
humerus, forearm, femur, and tibia. We averaged these lengths across the left and right side of 786 
the body for all analysis. We generated measurements of shoulder width and hip width using the 787 
shoulder and hip joint landmarks. From the midpoint of the shoulder and hip landmarks we also 788 
generated a torso length measure. Finally, we measured the angle between the femur and the 789 
tibia by obtaining the average across two legs, with angles greater than 180 corresponding to 790 
knees bent outward (bow-knees) while angles less than 180 correspond to knees bent inward 791 
(knock-knees). For all measurements, mean and standad deviations are shown in Table S4. 792 
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Removal of image outliers 793 

We removed individuals who were more than 4 standard deviations from the mean for 794 
any skeletal length measure from the analysis. Examination of these outliers by comparing left 795 
and right symmetry as well as comparison of other body proportions revealed a heterogeneous 796 
set of issues that were associated with the poor prediction by our deep learning model. In some 797 
cases, individuals had a limb, or another body part amputated. Some poorly classified images 798 
were individuals who had had major hip or knee replacement surgery or had various implants 799 
that were causing incorrect model landmark prediction (Fig. S5). Another class of outlier images 800 
were those that were too poor in quality for any landmarking of any of the points on the image. A 801 
distribution of outlier individuals as well as possible reasons for their removal is in Table S32. 802 
 803 
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 804 
Fig. S5. Examples of individuals who were outliers on our measurement and were removed 805 
from analysis. (Left) Individual with femur deformity and metal implants. (Right) Individual 806 
with missing forearm. 807 

Obtaining a set of body proportion traits from raw length measures 808 

From the seven skeletal length measures we calculated 21 different body proportion 809 
measures representing ratios of one measure with the other or with overall height. A list of these 810 
proportions can be found in Table S3. Ratios were generated by dividing smaller lengths by 811 
larger lengths to generate body proportions as a phenotype.  812 

 813 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.521284doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.521284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 32 

Correlations of skeletal proportions with age and sex 814 

Each of the skeletal proportion phenotypes were correlated with age, and p-values were 815 
calculated to see how body proportions are affected by age. Furthermore, we carried out t-test 816 
analyses on each phenotype to look at differences in body proportions based on sex. Both 817 
analyses were carried out on white British patients only (n = 31,221). Results are shown in Table 818 
S8 and Table S9. 819 

Participant data quality control 820 

For all genome-wide association analyses, we filtered the participants with correctly 821 
labeled full body DXA images (FID 20158 and 12254) to individuals from just Caucasian 822 
individuals (FID 22006) from the white British population as determined by genetic PCA (FID 823 
21000). We removed individuals whose reported sex (FID 31) did not match genetic sex (FID 824 
22001), had evidence of aneuploidy on the sex chromosomes (FID 222019), were outliers of 825 
heterozygosity or genotype missingness rates as determined by UKB quality control of sample 826 
processing and preparation of DNA for genotyping (FID 22027), had individual missingness 827 
rates of more than 2% (FID 22005), or more than nine third-degree relatives or any of unknown 828 
kinship (FID 22021). In total 31,221 individuals remained. 829 

Genetic data quality control 830 

Imputed genetic data for 487,253 individuals was downloaded from UKB for 831 
chromosomes 1 through 22 (FID 22828) then filtered to the quality-controlled subset using 832 
PLINK2 (94). All duplicate single nucleotide polymorphisms (SNPs) were excluded (--rm-dup 833 
'exclude-all') and restricted to only biallelic sites (--snps-only 'just-acgt') with a maximum of 2 834 
alleles (--max-alleles 2), a minor allele frequency of 1% (--maf 0.01), and genotype missingness 835 
no more than 2% (--maxMissingPerSnp 0.02). In total 8,638,168 SNPs remained in the imputed 836 
dataset. Non-imputed genetic data (genotype calls, FID 22418) did not contain duplicate or 837 
multiallelic SNPs but were filtered to the quality-controlled subset; 652,408 SNPs remained. 838 

Heritability analysis and GWAS 839 

GWAS was performed with BOLT-LMM (95). Heritability, genetic correlation, LD 840 
Score and PCA analyses were carried out with the non-imputed data, but the imputed data was 841 
used for the final association testing using a linear mixed model. LD Score v1.0.1 was used to 842 
compute linkage disequilibrium regression scores per chromosome with a window size of 1 cM 843 
(44). PLINK2 --indep-pairwise with a window size of 100 kb, a step size of 1, and an r2 844 
threshold of 0.6 was used to create a list of 986,812 SNPs used as random effects in BOLT-845 
LMM. Covariates were the first 20 genetic principal components provided by UKB (FID 22009), 846 
sex (FID 31), age (FID 21003), age-squared, sex multiplied by age, sex multiplied by age-847 
squared, and estimated height from eyes to ankles. In addition, the DXA scanner’s serial number 848 
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and the software version used to process images were combined into one covariate, resulting in 5 849 
factor levels.  850 

 851 
The heritability of each phenotype was assessed with non-imputed data using BOLT-852 

REML with the same covariates. SNPs in each resulting GWAS were clumped using --clump 853 
with a significance threshold of 5.0 × 10-8, a secondary significance threshold of 1.0 × 10-4 for 854 
clumped SNPs, an r2 threshold of 0.1, and a kilobase window of 1 Mb. SNPs were assigned to 855 
genes with --clump-verbose --clump-range glist-hg19 downloaded from PLINK gene range lists 856 
(96). The genomic inflation factor of each phenotype was assessed in R version 3.6.1 as the ratio 857 
of the median of the observed chi-squared distribution (an output of BOLT-LMM --verbose) to 858 
the expected median of the chi-squared distribution with one degree of freedom. We examined 859 
the pairwise genetic correlation of traits using GCTA version 1.93.2 beta for Linux (97). (97)We 860 
created the genetic relationship matrix for our quality-controlled subset but without any related 861 
individuals (21,248 total individuals remained) and a minor allele frequency of 0.01, then ran 862 
GCTA for each phenotype pair with the first ten genetic principal components provided by UKB 863 
(FID 22009). 864 
 865 

We also estimated heritability using LDSC (44) and found similar but slightly lower 866 
heritabilities (30-60%) compatible with either reduced power for LDSC based methods or due to 867 
assortative mating increasing the estimate for REML-based methods (98, 99).  868 
 869 

A major contribution of noise in GWAS comes from measurement error. We wanted to 870 
see if heritability estimates of height measured in pixels calculated directly on the skeleton which 871 
and therefore have lower measurement error could be greater than measurements carried out 872 
externally by UKB. To do this we compared the heritability of height computed in three ways: 873 
raw pixel lengths, FID 50 standing height, and FID 12144 height from the first imaging visit on 874 
the 864-pixel image size subset of 16,623 imaged white British individuals all meeting imaging 875 
and genetic QC outlined above. FID 12144 only reports height in integer cm, whereas FID 50 876 
reports to the first decimal. All these 16,623 individuals were imaged at the same pixel ratio and 877 
thus were unaffected by resolution scaling issues. The heritability measures and standard 878 
deviations in brackets were as follows: 879 

