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Rationale and Objectives: The clinical prognosis of outpatients with coronavirus disease 2019 (COVID-19) remains difficult to predict,
with outcomes including asymptomatic, hospitalization, intubation, and death. Here we determined the prognostic value of an outpatient
chest radiograph, together with an ensemble of deep learning algorithms predicting comorbidities and airspace disease to identify
patients at a higher risk of hospitalization from COVID-19 infection.

Materials and Methods: This retrospective study included outpatients with COVID-19 confirmed by reverse transcription-polymerase
chain reaction testing who received an ambulatory chest radiography between March 17, 2020 and October 24, 2020. In this study, full
admission was defined as hospitalization within 14 days of the COVID-19 test for > 2 days with supplemental oxygen. Univariate analysis
and machine learning algorithms were used to evaluate the relationship between the deep learning model predictions and hospitalization
for > 2 days.

Results: The study included 413 patients, 222 men (54%), with a median age of 51 years (interquartile range, 39�62 years). Fifty-one
patients (12.3%) required full admission. A boosted decision tree model produced the best prediction. Variables included patient age,
frontal chest radiograph predictions of morbid obesity, congestive heart failure and cardiac arrhythmias, and radiographic opacity, with an
internally validated area under the curve (AUC) of 0.837 (95% CI: 0.791�0.883) on a test cohort.

Conclusion: Deep learning analysis of single frontal chest radiographs was used to generate combined comorbidity and pneumonia
scores that predict the need for supplemental oxygen and hospitalization for > 2 days in patients with COVID-19 infection with an AUC of
0.837 (95% confidence interval: 0.791�0.883). Comorbidity scoring may prove useful in other clinical scenarios.

Keywords: COVID-19; deep learning; multi-task learning; convolutional neural networks; chest radiography.

© 2021 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Abbreviations: AUC area under curve, BMI body mass index, CHF co
neural network, COPD chronic obstructive pulmonary disease, COVID
ngestive heart failure, CI confidence interval, CNN convolutional
-19 coronavirus disease 2019, CXR chest radiograph, EHR electronic

health record, HCC hierarchical condition category, ICD10 International Classification of Diseases, Tenth Revision,MTLmulti-task learning,
ROC receiver operating characteristic, RT-PCR reverse transcription-polymerase chain reaction
cad Radiol 2021; 28:1151–1158

om the DuPage Medical Group, Radiology (A.P., N.M., V.B., N.S., M.W.); Thomas Jefferson University Hospital, Radiology (A.E.F.); University of Illinois at Chi-
go, Department of Neurology (J.M.R.-F.); University of Illinois at Urbana-Champaign, Department of Computer Science (A.C., P.C., O.K.); NorthShore University
ealthSystem Research Institute, Department of Radiology (D.W.); University of Illinois at Chicago, Mechanical and Industrial Engineering (S.H., H.D.); Northwestern
emorial Hospital, Northwestern University, Radiology (E.H., J.H., P.N.); University of Illinois at Chicago, Department of Medicine (J.N., W.G.). Received March 30,
21; revised April 28, 2021; accepted May 2, 2021. Address correspondence to , 40 S Clay St, Hinsdale, IL 60521. e-mail: ayis@ayis.org

2021 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
tps://doi.org/10.1016/j.acra.2021.05.002

1151

http://crossmark.crossref.org/dialog/?doi=10.1016/j.acra.2021.05.002&domain=pdf
mailto:ayis@ayis.org
https://doi.org/10.1016/j.acra.2021.05.002


PYRROS ET AL Academic Radiology, Vol 28, No 8, August 2021
INTRODUCTION
Figure 1. Flow diagram of retrospective cohort study. COVID-
19 = coronavirus disease 2019, RT-PCR = reverse transcription-
polymerase chain reaction.
T he coronavirus disease 2019 (COVID-19) pandemic
placed unprecedented demand on healthcare systems.
Although many infected individuals have mild or no

symptoms, some become very ill and may be hospitalized for
long durations (1). Comorbid conditions like diabetes and
cardiovascular disease are associated with more severe cases of
COVID-19 (2). Unfortunately, relevant comorbidities are
sometimes unknown or unrecognized by the medical pro-
vider and patient, limiting the provider’s ability to perform a
proper risk assessment (3). Currently, the extraction of
comorbidity data is based on contemporaneously provided
patient history, manual record review, and/or electronic
health record (EHR) queries (4), and the results are imperfect
and often incomplete. The purpose of this study was to
develop a deep learning algorithm that could predict the
likely presence of relevant comorbidities, in combination
with an algorithm to quantify opacity, from frontal chest
radiographs (CXRs), and thereby enable providers to more
effectively risk-stratify patients presenting with COVID-19
infection.

