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Abstract: Amino acids are the material basis of almost all life activities. An improved understanding
of the source, state, and cycle of amino acids is essential for determining the energy flow and
material circulation of marine ecosystems. In the present study, an in situ rapid detection method of
ultraviolet (UV; 266 nm) laser-induced fluorescence (LIF) technology was used to detect three natural,
aromatic amino acids in the seawater. The laser-induced fluorescence peaks of aromatic amino acids
tryptophan, tyrosine, and phenylalanine were located at 350 nm, 300 nm, and 280 nm, respectively.
High, linear correlations between the concentrations of the aromatic amino acids and the fluorescence
peak heights were observed, and the lowest detectable concentrations of tryptophan, tyrosine, and
phenylalanine were 4.70 × 10−9 mol/L, 2.76 × 10−8 mol/L, and 6.05 × 10−7 mol/L, respectively, which
allowed us to quantify their concentrations by using laser-induced fluorescence. This paper not only
provides a practical method for the detection of aromatic amino acids in seawater, but a new means
to further understand the biogeochemical processes of carbon cycles in the deep sea.
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1. Introduction

Amino acids, a class of organic compounds containing amino and carboxyl groups, make up
the basic structure of protein macromolecules, and almost all life activities are related to them. In
the natural world, there are more than 300 kinds of amino acids, which can be divided into protein and
nonprotein amino acids. It is reported that about 20 amino acids are very important components of
biological proteins [1]. In the ocean, amino acids are also the main components of the carbon pool and
are important organic carbon inputs for the underwater sedimentary environment [2,3]. Amino acids
also play an important role in the global nitrogen cycle and the biogeochemical cycle of organic materials
(see Figure A1 in Appendix A). Total hydrolyzed amino acids (THAAs) account for about 10%–20% of
dissolved organic nitrogen (DON) in the ocean, which dominates the nitrogen sources for microbes
in the photic zone [4–6]. Some researchers have observed that amino acids are good indicators of
the degradation behavior of particulate organic matter (POM) [7,8], dissolved organic matter (DOM) [9],
and sedimentary organic matter (SOM) [10,11]. Zhang et al. [12,13] used tryptophan and tyrosine as
parallel factors to evaluate the environmental dynamics (i.e., source and fate) of DOM in the surface
water. Dauwe et al. [14] confirmed that amino acids such as phenylalanine, tyrosine, and isoleucine

Sensors 2020, 20, 1330; doi:10.3390/s20051330 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20051330
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/5/1330?type=check_update&version=2


Sensors 2020, 20, 1330 2 of 14

become depleted with increased degradation states. Furthermore, dissolved free amino acids (DFAAs)
are excellent indicators of the biological processes of DOM in seawater [15,16]. Other findings indicate
that the content and composition of aromatic amino acids are responsible for the nutrient status and
ecological types of lakes, thus acting as biomarkers [17]. Moreover, the concentration of amino acids in
water is related to algal blooms [18,19]. For example, Horiuchi et al. expressed that the amino acid ratio
of D-enantiomers to L-enantiomers (D/L) can be used as a biomarker to verify the microbial activity in
hydrothermal environments [20]. Additionally, the aromatic amino acids tryptophan, tyrosine, and
phenylalanine, constitute 1%–5% of the dry weight of some typical bacteria [21]. Tryptophan is an
amino acid in all living cells and has a well-defined fluorescence spectrum [22], which has been used
to detect certain diseases [23,24]. In oceanic ecosystems, the accurate detection of amino acids will
highly improve their significance in understanding the biogeochemical cycles of organic matter and
marine nitrogen pools [25].