 880 
Heritability of height measured in pixels 0.75 ± 0.03 881 
Heritability of height from FID 50 = 0.74 ± 0.03 882 
Heritability of height from FID 12144 = 0.67 ± 0.03 883 
 884 

The heritability of FID 12144 was the lowest of all measures (h2=0.67, se=0.03) as 885 
expected from the course measurement. However, the difference between height measured 886 
externally by the biobank (FID 50) and our pixel-based measurements was non-significant 887 
suggesting that we did not see improvements in measurement error compared with external 888 
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measurements. One possibility could be that height, unlike waist size or hip size, is well-889 
measured externally and that having skeletal measures does not add significant improvement to 890 
measurement accuracy. 891 

Adjusting for height correlation in GWAS using ratios 892 

We were broadly interested in human body proportions, that is, how various lengths in 893 
our body change as a proportion of overall height. However, the common denominator of height 894 
used in these proportions might induce spurious correlations across these proportion phenotypes 895 
(100). In practice this is less of a problem as the overall variation in height was only a small 896 
portion of the overall height. However, in carrying out correlation analysis we attempted to 897 
normalize for height in three different ways. First in examining phenotypic correlations we show 898 
that residualizing each measure by height and then taking correlations does not induce spurious 899 
correlation. To do this, we simulated data of 31,221 individuals under the mean and standard 900 
deviation of femur length and humerus length as well as height on a standard normal distribution. 901 
As these three measures were randomly generated, we do not expect to see correlation between 902 
them. However, on taking ratios with height we observed a correlation of 0.25 between 903 
Humerus:Height and Femur:Height, but a correlation of 0.00012 when examining correlation on 904 
residualized humerus and femur measures. 905 

 906 
Second, we attempted to carry out GWAS in three different ways and used those to 907 

compute genetic correlations between skeletal traits. First, we divided each trait by the overall 908 
height of each person and carried out GWAS on the proportion phenotype. Second, we tried 909 
added height as a covariate as part of the GWAS along with the other covariates. Third, we 910 
regressed each trait on the overall height and then performed a GWAS on just the residuals of 911 
that regression. Genetic correlations between all three GWAS results were highly correlated with 912 
one another (rg 0.96 (ratio with height covariate), 0.97 (ratio with residual), and 0.97 (residual 913 
with height covariate) for the 3 pairs (Table S33 and Table S34). We then compared genetic 914 
and phenotypic correlations across skeletal proportion phenotypes controlling for height as 915 
simple ratios and then as residuals and found they were highly similar (Overall Pearson 916 
correlation r between the two matrices was 0.969) (Fig. S6 and Fig. S7).  917 

 918 
For simplicity we decided to use the first approach of obtaining each trait as a ratio of 919 

height for all analyses other than examining genetic correlations between two phenotypes that 920 
were both proportions of height where such an approach could lead to spurious correlations. For 921 
example, when looking at the genetic correlation between Femur:Height and Humerus:Height we 922 
computed phenotype and genotype correlations on the residuals of regressing femur on height 923 
rather than just examining correlations on the raw ratios. 924 

 925 
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 926 
Fig. S6. A heatmap comparison of genotype and phenotype correlations between ratios and 927 
residuals. (A) Matrix of genotype and phenotype correlation with each phenotype computed as a 928 
ratio of height. (B) Matrix of genotype and phenotype correlation with each phenotype computed 929 
by regressing the phenotype with height and then obtaining residuals. 930 
 931 
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 932 
Fig. S7. Correlation of genotype and phenotype correlations across skeletal traits, computed 933 
using ratios with height and second residualizing for height 934 

Sensitivity analysis for height adjustment 935 

 To test for possible bias due to running GWAS using bone length and body width 936 
measurements as proportions of height (sometimes called collider bias), we carried out 937 
sensitivity analysis outlined by Aschard et al. (70) to test the effect of each SNP in the same 938 
sample population on the raw phenotype (femur), the covariate itself (height), as well as the 939 
adjusted analysis (Femur:Height) (Table S35). To verify this, we conducted a GWAS of femur 940 
length, height, and Femur:Height as well as torso length and Torso:Height for 31,221 individuals 941 
on more than 7 million SNPs. We observed that for both our torso and femur phenotypes, we see 942 
that the vast majority (>95%) of genome-wide significant signals are in the same direction as the 943 
non-adjusted phenotypes (Fig. S8).  944 
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 945 

Fig. S8. Comparison of effect estimates of independent genome-wide significant SNPs 946 
across different phenotypes. Effect estimates of genome-wide significant SNPs for each 947 
phenotype (p < 5e-08) showing same effect directionality for skeletal proportions and raw 948 
measurements. 949 

Multivariate genetic architecture of skeletal endophenotypes 950 

To investigate the joint genetic architecture of skeletal traits, identifying clusters of 951 
skeletal traits with a shared genetic component, and elucidating biological pathways of genetic 952 
risk for musculoskeletal diseases, we used genomic SEM to analyze the genetic factor structure 953 
of the limb and body measurements independent of height. We also analyzed associations of 954 
these factors to musculoskeletal disease. Links to details on case ascertainment, genotyping, and 955 
quality control are provided in Table S36. Inclusion criteria for summary data were: mean χ2 > 956 
1.03, LDSC h2 Z-statistic > 2, and mean χ2 / LDSC intercept ratio > 1.02. 957 

For LDSC genomic SEM analyses, the included SNPs were restricted to HapMap3 958 
common SNPs (1,215,001 SNPs) (101). MHC region SNPs and SNPs with MAF < 1% or 959 
information scores < 0.9 were excluded. We first conducted exploratory modeling including 960 
SNPs on odd numbered autosomes. We reserved SNPs on even numbered autosomes for 961 
confirmatory modeling to assess model fit. 962 

We employed the multivariate extension of LDSC to estimate SNP-based heritabilities 963 
and co-heritabilities across skeletal proportions in odd-numbered autosomes. The estimated 964 
LDSC S matrix containing the genetic variances and covariances was smoothed to the nearest 965 
positive definite matrix using the Higham algorithm (102). The maximum difference in Z 966 
statistics between the pre- and post-smoothed S matrix was 0.00001, suggesting very little 967 
distortion of the original matrix. The smoothed S matrix was then standardized to compute the 968 
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genetic correlation matrix Sstd. We additionally compared the LDSC- and the GCTA-estimated 969 
genetic correlations. 970 

Using the LDSC-estimated genetic correlation matrix, we conducted a Parallel Analysis 971 
(103) to determine the number of factors to retain in a subsequent Exploratory Factor Analysis 972 
(EFA). We compared the eigenvalues from the LDSC-estimated genetic correlation matrix to a 973 
distribution of eigenvalues from null correlation matrices (1s on the diagonal, 0s off the 974 
diagonal) sampled with random noise drawn according to the multivariate sampling covariance 975 
matrix, Vstd. 976 