COVID-19 infection is diagnosed with reverse transcrip-
tion-polymerase chain reaction (RT-PCR) or antigen tests.
In patients with limited symptoms, additional testing is often
unnecessary. In patients with higher risk for severe disease or
complications, however, including those presenting with
more severe symptoms, chest radiography is widely used for
evaluation (5).

The Centers for Medicare and Medicaid Services uses a
specific subset of hierarchical condition category (HCC)
codes from the International Classification of Diseases, Tenth
Revision (ICD10) to model chronic disease comorbidities
and their associated costs of care for value-based payment
models (6). The codes are generated through encounters
with healthcare providers and recorded in administrative (bill-
ing) data. These data elements are often more reproducible
and more amenable to query as compared to broader search-
ing of EHR systems. Using a convolutional neural network
(CNN) to link these categorical codes to a CXR can convert
the images into useful biomarker proxies for a patient’s
chronic disease burden. For instance, a high categorical pre-
diction for HCC18 would indicate that a CXR strongly sug-
gests diabetes with chronic complications.

Multiple predictive clinical models of the course of
COVID-19 infection use demographic information, clinically
obtained comorbidity data, laboratory markers, and radiogra-
phy (7,8). Radiography is used as a proxy for infection severity
by quantifying the geographic extent and degree of lung opac-
ity (7,8). However, we are not aware of previous models using
radiographs to directly predict or quantify comorbidities that
contribute to patient outcomes. We hypothesize that an
ensemble CNN model derived from frontal CXRs, composed
of comorbidities and geographic�opacity scores, can predict
prolonged hospitalization and supplemental oxygenation of
ambulatory COVID-19 patients.
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METHODS

This study was approved by the institutional review board and
was granted waivers of Health Insurance Portability and
Accountability Act authorization and written informed consent.
Patient Cohort and Clinical Setting

The two cohorts in this study comprise patients receiving an
outpatient frontal CXR at DuPage Medical Group, a large
multi-specialty group in the suburbs of Chicago, IL. The first
cohort consists of 14,121 CXRs of patients from 2010 to 2019,
who were enrolled in the Medicare Advantage program. These
patients had CXRs for typical clinical indications, like pneumo-
nia, chest pain, and cough, and none of these patients had
COVID-19 infection. This cohort was used to develop and vali-
date a multi-task CNN to predict HCC-based comorbidities.

The second cohort was seen between March 17, 2020 and
October 24, 2020 and received both a CXR and a positive
RT-PCR COVID-19 test in the ambulatory or immediate
care setting. Some of the patients went to the emergency
department after the positive RT-PCR test and some were
hospitalized. The EHR clinical notes were reviewed for
information regarding the reason, date of admission, treat-
ments, and length of hospitalization in days. This cohort is
called COVID +. We define “full admission” as hospitaliza-
tion > 2 days with supplemental oxygen.

In cases of multiple positive COVID-19 RT-PCR tests, or
negative and then positive tests, the first positive test was used
as the reference date. Likewise, in patients with multiple out-
patient CXRs, the radiograph closest to the initial positive
RT-PCR was used, with only one radiograph used per sub-
ject. Patients without locally available or recent CXRs, radio-
graphs obtained > 14 days after positive RT-PCR testing,
and subjects < 16 years old at the time of radiography were
excluded. Patients admitted for > 2 days within 14 days of
the RT-PCR test and 7days of chest radiography were
defined as full admissions (Fig 1).
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Image Acquisition and Analysis

All radiographs were obtained conventionally with digital post-
eroanterior radiography; no portable radiographs were included.
All CXRs were extracted from the PACS system utilizing a
scripted method (SikuliX, 2.0.2) and saved as de-identified 8-bit
grayscale portable network graphics (PNG) files.
Deep Learning

