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Sonodynamic therapy (SDT) is a form of ultrasound therapy in which specialized chemotherapeutic agents known as sonosen-
sitizers are administered to increase the efficacy of ultrasound-mediated preferential damage of neoplastic cells. Multiple in vitro
and in vivo studies have indicated that SDT has the ability to exhibit profound physical and chemical changes on cellular structure.
As supportive as the data have been, assessment of this method at the clinical level has been limited to only solid tumors. Although
SDT has shown efficacy against multiple adherent neoplastic cell lines, it has also shown particular promise with leukemia-derived
cell lines. Potential procedures to administer SDT to leukemia patients are heating the appendages as ultrasound is applied to these
areas (Heat and Treat), using an ultrasound probe to scan the body for malignant growths (Target and Destroy), and extracorporeal
blood sonication (EBS) through dialysis. Each method offers a unique set of benefits and concerns that will need to be evaluated in
preclinical mammalian models of malignancy before clinical examination can be considered.

1. Introduction

Sonodynamic therapy (SDT) is a promising novel treatment
modality that has yielded impressive anticancer effects in
both in vitro and in vivo studies. It has been repeatedly
demonstrated that ultrasound preferentially damages malig-
nant cells based on the size differential between such cells and
those of normal histology [1]. SDT is a form of ultrasound
therapy in which specialized agents known as sonosensitizers
are administered to increase the extent of preferential damage
exerted by ultrasound against neoplastic cells (Figure 1).
Preliminary studies examining the antineoplastic potential
of sonosensitizers focused on the propensity of ultrasound
to activate reactive oxygen species (ROS) producing agents,
thereby eliciting oxidative stress that preferentially induced
apoptosis in malignant cells [2–5]. Since then, the list of
potential sonosensitizers has grown tremendously and has
diversified to include cytoskeletal-directed agents, echo con-
trast agents, and vascular disrupting agents [1]. Multiple
comprehensive literature reviews have been compiled that
provide detailed explanations of the mechanisms that allow
SDT to preferentially damage neoplastic tissue under con-
ditions that do not notably perturb normal cells [1, 6–9].

These references comprehensively review the mechanisms
illustrated in Figure 1 and should be referred to for further
explanation.

Recent studies have indicated that ultrasound-mediated
cancer therapies can potentiate notable antineoplastic activity
against a variety of malignancies at the clinical level [10–
13]. As such, using ultrasound to promote drug synergy
between chemotherapeutic agents in an attempt to preferen-
tially damage malignant cells appears feasible. In fact, SDT
has notable similarities to photodynamic therapy (PDT),
a proven method that is currently used in the clinical
setting in the treatment of various skin carcinomas and
other epithelial tumors [14]. The major difference between
SDT and PDT is the energy source used to activate the
chemotherapeutic agent (sound versus light). In PDT, light is
used to excite porphyrins and other endogenous molecules
that emit photoluminescent light after returning to the
ground state [14]. Such activity produces excess levels of ROS
that inflict substantial damage on the cellular integrity of
malignant cells, eventually inducing apoptotic mechanisms.
While PDT has indeed shown efficacy against particular
squamous carcinomas, the effective range of the treatment
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Figure 1: Antineoplastic mechanisms of ultrasound. (a) Microbubbles are unevenly stretched by ultrasonic waves, causing an unequal
distribution of force known as inertial cavitation. Microbubbles oscillating in a stable motion reflect stable cavitation, while the expansion
and contraction of microbubbles that are unequal and markedly exaggerated are indicative of inertial cavitation. Subsequent stress results in
microbubble implosion, creating considerable amounts of energy. (b) The energy provided by the collapse of microbubbles potentiates the
formation of sonoluminescent light within the cell. The light subsequently activates endogenous compounds within the cell that release ROS
when returning to the ground state. (c) Many tumors rely on angiogenesis to sustain increased metabolic activity. Microbubbles can enter
the tumor vasculature, and at sufficiently high amplitudes, ultrasound induces significant vascular damage, shutting down blood flow. The
vessels develop and harbor hypoxic regions, causing oxidative stress; lack of nutrients and increased acidity induce apoptosis. In addition,
malignant cells exposed to ultrasound often undergo apoptosis through the intrinsic pathway. Caspase-3 is upregulated by proteins such as
Bax and Bak that integrate into themitochondrial membrane, facilitating apoptotic signaling. It is important to note that sonosensitizers have
been developed to significantly increase the efficacy of each mechanism. Images courtesy of [1].

does not extend far past the skin barrier [1], thereby limiting
the utility of PDT in oncology.