The genetic correlation matrix revealed substantial genetic sharing among the 9 skeletal 977 
traits, with varying degrees of genetic overlap across traits (Fig. S9). Arm- and leg-related traits 978 
showed substantial positive genetic correlations with each other. We found positive but modest 979 
genetic correlations among torso-related traits. Torso length and hip width presented negative 980 
genetic correlations with arm- and leg-related traits. Shoulder width presented negligible genetic 981 
correlations with arm-related traits, and small and negative genetic correlations with leg-related 982 
traits. There was a close correspondence between the GCTA and the LDSC-derived genetic 983 
correlations (r = 0.99, linear regression model intercept = < .001, linear regression model slope = 984 
0.972, linear regression model R2 = 0.981, Fig. S10). 985 

Results from the Parallel Analysis revealed two principal components from the LDSC-986 
estimated genetic correlation matrix presenting eigenvalues exceeding 95% of the corresponding 987 
eigenvalues from the simulated matrices (Fig. S11), with the first principal component accounted 988 
for 54.28% of the genetic variance among skeletal traits. The second principal component 989 
accounted for an additional 15.66% of genetic variation. Based on results of the Parallel 990 
Analysis, a 2-factor EFA model with promax oblique rotation was fit to the LDSC-estimated 991 
genetic correlation matrix (Table S37). 992 

In the 2-factor EFA solution, Factor 1 consisted of arm-related skeletal traits, including 993 
average arms, humerus, and forearm. Factor 2 was mostly comprised of leg-related traits, 994 
including average legs, tibia and femur. Torso-related traits presented cross-factor loadings on 995 
both the arms and legs factors. There was a medium-size correlation between the arms and legs 996 
factors (rg = 0.51). 997 

Confirmatory models comparison within even-numbered autosomes 998 

We next specified and compared the goodness-of-fit of three types of Confirmatory 999 
Factor Analysis (CFA) models within the even-numbered autosomes based on the 2-factor EFA 1000 
solution for the odd-numbered autosomes (Fig. S12). Performing our exploratory analyses in an 1001 
independent set of autosomes rather than the set in which we estimate model fits helps us to 1002 
avoid inflation of goodness-of-fit that would otherwise result from estimating model fit in the 1003 
same dataset on which the model was trained. 1004 

First, we fitted a factor model comprising two correlated factors of Arms and Legs with 1005 
cross-factor loadings for the torso-related traits (Model A in Fig. S12). Next, we fitted a 3-factor 1006 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.521284doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.521284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 39 

CFA model consisting of three correlated factors of Arms-, Legs-, and Torso-related traits 1007 
(Model B in Fig. S12). Finally, we fitted a bifactor model, comprising a common factor of 1008 
genetic sharing among all phenotypes, and 2 specific groups factors of Arms and Legs 1009 
accounting for the genetic variance unique to the arms and legs-related traits (Model C in Fig. 1010 
S12). We selected the model presenting the better goodness-of-fit indices (i.e., highest CFI, and 1011 
lowest χ2, AIC, and SRMR values), and applied it to the complete dataset including the 22 1012 
autosomes. 1013 

Goodness-of-fit indices for the 5 CFA models are reported in Table S38. The best fitting 1014 
model was the bifactor model with 2 specific factors, Model C (χ2 [21] = 23233, AIC = 23281, 1015 
CFI = 0.991, SRMR = 0.068).  1016 

An inspection of the standardized parameter estimates for Model C from even-numbered 1017 
autosomes (Table S39) indicated that the Legs-specific factor was isomorphic with respect to the 1018 
general factor of skeletal traits (λLegs,G = 0.999), with no significant genetic variance accounted 1019 
for by the specific factor of leg-related traits (i.e., all shared genetic variance among the 1020 
indicators of the Legs factor was accounted for by the common factor). Moreover, the residual 1021 
correlations involving shoulder width were comparable in magnitude to the shoulder loadings on 1022 
SK (Fig. S12), and the loadings for shoulder, hip, and torso on SK were also negative. These 1023 
results hindered the substantive interpretation of the common factor of skeletal endophenotypes 1024 
SK and provided no evidence for a specific factor of leg-related skeletal traits. Given these 1025 
results, we decided to fit an additional model to provide a different conceptualization of the 1026 
genetic covariance structure (Model D). Model D consists of 1) a leg factor that the other arm- 1027 
and torso-related skeletal traits are residualized for (similar to a Cholesky decomposition), 2) an 1028 
arms factor, and 3) three residual factors representing the genetic variance unique to hip, 1029 
shoulder, and torso length. Model D exhibited good approximation to the genetic covariance 1030 
structure with a more reasonable substantive interpretation (Model D fit indices: χ2 [24] = 1031 
118989, AIC = 119031, CFI = 0.953, SRMR = 0.074), and was thus carried forward for 1032 
subsequent analyses. Table S40 contains the parameter estimates for Model D in even 1033 
autosomes. 1034 

We applied the preferred model (Model D) to the complete dataset including the 22 1035 
autosomes. The model fit the data well (χ2 [24] = 98520, AIC = 98562, CFI = 0.955, SRMR = 1036 
0.069). All arm and leg traits loaded positively and substantially on the common factor SK, 1037 
whereas hip width, shoulder width, and torso length traits loaded negatively. We can 1038 
conceptualize SK as a general propensity toward longer limbs relative to total height. We note 1039 
that all skeletal traits were corrected for total height, which may help to explain the opposing 1040 
factor loadings for limb and torso/width traits on the common factor. We can most 1041 
straightforwardly conceptualize the general factor as representing overall limb length relative to 1042 
height. The loadings of arms, forearm, and humerus on a separate Arms factor were also large, 1043 
positive, and significant (Table S41). These results together indicate that 1) arms’ and legs’ 1044 
skeletal length relative to height present substantial genetic overlap, 2) the genetic component of 1045 
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hip and shoulder width relative to height is mostly unique to each trait, 3) there is a specific 1046 
source of genetic variation that is unique for arm relative length, and 4) there is strong and 1047 
negative genetic associations between torso length and arms and legs’ skeletal structure relative 1048 
to height. 1049 

Genetic associations between musculoskeletal disease and skeletal trait factors 1050 