The importance of amino acids in the ocean environment and their usages as indicators of some
marine activities have attracted more attention in recent years. However, as a result of the lack of
suitable detection methods, limited research on amino acids in seawater has been performed. As
mentioned by Mopper et al. [26], in addition to the problems and deficiencies in the amino acid
detection methods, the problems related to sample handling, such as the effects of sample filtration and
short-term storage, have not been completely solved. In 1966, Sigel developed a ligand ion exchange
method that can concentrate low concentrations of amino acids in seawater to a certain degree, and
can be used for analysis with traditional methods [27]. In recent years, more techniques for detecting
amino acids in the ocean have been developed, such as chemical, electrochemical, spectrophotometric,
and chromatographical methods (see Appendix B). High performance liquid chromatography (HPLC)
is the most common method for analyzing amino acid components, and it is widely used because of
its high detection accuracy in identifying compounds [28,29]. However, the HPLC detection method
is time-consuming and labor-intensive, with some measurement errors arising from derivatized
impurities in the sample [30–33].

Compared with routine HPLC for amino acid analysis and its coupling with other instruments,
laser-induced fluorescence (LIF) has advantages for in situ detection and has the ability to run
a long-term, uninterrupted operation that can detect and collect sample information 100 times per
second in order to obtain varying temporospatial data [34] for amino acids. Additionally, a series
of processes caused by ex situ observations, which can change a sample’s amino acid concentration,
can be avoided. We believe that the in situ measurement of water bodies will inevitably become one
of the key development directions for water environment detection in the future. Furthermore, LIF
equipment can be used as a supplement to traditional amino acid detection technologies in order
to make up for the lack of in situ detection. In this paper, a suitable device for UV laser-induced
fluorescence was developed to detect aromatic amino acids in situ in the ocean, which, in the future,
could be used to study aromatic amino acid concentration and distribution, and trace aromatic amino
acid cycles in deep-sea marine ecosystems.

2. Material and Methods

2.1. Instrument Design

The principle of the instrument for the in situ deep-sea detection of aromatic amino acids is
shown in Figure 1. Having considered the particularity of the underwater environment [35], we
specially designed the LIF instrument (to be waterproof, pressure-resistant, corrosion-resistant, etc.).
The UV laser emitted light through optical windows to directly excite seawater, and the laser-induced
fluorescence of the seawater was gathered and transferred in the form of electrical signals through
a photoelectric conversion module. The fluorescence peaks of the electrical signals were used to classify
the aromatic amino acids and to analyze their concentrations. In order to simplify the instrument
structure and save more energy in the deep sea, an open sample pool was designed to avoid using
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a pump (Figure 2). The working distance of the instrument was 10 cm. In order to detect weak
fluorescence signals and to minimize the instrument’s volume, both separated optical components
and optical fibers were used [24]. The weight of the instrument was 22 kg in water, so it was
convenient to mount on the bottom sink platform for in situ detection. For the stability and reliability of
the instrument, a 266 nm, LD-pumped, all-solid-state UV laser (MPL-W-266, pulse width ≤5 ns, beam
diameter at the aperture ≤2 mm, full-angle beam divergence <2 mrad, output wavelength 266 ± 1 nm,
and pulse energy 5–30 µJ) was used as the excitation module of the LIF device, because of its short
wavelength, high resolution, and concentrated energy [36]. Compared with traditional lasers, such
as gas lasers, ion lasers, helium–cadmium lasers [36], and other solid-state lasers (such as 445 nm,
532 nm, and 635 nm), we found that the 266 nm, LD-pumped, all-solid-state UV laser was more suitable
for the detection of aromatic amino acids. The excited beam passed through the specially designed
waterproof, pressure-resistant, and transparent glass window and excited the seawater in the sample
pool (Figure 2). The fluorescence emitted from the sample was concentrated with a mirror and convex
lens (focal length of 75 mm), and was detected with a scientific, high-sensitivity spectrometer (Ocean
Optics QE pro 6500; spectrum range 200 nm to 1100 nm and spectral resolution 0.8 nm). The shell
of the instrument, made of aluminum 7075, withstood 30 MPa of pressure in the deep sea. Two
optical windows were mounted on the shell of the instrument so as to excite and receive light signals.
The control module governed the operation of the instrument and the preprocessing and storage of
the data. When the LIF instrument was working normally, it sent a signal to the operating platform
every minute. If a problem occurred, the signal was interrupted, allowing the operator to quickly
confirm the operation of the instrument status. In shallow water, the instrument was used for in situ
on-line detection (0–5 m, shown in Figure 3); in deep water (5–1000 m), the self-contained sampling
mode opened and the stored data was transmitted to an external storage device for further processing
once the instrument was raised above the surface.
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2.2. Quantifying Aromatic Amino Acids with Fluorescence