By contrast, SDTuses ultrasound that can easily penetrate
deep tissue layers where some malignancies reside. Although
it retains the ability to produce ROS in the form of sono-
luminescent light, SDT does so through inertial cavitation,
the process of creating microbubbles in liquids, such as

cellular cytoplasm. When microbubbles implode, they give
off substantial amounts of energy (in upwards of 5000K
and 800 atm), a phenomenon that produces sonoluminescent
light, subsequently leading to the production of ROS [6].The
energy released from microbubble implosion also severely
damagesmalignant cells through hydrodynamic shear forces,
destroying vital cytoskeletal structures of cells that already
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have a severely perturbed cytoskeleton due to dysplasia and
subsequent anaplasia [1, 8]. Further, the synergistic effects
of SDT and sonosensitizers other than ROS agents are not
replicated in PDT, as light does not inflict damage through
as many mechanisms as does sonication. While PDT can
effectively activate ROS agents and other species dependent
on a light activating source, cytoskeletal alterations and per-
turbed tumor vasculature networks are atypical. Therefore,
PDT is also limited in the variety of sensitizing agents
that are available. SDT inflicts damage on malignant cells
through multiple mechanisms, providing the opportunity to
utilize a vast array of antineoplastic agents [1]. This could
significantly reduce the frequency of drug resistant tumors
found within patients, as cells would have to overcome the
various mechanisms elicited by SDT.

A prerequisite to clinical testing is evidence of in vivo effi-
cacy. Ultrasound-mediated chemotherapy, such as improved
drug delivery through sonoporation, SDT, or both, has
indeed demonstrated notable efficacy against multiple forms
of malignancy (Table 1). Since SDT is a novel treatment
modality that has only recently begun clinical investigation,
no standardized treatment approaches currently exist.There-
fore, this paper intends to inform clinicians and academics
about potential protocols that could be used to effectively
administer SDT in the clinical setting, particularly in the
treatment of leukemia. It should be noted that this is a
preliminary attempt to devise effective treatment methods
for a novel antineoplastic therapy and substantial revisions
will likely be necessary. However, by bringing SDT to the
forefront of clinical discussion, it may one day be possible to
use this treatment modality as an effective method to treat a
substantial variety of malignancies found in patients.

2. Current Methods of Ultrasound-Mediated
Cancer Therapy

Although the primary focus of this paper will be on SDT,
there is a diversity of methods in which ultrasound can
be used to supplement cancer therapeutic protocols, many
of which are currently being clinically examined. These
methods will be briefly reviewed to demonstrate the util-
ity of ultrasound-mediated approaches in the treatment of
neoplasms. This will also enable a proper comparison of
current ultrasound-mediated cancer therapies with SDT,
thereby demonstrating why combining antineoplastic agents
to supplement the mechanisms of ultrasonic damage is
such a sensible prospect. It should be noted that SDT is
not intended to supplant these currently used ultrasound-
mediated cancer therapies. Rather, it should be used along-
side such approaches to supplement the therapeutic use of
ultrasound, as well as other antineoplastic interventions.

2.1. Improving Drug Delivery through Sonoporation. While
microbubbles are often systemically injected into patients to
improve diagnostic imaging, such structures develop natu-
rally when ultrasound is applied [15, 16]. When microbub-
bles form under low intensity ultrasound, their oscillations
are capable of increasing the permeability of microvessels,

thereby enhancing cellular uptake of molecules, nanopar-
ticles, and therapeutic agents. The increased permeability
is typically due to sonoporation, the temporary opening of
pores in the plasma membrane generated by microbubbles
oscillating in a stable motion, known as stable cavitation [17,
18]. Sonoporation has been shown to be an effective method
to improve drug uptake, and work to promote the delivery
of anticancer agents into tumor tissue through microbub-
ble potentiated microvascular permeability enhancement is
being investigated in many in vivo experiments [1, 8, 9, 19].
Such research has been motivated by the fact that the effec-
tiveness of many chemotherapeutic agents is limited by the
inability to reach therapeutic concentrations within tumor
tissue. Low intensity ultrasound is ideal for sonoporation,
as it potentiates a steady increase of stabilized microbubbles
within the cell, facilitating delivery of small molecules to the
cytosol [11]. It has even been shown that ultrasound improves
virotherapeutic approaches in oncology as it increases the
efficacy of gene transfer to the directed tumor target [20–
22].