A multi-task CNN was trained on anonymized outpatient
frontal CXRs from 2010 to 2019 randomly split into 80%
training and 20% test data sets. The gold standard was the
EHR ICD10 codes. The 80% set was trained on sex, age, and
six common ICD10 HCC codes (model v23, used by the
Centers for Medicare and Medicaid Services). ICD10 codes
were obtained via queries of the EHR (Epic) from the trans-
actions table. The following HCC categories were used: dia-
betes with chronic complications (HCC18), morbid obesity
(HCC22), congestive heart failure (CHF; HCC85), specified
heart arrhythmias (HCC96), vascular disease (HCC108), and
chronic obstructive pulmonary disease (COPD; HCC111).
In the training set, each radiographic file was a separate row,
with the absence of any associated ICD10 HCC codes labeled
as 0, and the presence of one or more codes labeled as 1.
Binary cross-entropy was used as the objective function in

PyTorch (version 1.01; pytorch.org), and the Adam opti-
mizer (9) with a learning rate of 0.0005 to train the neural
network. The learning rate was decreased by a factor of 10
when the loss ceased to decrease for 10 iterations. Random
horizontal flips (20%), random affine (rotate image by max of
10 degrees), random resized crop scale (range 1.0, 1.1), ratio
(range 0.75, 1.33), and random perspective (distortion scale
of 0.2, with a probability 0.75) were applied for data augmen-
tation. Image normalization was performed by using the stan-
dard PyTorch function, with the mean and standard
deviation of the pixel values computed over the training set.
For image resizing, we used the PIL library to downscale to
256 £ 256 with the Lanczos filter. A customized CoordConv
(10) ResNet34 model was pretrained on the CheXpert data-
set (11); CoordConv allows the convolution layer access to
its own input coordinates, using an extra coordinate channel.
The training was performed on a Linux (Ubuntu 18.04;
Canonical, London, England) with two Nvidia TITAN
GPUs (Nvidia Corporation, Santa Clara, Calif), with CUDA
11.0 (Nvidia) for 50 epochs over 10.38 hours. Training used
image and batch sizes of 256 £ 256 and 64, respectively. All
programs were run in Python (Python 3.6; Python Software
Foundation, Wilmington, Del).
Multi-Task Learning (MTL)

MTL is a general framework for learning several tasks simul-
taneously using their shared structure (12). In contrast to stan-
dard (single-task) learning where each task is learned
independently, MTL exploits inter-task relationships to
improve the representation and prediction quality. MTL can
be implemented using various approaches, including explicit
parameter sharing and implicit parameter sharing (e.g., using
nuclear norm regularization) (13). When individual task per-
formance improves, this is known as “positive transfer” and
indicates that joint learning is superior to separate learning. In
contrast, though less common, individual task performance
can degrade with MTL, a “negative transfer” phenomenon
(14). MTL is a well-established approach to machine learning
that has been applied in computer vision, natural language
processing, and medical applications (14), among others (15).

To quantify the geographic extent and severity of opacity
of infection, we used the open-source program COVID-Net
(16), which produces two scores: one for the geographic
extent and one for the severity of opacity. Both scores were
normalized from 0 to 1.
Clinical Data

Clinical variables evaluated included patient age, sex, and
length of stay. History of COPD, diabetes, morbid obesity
(body mass index [BMI] > 40), CHF, cardiac arrhythmias, or
vascular disease was determined by ICD10 ambulatory billing
codes. Other than the COVID-19 RT-PCR test, outpatient
lab results were not used, as most were unavailable within
24 hours of the COVID-19 RT-PCR positive test.
Statistical Analysis

One-to-one comparison of categorical and continuous varia-
bles was done with logistic regression. The t-test was not used
as many of the variables were nonparametric. The predictions
for the six HCCs were compared to the COVID + cohort bill-
ing claims to test that this model, derived from a large cohort of
patients prior to the COVID-19 pandemic, had predictive
power with the COVID + cohort. The analysis used the area
under the curve (AUC) of receiver operating characteristic
(ROC) curves. No hypothesis testing was done. Logistic
regression produced odds ratios with 95% confidence intervals
(CIs). All tests were two-sided, a p value < 0.05 was deemed
statistically significant, and analysis was conducted in R version
4 (R Foundation for Statistical Computing, Vienna, Austria).
Fit of Radiographic Features to Outcome Data

The COVID+ cohort had 11 input features and 1 outcome:
whether or not a patient had a full admission (> 2 days)
within 7 days of the CXR. To assess the contributions and
performance of the six-variable HCC CNN model and the
two-variable geographic extent and opacity severity model,
separate logistic regressions and AUC curves were generated
and compared.. Then the data were split into a training/vali-
dation set (70%) and a testing set (30%). Several machine
learning models, including logistic regression, decision trees,
random forest, XGBoost, LightGBM, and CatBoost, were
developed and optimized in Python (Python 3.6) using the
1153



TABLE 1. Demographics and Findings of 413 Outpatients.