As the aromatic amino acids were excited by the UV laser (266 nm), the positions of their
fluorescence peaks varied for differentiation [37]. After being excited, the fluorescence intensity was
proportional to the concentration of the aromatic amino acid under the given conditions, and was
therefore used to quantify the concentrations [38].

3. Results

3.1. Different Aromatic Amino Acids Can Be Distinguished

LIF is a widely used technique in protein analysis, which can detect intrinsic fluorescence because
the presence of aromatic amino acids [39,40]. It is an indirect absorption technique because photons
emitted spontaneously are recorded as signals when the species absorbs the incident laser light [41].
Therefore, information about the sample can be obtained from the wavelength-dispersed fluorescence.
When excited by the 266-nm UV laser, the fluorescence peaks of aromatic amino acids tryptophan,
tyrosine, and phenylalanine were located at 350 nm, 300 nm, and 280 nm, respectively (Figure 4 and
Table 1). The results showed that this method was favorable for distinguishing the detected aromatic
amino acids.
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Table 1. Emission maxima of fluorescence spectra of aromatic amino acids [21,37,42,43].

Analyte Laser Excitation
Wavelength (nm, ±1 nm)

Maximum Fluorescence Emission
Wavelength (λmax, nm, ±5 nm) Reference

Tryptophan
280 350 [21,22,37,42,43]

266 350

Tyrosine
275 300 [21,37,42]

266 300

Phenylalanine

260 280 [42]

266 280 [40]

255 280 [21]

3.2. Linear Relationship between Amino Acid Concentrations and Fluorescence Intensity

As shown in Figures 5–7, the fluorescence intensity linearly increased with the aromatic amino
acid concentration with the excitation by the 266 nm UV laser. Figures 5a, 6a and 7a show the raw
data of spectra with the fluorescence peaks of different concentrations of the aromatic amino acids.
The relationship between fluorescence intensity and concentration, after simple data processing, is
shown in Figures 5b, 6b and 7b. The fluorescence peak data of the three aromatic amino acids were
normalized to facilitate comparative analysis. The linear relationship between the concentration and
normalized fluorescence intensity was retrieved, as follows:

IF1 = 0.01560c1 + 0.9234 (1)

IF2 = 0.00200c2 + 0.7912 (2)

IF3 = 0.00007c3 + 0.9372 (3)
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In Equations (1)–(3), IF is the amino acid normalized fluorescence intensity and C is the sample
concentration (mg·L−1); C1, C2, and C3 represent the tryptophan, tyrosine, and phenylalanine
concentration, respectively.
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These regression results show the high performance for the detection, identification (Table 1), and
quantitative analysis (shown in Equations (1)–(3)) of the aromatic amino acids. The concentration was
reversed from the fluorescence intensity of the amino acid and the normalization formula (coefficient
of determination reached more than 97%), and the process was relatively simple.

4. Discussions

4.1. The Equipment Can Execute Different Types of In Situ Observations

The equipment designed in the present study can execute different types of in situ observations,
namely: (1) fixed station observations, where the instrument can be fixed at one station for long-time
observation, and (2) towed by ships, where the equipment can be designed for a vehicle to be towed
by a ship for moving observations. The spatial and temporal distribution of aromatic amino acids
can vary, and the equipment designed for executing different types of in situ observations can satisfy
different requirements.