2.2. Permeating the Blood Brain Barrier with Ultrasound to
Increase Drug Delivery. Primary brain tumors, as well as
metastatic growths from other cancers that have migrated to
the organ, present a major challenge to chemotherapy. The
blood brain barrier (BBB) is a highly selective permeability
barrier that separates the circulating blood from the brain
extracellular fluid (BECF) in the central nervous system
(CNS) [23, 24]. It presents a formidable obstacle to the
movement of many molecules as the normal brain capillaries
have tight interendothelial junctions, fewpinocytotic vesicles,
and no fenestrations or small openings. As a consequence
of this substantial impermeability, the principle route by
which drugs and other molecules cross the BBB is by simple
diffusion. However, many antineoplastic agents are large
and/or hydrophilic molecules that are incapable of being
carried across the BBB through this process [24]. Even if the
drug is successful in crossing the BBB in likely diminished
concentrations, many brain tumors are encapsulated by
tumor microvessel populations that constitute a blood tumor
barrier (BTB), providing an additional layer of protection
[23–25]. Although highly lipophilic chemotherapeutic agents
(lomustine/CCNU and temozolomide) are able to readily
cross the BBB [26, 27], many malignancies of the brain
(particularly glioblastomamultiforme) have particularly dim
prognoses [28], even when drugs are used concomitantly
with radiotherapy [29, 30].While improvement to intrathecal
administration directly into the arachnoid membrane of the
brain or spinal cord has seen considerable progression in
recent years (cytarabine, hydrocortisone, and methotrexate
have been approved for such use [31–33]), numerous compli-
cations with the procedure still exist.

However, many of the issues with trying to successfully
administer chemotherapeutic agents into the CNS may be
reduced by temporarily increasing the permeability of the
BBB through the use of high intensity focused ultrasound
(HIFU). In particular, recent advances have enabled delivery
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of HIFU through intact human calvaria with magnetic res-
onance imaging (MRI) guidance. Such technology has been
shown to improve essential tremor occurrences in patients
treated with MRI-guided focused ultrasound thalamotomy
(selected ablation of thalamic regions) [34, 35].Multiple stud-
ies have shown that low intensity ultrasound can significantly
increase the permeability of the BBB, without harming any
cellular structures [36–40]. Such a discovery is pivotal for
clinical applications of HIFU, as temporarily permeating the
BBB allows previously unavailable chemotherapeutic agents
or other drugs to be used in novel medical applications,
particularly when combined with echo contrast agents that
produce microbubbles to facilitate delivery [41, 42].

2.3. High Intensity Focused Ultrasound Ablates Solid Tumors.
In addition to demonstrating potential as a method to
temporarily permeate the BBB, HIFU is also currently
being investigated to treat malignant growths due to its
propensity to induce thermal ablation [9, 43]. Destruction
of malignant growths through induced heating has achieved
noticeable success through the use of percutaneous radiofre-
quency ablation (RFA), the direct placement of one or more
radiofrequency electrodes into the tumor tissue [44, 45].
Temperatures between 60 and 100∘C are then generated by a
high frequency alternating current, which induces frictional
heatingwhen ions in the tissue attempt to follow the changing
directions of the alternating current [46]. A similar effect
can be achieved by microwave ablation (MWA), in which
electromagnetic waves generate heat, thereby also destroying
cells by direct hyperthermic exposure [47, 48].

However, HIFU offers a distinct advantage over other
methods of thermal ablation in that it is the only noninvasive
hyperthermic modality. To potentiate hyperthermic condi-
tions, multiple ultrasound beams are focused on a selected
focal area to generate temperatures of 60∘C or higher through
the use of acoustic energy, inducing coagulative necrosis in
the targeted tissue [44]. HIFU also offers a novel mechanism
by which to damage hyperthermic cells, as inertial cavitation
causes uncontrolled expansion and contraction of gaseous
nuclei in the cytoplasm, thereby leading to the collapse of
the cell and nuclear membranes, as well as vital subcellular
organelles (mitochondria and endoplasmic reticulum) [49,
50]. While HIFU has demonstrated clinical efficacy in a
variety of cancer types [49, 51, 52], it is most widely employed
in the treatment of prostate adenocarcinoma [53]. Although
the actual efficacy of HIFU in prostate adenocarcinoma
therapy has been questioned in recent years [53–55], it still
remains as a viable treatment option through clinical trials.