Characteristics Full Admission (n = 51) No Full Admission (n = 362) Odds Ratio (CI) p value

Age, Mean (SD) 60.5 (12.9) 48.4 (16.0) <0.0001
Sex 0.86
Female 23 (45.1) 168 (46.4)
Male 28 (54.9) 194 (53.6)

Race 0.47
White 22 (43.1) 200 (55.2)
Hispanic 12 (23.5) 81 (22.4)
Other, Non-Hispanic 8 (15.7) 38 (10.5)
African American 5 (9.8) 22 (6.1)

Clinical and Radiological Features
BMI, Mean (SD) 32.4 (6.7) 30.5 (7.1) 0.07
A1C, Mean (SD) 6.4 (1.3) 6.0 (1.1) 0.13
Chest X-ray Opacity, Mean (SD) 0.412 (0.12) 0.337 (0.1) 920 (63�13,600) <0.0001
Chest X-ray Geo Score, Mean (SD) 0.255 (0.1) 0.21 (0.051) 12,000 (240�60,000) <0.0001

Variables Predicted by the Multi-Task CNNModel
Diabetes with Complications HCC18, mean (SD) 0.332 (0.2) 0.161 (0.2) 36.2 (9.7�136) <0.0001
Morbid obesity HCC22, Mean (SD) 0.226 (0.3) 0.156 (0.2) 2.63 (0.94�7.3) 0.065
CHF HCC85, Mean (SD) 0.222 (0.2) 0.092 (0.1) 33.2 (7.9�140) <0.0001
Cardiac Arrhythmias HCC96, Mean (SD) 0.174 (0.2) 0.067 (0.1) 48.9 (9.0�265) <0.0001
Vascular Disease HCC108, Mean (SD) 0.372 (0.2) 0.218 (0.2) 14.1 (4.2�47.8) <0.0001
COPD HCC111, mean (SD) 0.143 (0.2) 0.075 (0.1) 10.2 (2.2�47.8) 0.0032
Age, Mean (SD) 62.0 (10.1) 51.9 (13.4) 1.05 (1.03�1.08) <0.0001

A1C, glycated haemoglobin; BMI, body mass index; CHF, congestive heart failure; CI, confidence interval; COPD, chronic obstructive pul-
monary disease; COVID-19, coronavirus disease 2019; HCC, hierarchical condition category.
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training/validation set (17�22). The model development
process uses recursive feature elimination to find the optimal
feature set for each model. In this approach, a single feature is
removed at each step and the model is evaluated on the vali-
dation set. The quality of the fits to the data were measured
using the ROC AUC. The best model was tested against the
testing set for a final measure of prediction.
RESULTS

Patient Characteristics

In total, 413 patients were included in the COVID+ cohort
(Fig 1 and Table 1); 221 were White [53%], 31 were Asian
[7%], 96 were Hispanic [23%], 27 were Black [6.5%], and 38
were other or unknown [10%]. Fifty-one (12%) of the patients
had a full admission, with all requiring supplemental oxygen,
and four died. No deaths were recorded within 48 hours of
admission. Their mean age was 60 years (§13, median = 58,
range = 39�97), 54% were male, and they had a mean length
of stay of 10 days (§9, median = 7, range = 3�45). Patients
without a full admission had a mean age of 48 years (§15,
median = 49, range = 16�89) and 53% were male.
CNN Analysis

A set of 14,121 anonymized unique frontal CXRs (compliant
with the Health Insurance Portability and Accountability
1154
Act) was used to train a CNN to predict six HCCs using
ambulatory billing data. The CNN was also trained to predict
the age of the patient. The mean age of the patients, at the
time of the radiograph, was 66 § 13 years, and 57% of the
patients were women. First, a training set of 11,257 (80%)
radiographs was used to develop the CNN, which was then
tested against a randomly selected set of 2,864 (20%) radio-
graphs.