4.2. Detection Limit of the Instrument Can Satisfy Most Natural Water

The LIF instrument can be used in most natural water. The lowest detectable concentrations
of tryptophan, tyrosine, and phenylalanine were 4.70 × 10−9 mol·L−1, 2.76 × 10−8 mol·L−1,
and 6.05 × 10−7 mol·L−1, respectively. It is believed that concentrations of amino acids in seawater
from 10−6 to 10−7 mol·L−1 can be measured using the LIF instrument. Additionally, we compared
the amino acid concentrations with the following results: (1) Chau and Riley [44] analyzed the results of
previous studies, and concluded that the concentration of 11 amino acids in seawater ranged from 2 to
6 µg·L−1. (2) The average concentration of THAAs in the East China Sea was (9.5 ± 4.2) × 10−7 mol·L−1

(in the range of 4.46 × 10−7 mol·L−1 to 2.25 × 10−6 mol·L−1) [45]. (3) The average DAA values
in North Taihu Lake, South Taihu Lake, and East Taihu Lake were (2.59 ± 0.71) × 10−6 mol·L−1,
(4.8 ± 1.4) × 10−7 mol·L−1, and (4.8 ± 1.6) × 10−7 mol·L−1, respectively [17]. A comparison of the results
confirmed the advantages of this detection instrument when quantifying in situ the concentrations of
the three amino acids for varied water environments.

4.3. The Equipment Is More Suitable for Working in the Deep Sea

To our knowledge, few in situ observation methods have been developed to detect aromatic amino
acids in deep seas. The limits of the conventional methods are that the samples can only be analyzed
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in the laboratory, and that the content and properties of the biological macromolecules in the water
might be affected by the sampling, transportation, and pretreatment. These pretreatments can change
external conditions, such as the temperature and pressure of the samples, which is time-consuming
and cumbersome, and the amino acid content in the water may fluctuate. In the deep sea, with the high
pressure and large difficulties in sampling, in situ observations can run uninterruptedly for a long time.
In addition, the dark environment of the deep sea can provide excellent signals without light pollution.

4.4. Fluorescence Quenching of Tryptophan and Tyrosine at High Concentrations

With the increased concentration of the aromatic amino acid solution, the fluorescence quantum
yield of tryptophan and tyrosine first increased and then decreased (Figure 8) [46], and notable
fluorescence quenching was observed [41,47]. The part marked with a red square in Figure 8a,b is
shown in Figures 5b and 6b. If the tryptophan concentration was greater than 10 mg/L, the above
concentration fluorescence quenching effects occurred. However, tyrosine quenching effects were
found above 150 mg/L, and no fluorescence quenching of phenylalanine was observed. Because
fluorescence quenching rarely occurs in natural water, we did not discuss it in detail in the paper.
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5. Conclusions

LIF instruments are portable, sensitive, and reproducible for the detection and quantification
of aromatic amino acids. The instrument weighs only 22 kg in water, making it easy to carry in
the field, and its data processing method and process are simple and fast. Moreover, its minimum
detectable concentrations of tryptophan, tyrosine, and phenylalanine are 4.70 × 10−9 mol/L, 2.76 × 10−8

mol/L, and 6.05 × 10−7 mol/L, respectively. In addition, the concentration of the amino acid may be
further calculated from its fluorescence intensity. Most importantly, LIF enables the in situ detection of
aqueous amino acids; this is a unique advantage of this technology compared with the current water
environment amino acid detection methods. It also has a very broad detection range for rivers, lakes,
reservoirs, etc. Additionally, the pressure-resistant design of the system ensures withstanding in situ
detection at 3000 m below the sea surface. The method reported here can improve the efficiency of
detecting aromatic amino acids in water environments and provides a practical detection method.
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Abbreviations

1 UV Ultraviolet
2 LIF Laser-induced fluorescence
3 THAAs Total hydrolyzed amino acids
4 DON Dissolved organic nitrogen
5 POM Particulate organic matter
6 DOM Dissolved organic matter
7 SOM Sedimentary organic matter
8 DFAAs Dissolved free amino acids
9 D/L Ratio of D-enantiomers to L-enantiomers
10 HPLC High performance liquid chromatography
11 GC Gas chromatography
12 DAA Dissolved amino acids
13 IEC Ion exchange chromatography
14 VIS Visible spectrophotometer
15 MS Mass spectrometer
16 CE Capillary electrophoresis
17 LC Liquid chromatography
18 ELSD Evaporative light scattering detector
19 IPAD Integrated pulsed amperometric detection
20 LD-pumped Laser diode pumped
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Appendix B

Table A1. Comparison of amino acid detection methods.