2.4. Endoscopic Ultrasound-Guided Fine Needle Injection.
Endoscopic ultrasonography (EUS) has been used in the
clinical setting for more than 30 years and was originally
developed to diagnose pancreatic diseases, as well as car-
rying out malignancy staging. It has since become vital
for pancreatic adenocarcinoma diagnosis, as EUS is the
most sensitive nonoperative imaging test for the detection
of malignant pancreatic lesions, with a reported sensitivity

between 87 and 100% [56]. However, development of linear
array echoendoscopes has enabled the incorporation of fine
needle injection (FNI) to potentiate a novel therapeutic
approach. Recently, EUS-FNI has been clinically used for
the localized delivery of anticancer agents (including small
molecules and biotherapeutics) into targeted tumors [57–59].
This form of localized administration offers potential advan-
tages over more traditional systemic chemotherapy, as it
theoretically minimizes unwanted toxicity, while potentially
increasing therapeutic concentrations at the tumor site. In
addition, EUS-FNI can be used to locally administer ablating
agents, such as ethanol, directly into pancreatic lesions to
induce cell death by causing cell membrane lysis, protein
denaturation, and vascular occlusion [60]. Interestingly, EUS
can be used to guide physicochemical therapies as well, such
as interstitial brachytherapy [61], PDT [62, 63], and RFA [64,
65], suggesting potentially novel avenues for cancer therapy.

3. Targeting Leukemia with
Sonodynamic Therapy

SDT has shown notable efficacy against a variety of neoplastic
cell lines in vitro and in vivo (Table 3) and is now under
preliminary examination at the clinical level for the treatment
of solid tumors [66–69]. However, the potential of this
therapeutic intervention against disseminated cancers has
not been as extensively explored, despite the fact that many
hematological malignancies show considerable sensitivity to
the sonochemotherapeutic approach, particularly leukemias
of bothmyeloid and lymphoid origin.Therefore, the potential
application of SDT against leukemia will be the primary focus
of this paper.

Leukemia is unique to cancer biology as it is inherently
metastatic [70]. Leukocytes are required to move throughout
the vascular system, indicating that no mutation is required
for anchorage independent growth. This helps explain why
some leukemias (particularly acute lymphoid leukemia: ALL)
are common pediatric malignancies as less fundamental
alterations are required for neoplastic transformation [70].
However, leukemia is also unique in that it typically does not
form primary tumor sites but rather saturates the vasculature
with aberrant cells, eventually compromising the immune
system, blood clotting, and erythrocyte transport [70]. As
such, leukemia cells are often freely floating alongside healthy
blood cells. Being in such close proximity to cells that are
vital for normal physiological functioning, it seems appro-
priate that SDT should have the capability to preferentially
damage the malignant cells, while leaving healthy cells intact.
While normal human hematopoietic stem cells (hHSCs)
can sometimes be rescued through hematopoietic stem cell
transplantation (as has been shown following high dose
chemotherapy [71, 72]), studies have confirmed that SDT
can preferentially damage leukemia cells in the presence
of normal blood cells. As will be discussed later, the size
differential between leukemic and normal blood cells can
be dramatically increased using appropriate antineoplastic
agents.
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4. Applying Sonodynamic Therapy in
the Clinical Setting

Seeing that SDT has yet to be clinically evaluated against
disseminated cancers, there has been no analysis as to how
this treatment modality could be practically applied for these
malignancies. Although SDT fundamentally relies on an
ultrasound system, there are a variety of ways in which the
generated ultrasound can be delivered. The three procedures
that the author believes to be the most salient for leukemia
therapy are heating of the appendages as ultrasound is applied
to these areas (Heat and Treat), using an ultrasonic probe to
scan the body for malignant growths (Target and Destroy),
and extracorporeal blood sonication (EBS) through dialysis.
Eachmethod offers a unique set of benefits and concerns that
will need to be evaluated in preclinical mammalian models
of malignancy prior to being given clinical consideration.
Finding proper frequency ranges and sound intensities for
ultrasound will also be of clinical importance, but consider-
able work in this area has been done at the clinical level in
the treatment of solid tumors [66–69], as well as in preclinical
mammalianmodels (Table 1), and such data should be readily
extrapolated for the treatment of leukemia.

4.1. Heat and Treat. Thevascular system is truly a remarkable
piece of biological architecture, as it provides a reliable solu-
tion to the oxygenation of tissues far away from the thoracic
cavitywhere the heart and lungs reside. Blood cells are unique
among the great diversity of cell types used in physiological
functioning as they are required to move throughout the
entire body in a timely manner. In fact, the approximate 5.6 L
of blood within the body circulates the entire cardiovascular
system in one minute [73]. As such, most blood will pass
through the extremities in a short amount of time.Therefore,
sonicating the arms and legs of patients could be a potential
method for sonicating circulating leukemia cells.