We conducted a series of genomic SEM models to assess the generality vs. specificity of 1051 
the associations between the latent dimensions of skeletal structure specified in Model D and 18 1052 
musculoskeletal diseases (Table S36). To do so, we first estimated the observed effects of 1053 
individual skeletal traits across musculoskeletal diseases using univariate regression models. We 1054 
then calculated the effects mediated by common factor Model D, in which associations between 1055 
musculoskeletal diseases and skeletal traits are fully mediated by the common factors SK and 1056 
Arms, and the three unique factors of torso-related traits. Observed effects of individual skeletal 1057 
endophenotypes on musculoskeletal diseases were estimated from univariate genomic regression 1058 
models. Model-implied effects were obtained from multivariate genomic regression models, 1059 
where the 5 genetic factors included in Model D (Fig. S12) are regressed on 18 musculoskeletal 1060 
diseases (Table S36). We additionally calculated and compared the observed effects of the 1061 
skeletal traits on a set of common musculoskeletal diseases in the UKB and FinnGen (i.e., 1062 
coxarthrosis, gonarthrosis, dorsalgia, fibroblastic disorders, internal derangement of knee, 1063 
intervertebral disk disorders, other joint disorders, rheumatoid arthritis, and spondylopathies). 1064 

We employed a correlated vectors method to quantify the correspondence between the observed 1065 
and the effects implied by the 5 genetic factors specified in Model D, using correlations, 1066 
Tucker’s congruence coefficients (CC), and linear regression models to quantify the 1067 
correspondence between the two vectors of regression coefficients. We employed a Bonferroni 1068 
correction for the p-values to control for multiple comparisons. We additionally conducted an 1069 
outlier detection analysis to identify musculoskeletal diseases whose observed effects on 1070 
individual skeletal traits differ substantially from those implied by the factor model, thus 1071 
indicating potential specific pathways that are not mediated by the skeletal genetic factors. 1072 
Outliers were defined based on a standardized difference between model implied (BMI and 1073 
observed BO effects, thus highlighting substantial deviations from perfect correspondence 1074 
between observed and model-implied effects (blue dashed line in Fig. S13). First, we calculate 1075 
the vector of absolute differences between standardized regression coefficients for model implied 1076 
and observed effects as follows: 1077 

D = |BMI - BO| 1078 

Then we standardized the vector of differences between BMI and BO, D, using the pooled 1079 
standard deviation of model implied and observed effects: 1080 

𝑺𝑻𝑫𝑫𝒊𝒇𝒇 	= 	𝑫	/	
𝝈𝑩𝑴𝑰%	𝝈𝑩𝑶

𝟐
  1081 
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Musculoskeletal diseases were considered outliers if 𝑺𝑻𝑫𝑫𝒊𝒇𝒇> 2 (see labeled skeletal traits 1082 
across scatterplots in Fig. S13). Table S42 contains the observed effects of musculoskeletal 1083 
diseases on skeletal traits and the common factor estimates derived from Model D. Fig. S13 1084 
displays the scatterplots of observed vs model-implied effects by common factor Model D 1085 
between skeletal traits and musculoskeletal diseases. 1086 

The common genetic propensity toward longer relative limb length (SK) was associated with an 1087 
increased genetic liability risk for arthropathies (0.266, p = .001), arthrosis (0.306, p = <.001), 1088 
gonarthrosis (0.294, p < .001), hallux valgus (0.237, p = .008), internal derangement of knee 1089 
(0.256, p = .001), and other joint disorders (0.228, p = 0.003). The vectors of observed and 1090 
model-implied effects for associations involving these diseases were very similar in ordering (r 1091 
range: 0.92 – 0.96) and magnitude (linear model intercept range: -0.01 – -0.03; linear model 1092 
slope range: 0.99 – 1.07), presenting a close correspondence (CC range: 0.95 – 0.97), with no 1093 
appreciable evidence of disease associations with individual skeletal traits operating through 1094 
specific pathways not included in our modeling (Fig. S13 and Table S22), indicating that the 1095 
factors plausibly act on those diseases. On the contrary, the diseases for which there is lower 1096 
correspondence (i.e., fibroblastic disorders, polyarthropathies, rheumatoid arthritis, soft tissue 1097 
disorders, and systemic connective tissue disorders), tended not to have significant associations 1098 
with the skeletal factors, suggesting more specific pathways of association with the individual 1099 
skeletal traits. There was a moderate correspondence between the observed effects for the set of 1100 
common diseases in UKB and FinnGen (r = 0.567, linear regression model intercept = -0.018, 1101 
linear regression model slope = 0.570, R2 = 0.313, Fig. S14). 1102 

Sensitivity analysis using height-residualized skeletal traits 1103 

We compared the genetic correlations among skeletal traits using height scaling 1104 
(measurement/height) versus height residualization, where skeletal traits were first residualized 1105 
by height before conducting GWAS. We additionally excluded the traits average arms and 1106 
average legs from the confirmatory model of the preferred model (Model D). This further aspect 1107 
of the sensitivity analysis allowed us to investigate the potential impact of collinearity among the 1108 
arm- and leg-related skeletal traits on the model fit and the factor structure of the preferred 1109 
model. High genetic overlap among perfectly collinear traits (i.e., average arm length = humerus 1110 
length + forearm length; average leg length = femur length + tibia length) may inflate the 1111 
proportion of shared genetic variance among such traits, thus potentially leading to spurious 1112 
factor identification. 1113 
 1114 
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We found a close correspondence between the height-scaled and the height-residualized genetic 1115 
correlations among skeletal traits (r = 0.98; Fig. S7) in both ordering and magnitude (linear 1116 
model intercept: 0.002; linear model slope: 0.94). These findings suggest that both approaches 1117 
produce very similar patterns of genetic overlap across skeletal traits. We next fitted the 1118 
preferred confirmatory factor model (Model D) on the set of height-residualized genetic 1119 
correlations, after excluding average arms and average length from the model (Fig. S15). To 1120 
identify the arms-specific factor we constrained the factor loadings of the humerus and forearm 1121 
to be equal. The model presented an adequate fit to the height-residualized data (χ2 [13] = 1122 
197.76, AIC = 227.76, CFI = 0.93, SRMR = 0.060). 1123 
 1124 
 1125 

 1126 
Fig. S9. Heatmap of genetic correlations and LDSC cross-trait intercepts across skeletal 1127 
proportion phenotypes within odd-numbered chromosomes 1128 
 1129 
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 1130 
Fig. S10. Scatterplot of GCTA and LDSC genetic correlation estimates across skeletal ratios. 1131 
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 1132 
Fig. S11. Screeplots of PCA and difference in PCA from LDSC Parallel Analysis 1133 

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9
Component Number

PC
A

 E
ig

en
va

lu
e

Observed Data

Simulated data (95th %ile)

−1

0

1

2

3

1 2 3 4 5 6 7 8 9
Component Number

D
iff

er
en

ce
 in

 P
C

A
 E

ig
en

va
lu

es Observed minus simulated data (95th %ile)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 3, 2023. ; https://doi.org/10.1101/2023.01.03.521284doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.03.521284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 45 