The CNN produces a probability for each predicted vari-
able including age, diabetes with chronic complications
(HCC18), morbid obesity (HCC22), CHF (HCC85), vascu-
lar disease (HCC108), and COPD (HCC111). This could be
compared to the HCC data for the test cohort. For each vari-
able, the relationship is summarized by a ROC, and results
are shown in Table 2.

Because the CNN was trained on a cohort selected from all
ambulatory frontal CXRs prior to 2020, we compared the
HCC predictions on the COVID+ cohort to determine
whether the CNN was predictive in this clinical setting
(Table 2). A representative frontal CXR from a COVID-19
patient is shown in Figure 2, which demonstrates how the
CNN analyzes the radiographs and generates the likelihoods
of comorbidities. All saliency maps were generated in Python,
with the integrated gradients attribution algorithm, which
computes the gradient integrals of the output prediction for
the class index, with respect to the input image pixels (23).
Importantly, this technique does not modify the CNN
model.



TABLE 2. Multi-task CNN HCC-Based Comorbidity Predictions from a Randomized Test Cohort (n = 2,864) of Frontal Chest Radio-
graphs, Compared to a Cohort of COVID-19 Patients (n = 413), based on EHR data.

Variable Disease Description CNN Test Cohort COVID+ Cohort

AUC 95% CI AUCCOVID 95% CI EHR HCCCount*

HCC18 Diabetes with Chronic Complications 0.798 0.780�0.816 0.765 0.694�0.836 44 (10.7%)
HCC22 Morbid Obesity 0.927 0.912�0.942 0.910 0.878�0.948 39 (9.4%)
HCC85 Congestive Heart Failure 0.850 0.834�0.867 0.836 0.744�0.929 11 (2.7%)
HCC96 Specified Heart Arrhythmias 0.837 0.816�0.857 0.750 0.657�0.862 19 (4.6%)
HCC108 Vascular Disease 0.729 0.711�0.747 0.868 0.823�0.912 30 (7.3%)
HCC111 Chronic Obstructive Pulmonary Disease 0.836 0.818�0.854 0.845 0.709�0.981 7 (1.7%)
Total AUC (All Codes) 0.856 0.850�0.862 0.850 0.820�0.879 150 (6%)

AUC, area under the curve; CNN, convolutional neural network; COVID-19, coronavirus disease 2019; HER, electronic health record; HCC,
hierarchical condition category.
* The EHR HCC count represents the number of unique patients with the HCC code in the COVID+ cohort.
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Imaging Characteristics of the COVID+ Cohort

We used the COVID-Net deep learning model (16) to quan-
tify the extent and degree of opacity, which generates geo-
graphic and opacity (geographic�opacity) scores, normalized
Figure 2. Chest radiograph (a) of a 63-year-old male patient with
COVID-19 hospitalized for 7 days, and with a BMI of 26, demonstrat-
ing subtle ground glass opacities in a lower lung distribution, with
increased geographic (0.34) and opacity scores (0.64). The inte-
grated gradients saliency maps, with darker shades representing
higher scores from the multi-task comorbidity HCC model: morbid
obesity (HCC22; B), CHF (HCC85; C), cardiac arrhythmias (HCC96;
D). Much of the activation seen is outside the lung parenchyma, with
notable activation of the axillary soft tissue for obesity (b), and heart
for CHF and cardiac arrhythmias (c, d). The activations for CHF and
cardiac arrhythmias are very similar, but demonstrate subtle differ-
ences, with slightly greater activation at the left atrium and aortic
knob (d), suggesting the associations of vascular disease and atrial
fibrillation. BMI = body mass index, CHF = congestive heart failure,
COVID-19 = coronavirus disease 2019, HCC = hierarchical condition
category.
from 0 to 1. For full admission, the average geographic scores
were 0.26§ 0.01 (median = 0.22), and average opacity scores
were 0.41 § 0.12 (median = 0.39), while for those without
full admission, scores were 0.21 § 0.05 (median = 0.19) and
0.34 § 0.08 (median = 0.31), respectively, as shown in
Table 1.
Univariate and Multivariate Analysis

Table 1 shows information on the COVID+ cohort divided
by presence or absence of a full admission. Patients with full
admissions were significantly older (mean age, 60 years §
13 vs. 48 years§ 15, p< 0.0001). Univariate analysis demon-
strated our frontal CXR comorbidity model predictions for
diabetes with chronic complications, cardiac arrhythmias,
CHF, COPD, predicted age, and geographic extent and
severity of opacity were all significant predictors (p < 0.05),
while morbid obesity was not.