Heat comes into play as it has been shown to increase
the efficacy of specific chemotherapeutic treatments that
could be used in SDT. Mild hyperthermia (39–43∘C) is an
adjuvant therapy that has yielded substantial benefits in
the treatment of a variety of tumor types. Hyperthermia
increases tumor blood flow and vascular permeability [74,
75], thereby promoting drug delivery to the targeted site [76–
78], which is essential for effective SDT treatments.The slight
increase in temperature enhances the uptake and efficacy of
numerous antineoplastic agents, particularly platinum based
compounds, resulting in increased cytotoxicity [79–81]. In
addition to these biological responses, hyperthermia has been
shown to be an effective drug-release trigger for temperature-
sensitive nanoparticles, resulting in an improved and more
targeted drug delivery system [82, 83]. The degree of thermal
enhancement of hyperthermia is inherently dependent on
the ability to localize and maintain therapeutic temperature
elevations. Due to the often heterogeneous and dynamic
properties of tissues (most notably blood perfusion and the
presence of thermally significant blood vessels), therapeutic
temperature elevations are difficult to spatially and tem-
porally control [84]. Ultrasound can provide an additional

role as the heat source for the treatment, as it has been
shown to permeate a higher degree of spatial and dynamic
control of heating compared to other commonly used heating
modalities [84].These advantages include a favorable range of
energy penetration characteristics in soft tissue, as well as the
ability to shape the energy deposition patterns [84].

The setup for Heat and Treat would be relatively straight-
forward. The patient could be placed in a chair, while
ultrasonic devices are attached to the forearms and/or near
the ankles of the patient. To reduce the potential of ery-
throlysis and thromboses, it would likely be advantageous
to move the ultrasonic devices to different locations along
the appendages after a given amount of time. Multiple
ultrasonic systems could be used to produce hyperthermia
in addition to activating the sonosensitizers, or alternatively
other methods of inducing hyperthermia could be applied
such as immersing the patient’s hands and feet in hot
water. Nevertheless, some form of ultrasound is inherent
in this procedure as it is the sound energy (sonication)
that inflicts preferential damage on malignant cells through
diverse mechanisms of action. The sonosensitizers used in
the treatment would be administered intravenously (i.v.)
before sonication, allowing the chemotherapeutic agents to
accumulate in the bloodstream. Once an effective dosage
has been applied, the patient would be connected to the
ultrasonic devices, necessitating a waiting period between
application of sonosensitizers and ultrasound. The applied
ultrasound could be run continuously or in short bursts
during the treatment. The length of each individual SDT
treatment remains unclear and would have to be determined
by clinicians after initial trials. However, the simplicity and
relatively low potential risks to the patient during Heat and
Treat provide compelling reasons for using sonication in the
clinic. Although incidental normal blood cell (erythrocytes,
leukocytes, megakaryocytes, and thrombocytes) destruction
may be a potentially hazardous issue, it can be monitored
by attending clinicians to ensure that preferential damage is
indeed occurring.

4.2. Target and Destroy. Although Heat and Treat is a poten-
tial avenue for treating leukemias and other hematological
malignancies, sonicating the appendages will yield little
benefit for other cancers that are often concentrated at a
primary tumor site. Further, some patients have leukemia
cells that remain trapped in the bone morrow and would
therefore be inaccessible to theHeat andTreatmethod.This is
commonly seen with aleukemic cells that remain in the bone
marrow, severely perturbing normal production of blood
cells. Without the luxury of using the vascular system to
transport blasts to areas that could be more readily sonicated,
another sonication approach needs to be devised, one that
is capable of scanning the body for concentrated pockets
of malignant cells and then sonicating such sites with high
intensity ultrasound.

In fact, such technology already exists and could be
applied in the clinic with a fewminor adjustments. Ultrasonic
probes are devices capable of delivering high frequency
or high intensity ultrasound to localized areas and are
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commonly used in the medical world for diagnostic imaging
(high frequency) or even breaking up calculi (high intensity).
Medical ultrasonography uses a substantial variety of ultra-
sonic probes, and many operational systems are available for
testing with SDT. In fact, such probes are currently being
used in the clinic for extracorporeal shock wave lithotripsy
(ESWL). Breaking up formed calculi in the gall bladder or
kidney with ultrasound requires considerable intensity. The
lithotripter used in such procedures breaks up stones with
tolerable collateral damage by using an externally applied,
focused, high intensity acoustic pulse [81, 82], which could
readily be converted for SDT-mediated treatment protocols.
ESWL can actually be seen as a proof of concept of SDT, as
it breaks up calcified deposits through inertial cavitation, just
as malignant cells are in SDT.