 1134 
Fig. S12. Confirmatory factor models of skeletal traits (even autosomes) 1135 
 1136 

 1137 
Fig. S13. Scatterplots of observed and model-implied effects between musculoskeletal 1138 
diseases and skeletal endophenotypes. Red lines represent best fitting regression lines. Blue 1139 
dashed lines represent perfect fit (Observed effects = Model-implied effects). Labeled traits are 1140 
outliers detected based on standardized differences between the observed and the common factor 1141 
model-implied effects for the skeletal traits > 2. 1142 
 1143 
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 1145 
Fig. S14. Observed effects of skeletal traits on musculoskeletal diseases common in UKB 1146 
and FinnGen. Red lines represent best fitting regression lines. Blue dashed lines represent 1147 
perfect correspondence (intercept = 0, slope = 1). 1148 
 1149 

 1150 
Fig. S15. Confirmatory Factor Model D applied to residuals. Preferred model D fully 1151 
standardized parameter estimates fitted on height-residualized skeletal traits as well as excluding 1152 
overall arms and leg length 1153 
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Sex-specific analysis 1155 

BOLT-REML was used to assess genome-wide SNP heritability of phenotypes in both 1156 
sexes (N=31,221), males (N=15,279), and females (N=15,941) (Fig. S16). Standard errors for 1157 
the ratio of sex-specific heritability to that of the heritability in both sexes was calculated using a 1158 
2nd order Taylor approximation for the standard error of a ratio of estimators of x and y, where x 1159 
is a sex-specific heritability estimate and y is the heritability estimate across both sexes (47). We 1160 
assessed male-female genetic correlation (rg) with GCTA bivariate GREML with the first ten 1161 
principal components as covariates, no constraint on rg (--reml-bivar-no-constrain), and against 1162 
the hypothesis rg is 0 (--reml-bivar-lrt-rg 0) (104). 1163 
 1164 

Sex-specific GWAS were run in BOLT-LMM on a subset of 10,000 individuals per sex 1165 
with a MAF of 0.1%, SNP missingness of 5%, and individual missingness of 2%. The first 1166 
twenty principal components, age, age2, the serial number of DXA machine, and the software 1167 
version for image processing were used as covariates. Using the GWAS performed in these 1168 
samples, we computed out-of-sample polygenic risk scores for an independent sample of 5,000 1169 
males and 5,000 females. GWAS were clumped using an r2 threshold of 0.1 and a 250 kb 1170 
threshold of physical distance for clumping, and a significance threshold of 1 × 10-6 was used to 1171 
compute the PRSs in each sample. Next, we regressed the normalized PRSs (in standard 1172 
deviations) obtained in each sample with the skeletal proportion phenotypes as a function of 1173 
height (e.g., the ratio of average tibia length to calculated height) Fig. S17. From the estimates 1174 
obtained in this analysis, we computed the ratio of the effect of the polygenic score on the trait (± 1175 
2 standard errors). This was computed as the ratio of the effect in the male samples to the effect 1176 
in females across the skeletal proportion traits. We derived the standard errors for the ratio of 1177 
male to female variance using the 2nd order Taylor approximation for the standard error of each 1178 
sex, assuming independence between the estimated values for males and females (as they were 1179 
obtained from independent sampling distributions). 1180 

 1181 
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 1182 
Fig. S16. Genetic correlations between males and females, estimated using bi-variate LD Score 1183 
Regression shown for each trait (y-axis). SNP heritability divided by the SNP heritability 1184 
estimated in the sample with both sexes combined (x-axis) for all traits  1185 
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 1186 
Fig. S17. Regression of trait values in males (orange) and separately in females (blue) to a 1187 
polygenic score estimated in an independent sample of females. Points show mean values in one 1188 
decile of the polygenic score; the fitted line and associated effect estimate and 𝑅2 correspond to 1189 
regressions on the raw, non-binned data. 1190 

Clumping, independence analysis and removing previous height associated loci 1191 

To obtain a set of independent SNPs associated with each skeletal proportion phenotype, 1192 
we first performed clumping analysis for each phenotype using plink and assigned SNPs to genes 1193 
with --clump-verbose --clump-range glist-hg19 with an r2 window of 0.1 and a 1 Mb threshold of 1194 
physical distance for clumping. We downloaded gene ranges from plink for hg19 (105). 1195 
Following clumping, we looked at a subset of 8 phenotypes, 7 limb and body lengths and widths 1196 
regressed against height as well as TFA and combined the significant SNPs across the chosen 1197 
phenotypes resulting in 212 unique SNPs. Overlapping clump regions were unioned using 1198 
BEDtools (106). The --indep function in PLINK was used to prune out SNPs that were in 1199 
approximate linkage disequilibrium with each other, leaving only independent SNPs (105). This 1200 
function was carried out on the 212 SNPs chosen, resulting in 179 independent SNPs remaining. 1201 
We then removed any of the 179 SNPs that were also found to be significant in a GWAS for 1202 
height with greater than 10 times our sample size (Neale lab height GWAS), resulting in 102 1203 
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SNPs remaining (Table S43). The genes associated with each SNP as determined earlier by the 1204 
clump range function in PLINK are also listed as well as each phenotype that each SNP was 1205 
found to be significantly associated with.  1206 

Functional mapping and gene enrichment analysis 1207 

For this analysis, out of the 23 phenotype GWAS results, we looked at the subset of 1208 
phenotypes that were either limb or body lengths as a ratio of height which resulted in 7 1209 
phenotypes (Forearm:Height, Humerus:Height, Tibia:Height, Femur:Height, Hip:Height, 1210 
Shoulder:Height, and Torso:Height) as well as the TFA. Using the GWAS output for each 1211 
phenotype, we took the lowest p-value associated with each SNP to generate a combined GWAS 1212 
output file across phenotypes. We then ran FUMA (48) without any predefined lead SNPs on a 1213 
sample size of 31,221 individuals. GENE2FUNC was run with all types of genes selected as 1214 
background genes using Ensembl v92 with GTEx v8 gene expression data sets. 1215 

OMIM gene set enrichment analysis 1216 

We used FUMA (48) to generate gene level p-values from SNP p-value data. We then 1217 
used Mare thought to beAGMA (107) gene set enrichment analysis to examine enrichment in 1218 
701 genes associated with abnormalities in skeletal growth in OMIM (49). 1219 

Transcriptome-wide associations (TWAS) 1220 

We conducted a TWAS on 8 skeletal proportions to link imputed cis-regulated gene 1221 
expression taken from expression quantitative trait locus (eQTL) data in skeletal muscle tissue 1222 
with increased bone lengths. We carried out this analysis using FUSION (108) which also 1223 
provided precomputed transcript expression reference weights for skeletal muscle tissue (n = 1224 
7408 genes). The analysis was run only on GTEx v7 muscle skeletal genes with significant 1225 
heritability on the default FUSION settings as recommended by the authors of FUSION. 1226 