Binary classification logistic regressions of the predicted six-
variable CNN HCC model, geographic�opacity model, and
combined eight-variable model were plotted as ROC curves
(Fig 3), excluding patient age, against the entire COVID+
cohort. The fit for the HCC model had an AUC of 0.768
(95% CI: 0.708�0.829), the geographic�opacity model had
an AUC of 0.693 (95% CI: 0.611�0.776), and the combined
model had an AUC of 0.796 (95% CI: 0.734�0.859). The
AUC for just the binomial EHR-based ICD10 HCC codes
was 0.5646 (95% CI: 0.507�0.6221). Utilizing the method
of DeLong to compare the AUCs of the combined and geo-
graphic�opacity regression models demonstrated a statisti-
cally significant difference, with a P value of 0.001.

The patient’s age, comorbidities predicted by the CNN,
and airspace disease (geographic�opacity scores) measured by
the COVID-Net deep learning model (6) were used to
model the likelihood of a full admission. A development
cohort (n = 216) and validation cohort (n = 73) were first
used to produce models using different methods, and these
were tested against a 30% test cohort (n = 124) (models out-
lined in methods). The two best methods for prediction on
1155



Figure 3. ROC curves from binary classification logistic regres-
sions of the combined HCC and geographic�opacity models (A,
light grey, AUC = 0.796 (95% CI: 0.734�0.859), six HCC comorbid-
ities (B, black, AUC = 0.768, 95% CI: 0.708�0.829), and geogra-
phic�opacity CNN scores (C, dark grey, AUC = 0.693, 95% CI:
0.611�0.776) for the prediction of prolonged hospitalization with
oxygen supplementation. AUC = area under the ROC curve,
CNN = convolutional neural network, HCC = hierarchical condition
category, ROC = receiver operating characteristic.
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the development/validation cohort were logistic regression
(17) (AUC 0.81) and XGBoost (20) (AUC 0.94). The
XGBoost model was then used to model the remaining inde-
pendent 30% test cohort. The final fit had an AUC of 0.837
(95% CI: 0.791�0.883). This model required five variables
for prediction; the five variables used were age, opacity, and
CNN-derived HCCs for morbid obesity, CHF, and specified
heart arrhythmias.
DISCUSSION

In this preliminary study we developed an ensemble deep
learning model to predict supplemental oxygenation and hos-
pitalization of > 2 days in outpatients testing positive for
COVID-19. This model was based only on patient age and a
conventional outpatient frontal CXR image obtained before
admission in 413 patients and showed an AUC of 0.837 (95%
CI: 0.791�0.883), with a boosted random forest method.
There is a complementary benefit of the ensemble deep
learning models when predicting comorbidities and predict-
ing geographic extent and severity of opacity on CXRs, as
demonstrated by comparison of the AUCs.

There are numerous clinical models of outcomes in
COVID-19, many focused on admitted and critically ill hos-
pitalized patients (24). Several models have utilized the CXR
as a predictor of mortality and morbidity for hospitalized
COVID-19 patients, based on the severity, distribution, and
1156
extent of lung opacity present (24). ICD10 administrative
data have similarly been used to effectively predict mortality
in COVID-19 patients (25). To our knowledge, no pub-
lished studies have utilized features of the CXR other than
those related to airspace disease to make a prognostic predic-
tion in COVID-19. This deep learning technique adds value
when assessing patients with unknown medical history or
awaiting laboratory testing. A significant number of COVID-
19 patients demonstrate little to no abnormal lung opacity on
initial radiographic imaging (26), and comorbidity scoring is
beneficial in these patients when infection might be in the
early stages. Additionally, comorbidity scoring could be help-
ful in identifying patients who could benefit from earlier ini-
tiation of treatment such as antibody therapy or close clinical
surveillance.

Even before advanced deep learning techniques, CXRs
have been shown to correlate with the risk of stroke, vascular
resistance, and atherosclerosis through the identification of
aortic calcification (27�29). Similar deep learning methods
were used on two large sets of frontal CXRs and demon-
strated predictive power for mortality (29). In another study
(30), deep learning was used on a large public data set to train
a model to predict age from a frontal CXR. These studies all
suggest that the CXR can serve as a complex biomarker.