Due to the advances in medical imaging, it is now possi-
ble to readily locate primary tumor sites, providing the basis
for Target and Destroy SDT procedures. By injecting sono-
sensitizers i.v. or subcutaneously (s.c.) at tumor aggregates
prior to treatment, ultrasonic probes can be locally applied to
the affected site, thereby allowing a potentially site-specified
chemotherapeutic approach. Although it may not apply
directly to leukemia, combining the drug activation of SDT
with the specificity of EUS-FNImay be particularly beneficial
for solid tumors, such as pancreatic adenocarcinomas. As
such, this therapeutic method has apparent clinical implica-
tions outside hematological malignancies, as a great diversity
of cancers could be treated using Target and Destroy. How-
ever, the true diversity of cancers that can be treated through
this form of SDT will only be determined through preclinical
and eventual clinical evaluation.

4.3. Extracorporeal Blood Sonication. While Heat and Treat
and Search and Destroy have potential clinical utility, both
treatment methods inherently rely on ultrasonic waves trav-
eling through the skin barrier, as well as complex internal
structures. As such, ultrasound loses some of its intensity as
it travels through the human body. Instead of increasing the
wattage to obtain the same amount of intensity, if there was
a way to remove malignant cells from the body so they could
be treated in an extracorporeal environment, there would be
no sound inhibitors protecting such cells from sonication.

Although such an approach is unfeasible for most malig-
nancies, leukemia is unique in that it does not form a primary
tumor site. However, its most beneficial asset can potentially
be exploited as a profound fatal flaw. Since most leukemias
are localized in the blood, it would be rather straightforward
to draw the malignant cells out of the body through dialysis.
While dialysis is typically used on patients to act as an
artificial replacement for lost kidney function due to renal
failure, it could also be employed to treat leukemia in an
extracorporeal setting. Sonosensitizers can be injected i.v.
as in the previous two procedures, with roughly the same
amount of time passing before injection and sonication. The
patient would then undergo a typical hemodialysis procedure
in which blood is pumped outside of the body, thereby
removing the natural sound barriers of human anatomy
(Figure 2). There would be nothing standing in the way

between the malignant cells and the ultrasonic waves that are
able to elicit marked preferential damage. In effect, this SDT
procedure allows an in vivo setting to become almost in vitro.
Since the in vitro studies of SDT with leukemia have yielded
notable results [85–90], this may be an effective method by
which to administer ultrasound to patients.

Further, EBS provides additional benefits in that pre-
optimization of the treatment before administration and
prevalidation of its efficacy are feasible prospects. A small
sample of the patient’s blood could be drawn and exposed
to the proposed sonochemotherapeutic protocol. Subsequent
cytometric analysis of the treated sample could then ascertain
the success and selectivity of the approach. After validation
of the proposed protocol, the patient could then be plugged
into the dialysis system for systemic treatment. Such an initial
check will enable clinicians to fine-tune or dramatically alter
the antineoplastic agents and/or ultrasound settings being
administered, thereby increasing patient safety and treatment
efficacy.

However, it may be the case that the sound intensities
used for Heat and Treat and Search and Destroy will be
inappropriate for EBS. There is very little standing in the
way between the blood and the high intensity ultrasound
being administered. While normal blood cells are more
resistant to SDT, they are not invulnerable. Sufficient sound
intensities will cause just as much damage to these cells
as the malignant cells that are within close proximity [23].
Therefore, the sound intensity used in EBS might have to be
considerably reduced. Nevertheless, it still provides the most
direct route for sonicating leukemic cells within the patient.
This method could potentially be used in combination with
Target and Destroy, so that malignant cells caught within the
bone marrow are preferentially damaged as well. EBS might
also be used to sonicate metastatic cells in the blood that
inadvertently become dislodged from a primary tumor due
to physical agitation from focused ultrasound if SDT is ever
used to treat solidmalignancies. It may even be feasible to use
all three treatments (Heat and Treat, Target and Destroy, and
EBS) in a comprehensive scanning and removal of leukemia
cells found within the patient.