Transcriptome analysis 1227 

To connect the genetics of skeletal proportions and growth plate biology, we looked for 1228 
enrichment of genes associated with our skeletal proportion GWAS in gene expression data in 1229 
three dissected layers of murine newborn tibial growth plate following an analysis described in 1230 
Renthal et al. (109). Specifically, we were interested to see if we could identify which layers of 1231 
the growth plate (i.e., the resting (round), proliferative (flat) or hypertrophic layer) would 1232 
associate with increased limb length. The previous analysis in Renthal et al. used only overall 1233 
height GWAS to examine these but we were interested to see if specifically obtaining GWAS for 1234 
each limb proportion would provide additional insights. We downloaded microarray data of 1235 
mouse tibial growth plate dissections from GEO data repository GSE87605 and normalized the 1236 
data using Robust Multiarray Averaging (RMA) with the affy (version 1.72.0) package in R 1237 
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(version 4.1.3). Mouse gene IDs for each microarray probe were obtained from the GEO feature 1238 
data for the Affymetrix Mouse Genome 430 2.0 Array. Mouse genes were then converted to 1239 
human genes using the biomaRt (version 2.50.3) package in R (110). A specificity score for each 1240 
growth plate (epiphyseal) layer was calculated as the proportion of total gene expression found in 1241 
each layer. A score of 0 meant none of the total gene expression was found in the layer while a 1242 
score of 1 indicated that all gene expression was found in that layer. We then carried out 1243 
MAGMA gene property analysis to examine enrichment between genes expressed in particular 1244 
growth layers and each skeletal proportion. However, unlike enrichment seen in Renthal et al. for 1245 
overall height, we saw no significant enrichment for growth plate layers using our skeletal 1246 
proportion GWAS after Bonferroni correction for the number of trait and layer pairs. In Table 1247 
S44 we report the results for all layer and proportion pairs for this analysis. 1248 
 1249 

As different long bones differ dramatically in overall size, we examined whether we 1250 
could correlate our GWAS results with RNA-Seq data comparing gene expression with age (1- 1251 
vs 4-week-old mouse) in longer bones (tibia) and short bones (phalanx). To do this, we 1252 
downloaded RNA-seq data from 1 and 4-week-old mouse tibial growth plates as well as 1-week-1253 
old mouse tibial and phalanx growth plates from GEO data repository GSE114919 (111). The 1254 
data were normalized before upload to GEO, and mouse genes were converted to human genes 1255 
using the biomaRt (version 2.50.3) package in R. The fold changes for each gene from 1- versus 1256 
4-week-old tibial growth plates and tibial versus phalanx growth plates were then calculated. 1257 
 1258 

We used gene property analysis in MAGMA (version 1.08) to determine associations 1259 
between genes implicated in 7 of our skeletal proportions GWAS (Forearm:Height, 1260 
Humerus:Height, Tibia:Height, Femur:Height, Hip:Height, Shoulder:Height, and Torso:Height) 1261 
and genes expressed in various bone layers and time points. Gene level p-values for our skeletal 1262 
phenotype GWAS were first calculated using the positional mapping tool with default settings in 1263 
SNP2GENE (version 1.3.7) (48). We then ran MAGMA’s gene property analysis method, which 1264 
performs a one-sided association test between a covariate and phenotype. We used bone layer 1265 
specificity score and RNA-seq fold change values as our covariates and used various skeletal 1266 
traits as phenotypes. We also carried out this analysis using a GWAS on height as measured in 1267 
our DXA image population as well as a GWAS on height across the UKB population carried out 1268 
by Neale et al., as controls.  1269 

Phenotypic association of skeletal phenotypes with musculoskeletal disease 1270 

To examine correlations between our skeletal phenotypes with musculoskeletal disease, 1271 
musculoskeletal or connective tissue diseases related to the hip, knee, and back we obtained data 1272 
from UKB Chapter XIII (FID 41270) ICD-10 codes as well as self-reported pain phenotypes 1273 
(FID 6159) for the hip, knee and back. We then regressed the binary outcome of disease or 1274 
reported pain against skeletal proportions controlling for clinically relevant covariates that are 1275 
known to affect OA (112) including age, sex, diet, BMI, and other factors. A full list of variables 1276 
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we controlled for are reported in Table S45. All covariates were obtained from the notated FIDs 1277 
in the UKB in Table S28. After running the regressions, we used Bonferroni correction for 1278 
significance at the level of the total number of disease/pain traits multiplied by the total number 1279 
of skeletal phenotypes. 1280 

Polygenic risk score (PRS) prediction in UKB 1281 

This analysis only utilized the ~300,000 white British individuals who were not included 1282 
in our imaging dataset for which GWAS was conducted. Prior to testing for associations, on 1283 
these individuals, we applied stringent sample quality control steps to infer global ancestries and 1284 
exclude related and low-quality samples. We leveraged filters performed at the Wellcome Trust 1285 
Center for Human Genetics, Oxford, UK. Filters included removing closely related individuals, 1286 
individuals with sex chromosome aneuploidies and individuals who had withdrawn consent from 1287 
the UKB study. To minimize the impact of confounders and unreliable observations, we used a 1288 
subset of individuals that (1) had self-reported white British ancestry, (2) were used to compute 1289 
principal components, (3) did not show putative sex chromosome aneuploidy.  1290 

Outcomes were pre-processed with the open-source software tool PHEnome Scan 1291 
ANalysis Tool (PHESANT) (113). Phenotypes were converted into normally distributed 1292 
quantitative or a collection of binary (TRUE/FALSE) categorical variables. Full details of the 1293 
phenotype pipeline are summarized here (114). We further excluded continuous phenotypes with 1294 
fewer than one hundred samples and binary phenotypes with fewer than one hundred cases. 1295 

We generated polygenic risk scores for each of the generated traits with Bayesian 1296 
regression and continuous shrinkage priors (55) using the significantly associated single-1297 
nucleotide polymorphisms. We ran a logistic or linear regression of the polygenic risk score on 1298 
traits across all individuals, adjusting for the first 20 principal components of ancestry, and 1299 
imputed sex. 1300 

Genetic correlation of skeletal proportions with external phenotypes 1301 

We utilized cross-trait LD score regression for estimating genetic correlations between 1302 
each of our skeletal proportions (115) and up to 700 additional quantitative and case-control 1303 
phenotypes from the UKB that were precomputed by the Neale lab. Unlike polygenic risk score 1304 
or phenotype association analysis, sample sizes for the case-control musculoskeletal disease 1305 
traits were too low to assess genetic correlations between our skeletal proportion phenotypes and 1306 
these disease traits in the UKB. 1307 

 1308 
When examining other quantitative traits and applying a Bonferroni threshold correcting 1309 

at the level of the number of skeletal proportion and biobank phenotype pairs, we saw well-1310 
known associations of skeletal proportions with puberty timing also previously associated with 1311 
overall height. Here we were able to assess the impact of puberty timing on overall body 1312 
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proportions. While long bone proportions such as Femur:Height (rg = 0.24, p = 1.77 × 10-17, rg = 1313 
0.41, p = 1.71 × 10-10) and Humerus:Height were positively correlated with later onset of puberty 1314 
overall body width measures such as Shoulder Width:Height were negatively correlated with age 1315 
of puberty (rg = -0.15, p = 2.50 × 10-7). We also saw that walking pace was increased by longer 1316 
arms, and legs but decreased with torso length as a function of height. 1317 