Classification Name Advantages Disadvantages
In Situ

Detection

Indirect
analysis

(derivative
method)

IEC
Post-column ninhydrin-derived IEC can simultaneously
detect primary and secondary amino acids, and is suitable for
the analysis and detection of amino acids in complex samples.

The conditions for the derivatization reaction are demanding, and
a heating derivative device is required; the analysis process is long,
the detection cost is high, and it will cause serious glycine
contamination.

No in situ
detection

UV–VIS

In visible light detection, the sensitivity of
the ninhydrin-derived and DABSYL-Cl color reaction is high,
the stability of the derivative is good, and the latter is simpler
and more efficient [49]. In UV detection, the OPA
derivatization agent itself does not interfere with separation
and detection, the derivatization operation is simple, and
the sensitivity and repeatability are good [50].

Although there are many types of derivatizing agents, none of
the derivatizing agents are fully suitable for the analysis of all amino
acids [51]. It is necessary to select different derivatizing agents for
the types of amino acids to be tested; only the total amount of one or
a class of amino acids can be determined, and the separation and
analysis of amino acids cannot be performed [52].

GC High performance, good selectivity, high sensitivity, and
simple operation.

GC–MS More efficient than GC.

Derivative conditions are harsh: unstable and non-volatile materials
cannot be separated, and because of the characteristics of different
amino acids (such as the rate of derivatization or the different
derivatization reagents), the determination of all of the amino acids
cannot be performed using the same column. In addition, the sample
needs to be desalted, and the operation of the experiment is
cumbersome and can cause pollution [53].

RP-HPLC
Pre-column derivation overcomes the disadvantages of
post-column derivation operations, and has a high sensitivity,
fast analysis, and diverse reagents.

Different derivatizing reagents have their own shortcomings [32],
and often problems such as unstable derivatives, cumbersome
reaction conditions, and long operating times are not conducive to
the rapid analysis of amino acids [30]. The derivative process cannot
be replaced by an instrument, it must be done manually, and the cost
of detection is high [54].

CE
High separation efficiency, faster analysis, no gradient
elution, wide range of applications, small sample size, simple
instrument, and low cost [55].

Still need to use chemical derivation technology, is time-consuming
and laborious, and has a reduced accuracy.

LC–MS

High sensitivity and selectivity, able to provide sufficient
sample structure information, no complicated pre-processing
or derivatization of the sample, high detection efficiency, and
good anti-interference performance.

Instruments are expensive and costly to test.
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Table A1. Cont.

Classification Name Advantages Disadvantages
In Situ

Detection

Direct
analysis

LC–ELSD

The response of ELSD does not depend on the optical
properties of the sample. It can directly detect the properties
of the material without UV absorption or fluorescence
functional groups, and is not affected by its functional groups.
Any sample with a lower volatility than the mobile phase can
be detected [52], no derivative is required, there are a wide
range of applications, and it is suitable for the rapid
determination of amino acids.

Low detection sensitivity, high detection limit, and cannot solve
the problem of detection of trace amino acids well.

IPAD
No cumbersome sample preparation steps, you can directly
measure the sample by diluting it to the appropriate
concentration, and it has a high accuracy and sensitivity.

High requirements for experimental operations (instruments and
experimenters) [56].

LIF

Each substance has a corresponding “fingerprint”
fluorescence spectrum. A wide range of detectability, a low
detection limit, no complicated derivative process, no
damage to the sample, it is portable and efficient, has an
ultra-high sensitivity [57], and has in situ monitoring.

In situ detection technology is still immature, it has fluorescence
absorption and quenching, the detection accuracy is limited by
the instrument signal-to-noise ratio, etc.

In situ
detection
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