5. Sonosensitizer Treatment

Multiple studies have indicated that sonosensitizers often
damage malignant cells through a variety of mechanisms.
While sonosensitizers are grouped by their differences in
primary mechanism of action, many of these drugs have
additional mechanisms that are similar or even the same as
other types [1, 8]. Therefore, it is possible that a combination
of sonosensitizers would have a substantial synergistic effect
when combined with ultrasound, as this energy form has
been shown to damage cells by similar mechanisms. Such
concomitant therapy is necessary for SDT to stand out
as a viable clinical approach, since it will come across a
substantial variety of neoplastic growths, each capable of
different methods of overcoming applied treatments.

There are currently several promising sonosensitizers
available for further in vivo characterization. Although only
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Figure 2: Extracorporeal blood sonication.Hemodialysis requires the patient’s blood to be pumped outside of the body into an extracorporeal
setting.This provides an opportunity for leukemia cells to be sonicated without sound attenuation from anatomical structures, as ultrasound
can be applied to the dialysis tubing. Sound intensities would likely be reduced as there is only a tube standing in the way between the
ultrasonic waves and the patient’s blood.

specific potential combinations will be mentioned here,
the full spectrum of these chemotherapeutic agents can be
found in a previous review, which provides a comprehensive
analysis of sonosensitizers, as well as their mechanisms
of preferential damage [1]. Being able to develop treat-
ment regimens in which the synergistic effects of different
sonosensitizers are applied can be potentially vital for clinical
applications. Such treatments could substantially amplify the
capability of ultrasound to preferentially damage malignant
cells, therefore decreasing the rate at which drug resistance is
observed.

By default, malignant cells have a perturbed cytoskeleton
due to the effects of dysplasia and subsequent anaplasia.With
so many alterations present in malignant cells, the cytoskele-
ton provides an ideal opportunity to attain preferential dam-
age. Specifically, one of the most intriguing possibilities is
to preferentially damage malignant cells based on their
considerable size differential in comparison to their normal
counterparts. This phenomenon gives rise to the concept
of substantially enlarging neoplastic cells to increase their
already noticeable size differential with normal cells.

Cytochalasin B is a mycotoxin that disrupts the actin
cytoskeleton and inhibits cytokinesis by interfering with
formation of the contractile ring as well as the development
of the cleavage furrow [1]. While malignant cells are unable

to divide, they continue to form nuclei and eventually
become enlarged and multinucleated. Such cells have more
DNA targets, increasing the likelihood of apoptosis when
combinedwith aDNA-directed agent, as demonstrated bymy
laboratory using DOX against P388/ADR murine leukemia
cells [91], as well as O’Neill with cytarabine against BHK/IV3
hamster renal tumor cells [92]. Further, the multinucleated
cells have a large cell volume, making them more susceptible
to direct cell destruction by physical agitation. Preferential
damage ofmalignant cells is facilitated by the fact that normal
cells exposed to cytochalasin B exit the cell cycle and enter
the G

0
state until sufficient actin levels are restored [93, 94].

Therefore, only malignant cells that have lost the ability to
enter this resting phase become enlarged andmultinucleated,
providing ideal targets for sonication.

To put the size differentials into perspective, normal
erythrocytes are typically between 6 and 8 𝜇mand leukocytes
range between 10 and 15 𝜇m (the occasional macrophage
grows up to 20𝜇m). By contrast, cytochalasin B-treated U937
humanmonocytic leukemia cells have been shown to grow in
excess of 20 𝜇m, with some reaching nearly 40 𝜇m in diam-
eter [89, 95]. Such cells have reduced cytoskeletal integrity
and are attractive targets for sonication. Further, it has been
shown that cytochalasin B substantially increases mitochon-
drial activity, opening up the opportunity to use ROS agents
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that specifically target the organelle. U937 cells even show
a marked reduction in clonogenicity after being exposed to
cytochalasin B treatments [89, 90], thereby inhibiting the
most prolific phenotypic characteristic of cancer, aberrant cell
proliferation.

While cytochalasin B-alone treatments could yield sub-
stantial results on leukemia patients when combined with
ultrasound, the fact that affected cells become profoundly
multinucleated provides the opportunity for concomitant
chemotherapy with a nucleic acid-directed agent. One of
particular note is doxorubicin as it has been shown to produce
a much higher concentration of ROS when applied in com-
bination with ultrasound, enabling the chemotherapeutic
agent to damage doxorubicin-resistant cell lines [1]. Such
effects were derived from a cell line shown to be resistant
to doxorubicin-alone control treatments, further substan-
tiating the amplifying effect sonosensitizers have in SDT.
There has been a similar effect when ultrasound/doxorubicin
treatments were applied to U937 cells, suggesting the agent
can be effective againstmultiple leukemia cell lineswhenused
concomitantly with ultrasound [1, 89]. This phenomenon of
potentially reversing doxorubicin resistance has also been
shown in athymic mice inoculated with HepG2 multidrug
resistant hepatocellular carcinoma cells, as mice had an
average 62% reduction in tumor volume a month later [96].
Such results provide in vivo evidence of the ability of SDT to
increase the efficacy of antineoplastic agents.