 1318 
We consistently found that increased Torso Length:Height was positively associated with 1319 

body fat, BMI, and blood pressure (rg = 0.09, p = 7.00 × 10-4; rg = 0.16, p = 1.27 × 10-8; rg = 0.15, 1320 
p = 1.71 × 10-6). Overall, traits related to body mass were genetically correlated to several of our 1321 
skeletal phenotypes such as Tibia:Height with left and right leg fat-free mass (rg = 0.16, p = 4.90 1322 
× 10-8; rg = 0.16, p = 2.36 × 10-7) or Humerus:Height with left and right arm fat-free mass (rg = -1323 
0.14, p = 1.09 × 10-6; rg = -0.14, p = 1.38 × 10-6), suggesting a possible link between skeletal 1324 
body proportions and obesity. A full set of trait and skeletal proportion pairs of genetic 1325 
correlation can be found in Table S26. 1326 

Enrichment analysis for HARs 1327 

In order to investigate the evolution of body proportions in humans, we scanned for 1328 
elevated levels of intersections between genes containing genome-wide significant SNPs and 1329 
HARs through a modified version of the method outlined in Ke et al. (56). HARs are defined as 1330 
regions of at least 100 base pairs (bp) which are conserved within the common ancestor of 1331 
chimpanzees and humans but have increased rates of base pair substitutions in the human 1332 
genome (116–120). For each phenotype, we first created annotations of protein coding regions 1333 
that lie on our genome-wide significant SNPs using Ensembl’s GRCh37 Variant Effect Predictor 1334 
version 103.4 (121). We selected the closest protein coding feature within 5,000 base pairs up- or 1335 
downstream of the SNP. Using biotype categorizations identified by VEP, these protein coding 1336 
features were: ("protein_coding", "IG_C_gene", "IG_D_gene", "IG_J_gene", "IG_LV_gene", 1337 
"IG_M_gene", "IG_V_gene", "IG_Z_gene", "nonsense_mediated_decay", 1338 
"nontranslating_CDS", "non_stop_decay", "polymorphic_pseudogene", "TR_C_gene", 1339 
"TR_D_gene", "TR_J_gene"). We refer to the list of features for all independent genome-wide 1340 
significant loci significantly associated with the trait as the element set for the phenotype being 1341 
analyzed. Phenotypes with fewer than 50 elements in their set were removed from the analysis 1342 
due to insufficient power. We then used BioMart (110) command line queries to generate the 1343 
genomic locations (chromosome, start, stop) of each feature within the human genome. In order 1344 
to scan for selection, we used BEDTools ‘intersect’ to compute the number of intersections 1345 
found in the gene set with HARs sourced from literature. 1346 
 1347 

To generate a background distribution of intersections per bp, we computed the HAR-1348 
element intersections per bp of 5,000 length-matched element sets. Because the distribution of 1349 
these feature lengths is non-normal, we binned the element sets into deciles based on gene length 1350 
and computed the average length l within each bin of size n. For each bin in the simulation, we 1351 
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sampled n random elements of length l to create our complete element set which was then used 1352 
to compute the intersections per base pair of the simulated set. Due to the large differences in 1353 
element set sizes and lengths across phhenotypes, a background distribution was generated 1354 
independently for each phenotype analyzed (Fig. S18). On this background we fit Weibull 1355 
distribution for computation of p-values of the observed intersections in comparison to the 1356 
background. A comprehensive table of analyses performed can be found in Table S23. 1357 

 1358 

 1359 
Fig. S18. HAR background distributions. Intersections per base pair occurring between human 1360 
accelerated regions (HARs) and phenotype-associated genes. Blue bars are background 1361 
distributions generated from 5,000 simulations of matched element sets. An example is shown 1362 
here for skin pigmentation. 1363 

LDScore heritability enrichment in regions of evolutionary context 1364 

We applied stratified linkage disequilibrium score (S-LDSC) regression, which estimates 1365 
whether a genomic region is enriched or depleted in heritability for a set of traits, capturing the 1366 
contribution of variants in that genomic region towards trait variation, and whether this 1367 
contribution is more or less than expected given the relative proportion of variants in that region. 1368 
We used the following genomic annotations marking different evolutionary periods: (A) 1369 
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epigenetic elements that gained novel function in the fetal brain since our divergence with rhesus 1370 
macaque (H3K27as and H3K4me2 histone modification peaks in the fetal cerebral cortex gained 1371 
in humans compared to mouse and rhesus macaque) at different developmental stages or post-1372 
conception weeks (PCW) (Fetal human-gained (HG) enhancers and promoters at 7 PCW, 8.5 1373 
PCW, and 12 PCW) (60), (B) epigenetic elements that gained novel function in the adult brain 1374 
since our divergence with rhesus macaque (Adult human-gained (HG) enhancers and promoters) 1375 
(61), (C) ancient selective sweeps from the extended lineage sorting method capturing human-1376 
specific sweeps relative to Neanderthal/Denisovan (63), (D) regions depleted in Neanderthal 1377 
ancestry (122, 123) (E) regions depleted in Neanderthal and Denisovan ancestry (123), and (F) 1378 
putatively introgressed variants from Neanderthals (62). We did not include HAR annotations as 1379 
part of this analysis as these annotations were small and the use of such annotations in this 1380 
context might not always control type 1 error (124). 1381 
 1382 

Using S-LDSC for our skeletal traits, we analyzed our test annotations in a model 1383 
simultaneously incorporating several other regulatory elements, measures of selective constraint, 1384 
and linkage statistics (baselineLDv2.2 with 97 annotations) (59, 64–66) to estimate heritability 1385 
enrichment while minimizing bias due to model misspecification. 1386 

Supplementary Tables 1387 

Table S1 - GWAS population summary 1388 

This table contains summary data on the population subset used in our GWAS from the UKB 1389 
 1390 
Table S2 - Architecture comparison 1391 

This table contains data comparing the performance of HRNet against ResNet on our landmark 1392 
estimation task 1393 
 1394 
Table S3 - IDPs 1395 

This table contains a list of all generated IDPs 1396 
 1397 
Table S4 - HPE measurement error 1398 

This table contains various error metrics comparing human-derived measurements of bone and 1399 
body lengths to HRNet-derived measurements 1400 
 1401 
Table S5 - 864 Model landmark results 1402 

This table contains a comparison of landmark estimations between human annotated images and 1403 
HRNet prediction for 864x288 images 1404 
 1405 
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Table S6 - 960 Model landmark results 1406 

This table contains a comparison of landmark estimations between human annotated images and 1407 
HRNet prediction for 960x384 images 1408 
 1409 
Table S7 - Adjusted IDPs to Height 1410 

This table contains correlations between measurements as ratios of height and height itself 1411 
 1412 
Table S8 - Sex difference t-tests 1413 