Our deep learning techniques allowed us to make predic-
tions regarding the probabilities of comorbidities such as mor-
bid obesity, diabetes, CHF, arrhythmias, vascular disease and
COPD. Although these results do not replace traditional
diagnostic methods (i.e., glycated hemoglobin, BMI), we did
find that they were predictive using the gold standard of
ICD10 HCC administrative codes, with all the AUC confi-
dence intervals well above 0.5, demonstrating a predictive
value. When tested on an entirely different cohort, the
COVID+ patients, the prediction similarly demonstrated
AUCs well above 0.5, even in those with low opacity scores.
Lastly, when using binary classification logistic regression
from the combination of CNN models on the COVID+
cohort, we see a ‘lift’ of the combined model AUC, with a
statistically significant difference (p = 0.001).

These HCC predictions were combined with quantitative
predictions on lung opacity and patient age, and the resulting
model had discriminatory ability in predicting which ambula-
tory patients would require full admission within 14 days of
the positive RT-PCR test. Interestingly, morbid obesity was
not significant in the univariate analysis but was significant in
the multivariate analysis, suggesting Simpson’s paradox,
where the correlation is changed when the variables are com-
bined (31). The final model used three of the HCC predic-
tions to help classify patients, and thus, even if the predictions
are not entirely mapped to a comorbidity, the resulting mea-
surement strongly correlates and has significance for hospitali-
zation due to COVID-19.

In this study on ambulatory patients, a minority had timely
and complete laboratory assessments, unlike hospitalized
patients who typically undergo extensive testing at presenta-
tion, limiting our ability to use laboratory results. As
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Schalekamp et al. described, many of these laboratory markers
are not widely available or are expensive (8).
The use of comorbidity indices derived from frontal CXRs

has many potential benefits. In many acute clinical settings,
comorbidities may be undocumented or unknown at the
time of presentation (3). The amount of time needed to take
a full history can sometimes be an impediment, especially
with high patient volumes seen during the pandemic. Since a
CXR is a frequent part of the initial assessment of a COVID-
19 patient, the predicted comorbidity scores could be rapidly
available for all patients. Additionally, the EHR provides a
predominately binomial system of documenting disease (pres-
ent or absent), but not all patients have the same burden of
disease, as in diabetes for instance. It is possible that a model
like this one could help distinguish these differences.
Many of the models used for the prognosis of COVID-19-

positive patients look at patients already hospitalized and
attempt to predict clinical deterioration, intensive care unit
admission, death, or some combination. When internally
tested on their own data, the AUCs reported in the literature
can be over 0.9 (32) but often do not use an independent test
set, which increases the risk of overfitting and obtaining an
artificially high AUC. Numerous models have AUCs lower
than 0.8 (33), with most models ranging between 0.8 and 0.9
(25). These models are often dependent on the EHR data to
make their predictions, but missing data from the EHR can
adversely model predictions, meaning a model from a single
source like CXRs can add significant value (34). Although
we cannot directly compare our study to these others because
of the differences in patient populations and study design, we
believe our predictive power is comparable with those of
other prognostic studies, and our model uses only the patient
age and the information in the frontal CXR.
Our study was limited to our integrated healthcare system

and its geographical distribution and is only internally validated
at this time. In many cases, we had limited access to the
patient's complete hospitalization records and laboratory assess-
ments, restricting endpoint analysis. In the early parts of the
pandemic, many patients underwent computed tomography
chest imaging in lieu of CXR, because of the limited availabil-
ity of RT-PCR testing. Additionally, many patients had imag-
ing at other locations, which were not available in this study.
Artificial intelligence models typically demonstrate poorer per-
formance when used in other settings, due to different patient
demographics and equipment. No portable radiographs were
used in the training or testing of our model, which could limit
its use in emergency departments and hospitals. Lastly, imple-
mentation of artificial intelligence models remains a technical
challenge at most institutions and practices, with relatively few
available platforms or widespread adoption.
CONCLUSION

We found that a MTL deep learning model of comorbidities
and geographic extent and severity of opacity was predictive
of prolonged hospitalization and supplement oxygenation
based on a single outpatient frontal CXR. This result suggests
that further validation and extension of this particular meth-
odology is warranted.
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