This table contains the results from T-test comparisons between sex for each IDP 1414 
 1415 
Table S9 - Age phenotype correlations 1416 

This table contains the results from linear regression analyses between age and each IDP, also 1417 
separated by sex 1418 
 1419 
Table S10 - GWAS QC 1420 

This table contains data showing how many individuals in the UKB were removed from our final 1421 
GWAS population for each QC step 1422 
 1423 
Table S11 - GCTA GWAS heritability 1424 

This table contains the heritability for each IDP as determined by GCTA 1425 
 1426 
Table S12 - LDSC GWAS heritability and lambdas 1427 

This table contains the heritability and lambda values for each IDP as determined by LDSC 1428 
 1429 
Table S13 - Phenotype and genetic correlations 1430 

This table contains correlations, standard errors, and p-values of genotype and phenotype 1431 
correlations for IDPs included in Figure 2B 1432 
 1433 
Table S14 - MAGMA GO terms GSA 1434 

This table contains output from MAGMA GSA for each phenotype as well as gene set 1435 
 1436 
Table S15 - OMIM gene set 1437 

This table contains all genes from OMIM database search “Skeletal Growth Abnormality” that 1438 
were used in a GSA 1439 
 1440 
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Table S16 - OMIM skeletal GSA 1441 

This table contains output from a GSA over the OMIM gene set for each phenotype 1442 
 1443 
Table S17 - Clumped SNPs 1444 

This table contains output from PLINK --clump ranges command including lead SNP, p-value, 1445 
and number of kilobases in each clump 1446 
 1447 
Table S18 - Gene ranges 1448 

This table contains data regarding gene mapping for each clump range as well as whether the 1449 
single clump range genes are related to known mouse phenotypes and rare human disease 1450 
 1451 
Table S19 - TWAS results 1452 

This table contains Bonferroni corrected TWAS output  1453 
 1454 
Table S20 - Musculoskeletal regressions 1455 

This table contains output from logistic regression analyses for each skeletal proportion and 1456 
musculoskeletal disease or area of pain 1457 
 1458 
Table S21 - PRS analysis 1459 

This table contains output from PRS analyses for each skeletal proportion and musculoskeletal 1460 
disease or area of pain 1461 
 1462 
Table S22 - Multivariate genetic architecture of skeletal endophenotypes table 1 1463 

This table contains statistics of correspondence between direct and model-implied associations 1464 
across musculoskeletal diseases and skeletal endophenotypes. 1465 
 1466 
Table S23 - HAR analysis results 1467 

This table contains information regarding source and publication of GWAS summary statistics as 1468 
well as output of enrichment overlap analysis 1469 
 1470 
Table S24 - LDSC heritability enrichment meta-analysis 1471 

This table contains output from S-LDSC heritability enrichment meta-analysis 1472 
 1473 
Table S25 - LDSC heritability enrichment analysis 1474 
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This table contains output from S-LDSC heritability enrichment analysis for all traits and 1475 
annotations 1476 
 1477 
Table S26 - Genetic correlations UKB 1478 

This table contains output from genetic correlations between skeletal proportions and all other 1479 
traits in the UKB 1480 
 1481 
Table S27 - ICD10 Codes 1482 

This table contains all ICD10 codes used in our analyses 1483 
 1484 
Table S28 - UKB phenotypes FID 1485 

This table contains the FID of each UKB traits used in our analyses 1486 
 1487 
Table S29 - Initial deep learning QC 1488 

This table contains the number of patients removed from each QC step before landmark 1489 
estimation 1490 
 1491 
Table S30 - Image pixel data 1492 

This table contains the number of full body skeletal DXA images for each pixel aspect ratio in 1493 
the UKB 1494 
 1495 
Table S31 - Annotation reproducibility 1496 

This table shows annotator accuracy for each landmark on 10 duplicate images 1497 
  1498 
Table S32 - Outlier image removal 1499 

This table shows the number of patients removed due to outlier values following image 1500 
measurement 1501 
 1502 
Table S33 - Genetic correlations ratios residuals covariates 1503 

This table shows genetic correlation values between skeletal measurements as a ratio of height, 1504 
skeletal measurements with height as a covariate, and residuals of skeletal measurements 1505 
regressed against height 1506 
 1507 
Table S34 - Residual correlations 1508 

This table shows genotype and phenotype correlations between skeletal measurements with 1509 
height as a covariate, mimicking Table S13 1510 
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  1511 
Table S35 - Sensitivity analysis for height adjustment 1512 

This table contains summary statistic data from skeletal measurements alone, skeletal 1513 
measurements as a ratio of height, skeletal measurements with height as a covariate, and height 1514 
 1515 
Table S36 - Multivariate genetic architecture of skeletal endophenotypes table 2 1516 

This table contains the summary statistics of skeletal traits and musculoskeletal diseases and 1517 
results from LD Score Regression (LDSC) in all autosomes. 1518 
 1519 
Table S37 - Multivariate genetic architecture of skeletal endophenotypes table 3 1520 

This table contains standardized factor loadings from two-factor EFA solution of skeletal traits 1521 
within odd-numbered autosomes. 1522 
 1523 
Table S38 - Multivariate genetic architecture of skeletal endophenotypes table 4 1524 

This table contains goodness-of-fit indices for confirmatory factor models of skeletal 1525 
endophenotypes on even autosomes. 1526 
 1527 
Table S39 - Multivariate genetic architecture of skeletal endophenotypes supplementary table 5 1528 

This table contains the results of applying the genetic bifactor model of skeletal endophenotypes 1529 
on even autosomes (Model C) 1530 
 1531 
Table S40 - Multivariate genetic architecture of skeletal endophenotypes supplementary table 6 1532 

This table contains the results of applying the genetic bifactor model of skeletal endophenotypes 1533 
on even autosomes (Model D) 1534 
 1535 
Table S41 - Multivariate genetic architecture of skeletal endophenotypes table 7 1536 

This table contains the results of applying the genetic bifactor model of skeletal endophenotypes 1537 
on all autosomes (Model D) 1538 
 1539 
Table S42 - Multivariate genetic architecture of skeletal endophenotypes supplementary table 8 1540 

This table contains results showing observed effects of skeletal endophenotypes on 1541 
musculoskeletal (MSK) diseases and common factor estimates as estimated from Model D. 1542 
 1543 
Table S43 - Height independent SNPs 1544 

This table contains the p-value of independent SNPs from our skeletal elements as ratios of 1545 
height and TFA as well as the p-value of each SNP in a GWAS for height 1546 
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 1547 
Table S44 - Transcriptome analysis 1548 

This table contains the results of MAGMA GPA for skeletal proportions and various gene 1549 
expression data including expression from various bone layers, different time points, and 1550 
different types of bones 1551 
 1552 
Table S45 - Musculoskeletal covariates 1553 

This table contains the list of covariates used in our logistic regression analyses and the FID from 1554 
the UKB 1555 
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