In addition, cytochalasin B-mediated ultrasonic sensitiv-
ity may be further potentiated through the use of micro-
tubule-disrupting agents, such as the vinca alkaloids. My
laboratory has shown that the mechanisms by which neo-
plastic cells are enlarged can influence ultrasonic sensitiv-
ity [90]. Microfilament- and microtubule-disrupting agents
substantially increase the ultrasonic sensitivity of U937 cells
(cytochalasin B and vincristine, resp.). By contrast, agents
that stabilize microfilaments or microtubules (jasplakinolide
and paclitaxel, resp.) do not potentiate the same effect.
Further, we have demonstrated that concomitant cytocha-
lasin B/vincristine treatments profoundly decrease U937 cell
clonogenicity after ultrasound exposure [90]. The synergy
between cytochalasin B and vincristine has been previously
reported byKolber andHill [97], suggesting that concomitant
use of microfilament- and microtubule-disrupting agents
in concurrence with ultrasound may elicit substantial drug
synergy.

Combining ultrasound with cytochalasin B and micro-
tubule-directed as well as nucleic acid-directed agents may
be notably efficacious when applied in the clinical setting due
to the mechanisms by which ultrasound damages malignant
cells. However, the results of such treatments obtained in in
vitro and in vivo studies might be considerably diminished
when actually applied in the clinic. If preliminary clinical
studies determine that ultrasound combined with cytocha-
lasin B-mediated concomitant chemotherapy is not effective,
there are a tremendous variety of other sonosensitizers that
are currently available for therapeutic evaluation. However, if
initial trails are successful, further refinements could bemade
to determine conditions optimal for inhibiting leukemia cell
proliferation. As with any novel treatment, the only way to

determine actual efficacy is to give the therapeutic approach
real world experience.

6. Conclusion

SDT appears to be a viable approach to preferentially damag-
ing malignant cells in the clinical setting. Ultrasound by itself
can produce antitumor effects under appropriate conditions,
as exhibited by HIFU. However, such effects are not always
widespread and tumor populations can be refractory or
develop resistance to ultrasound alone treatments. That is
why SDT is such a sensible prospect, as it significantly
enhances the efficacy of sonication, while still displaying
preferential damage towards malignant cells. Every mech-
anism by which ultrasound destroys malignant tissue can
in fact be amplified when an appropriate sonosensitizer is
administered. Such drugs often damage cells through multi-
ple mechanisms, creating a potential synergistic effect when
sonosensitizers of different classes are used in combination.
Nevertheless, SDT has yet to be clinically evaluated against
leukemia, and appropriate methods by which to administer
ultrasound have not been formalized.

Due to the similarities between metastatic cancer cells
and leukemia [70], it is likely that SDT could be applied
in the clinical setting to preferentially damage circulating
metastases through an ultrasound-mediated treatment pro-
tocol. While HIFU is potentially useful against solid tumors,
it works by concentrating multiple ultrasonic beams on a
particular site of diseased tissue. Therefore, this approach
is less feasible for disseminated cancers, as is the case with
leukemia. As opposed to HIFU, which focuses ultrasound at
a given neoplastic growth, SDT could be used to success-
fully target disseminated cancers using the proposed EBS
treatment model. Successful treatment could have a marked
influence on progression-free survival, as complications from
metastases result in more than 90% of cancer mortality
[98, 99]. As shown by ESWL for calculi removal, ultrasound
has the propensity to fragment large chemical aggregates.
Since carcinomas often circulate as metastatic emboli to
avoid the unsuitable environment of the circulatory system
[100], it seems likely that ultrasound could be used for
breaking up such aggregates, thereby exposing the cells to the
unsuitable environment. Without the protective embolism,
it is likely that most metastatic cells in circulation would
die, significantly reducing the likelihood of diseasemigration.
While this would not account for micrometastases that have
already reached the intended secondary site, patients can
always be monitored after treatments have concluded to
protect against such occurrences.

The idea of combining ultrasoundwith drugs that amplify
the ways in which it preferentially damages malignant cells is
gaining more legitimacy as successful studies have validated
the potential of SDT. With preliminary clinical evaluations
currently underway, data necessary to ascertain its actual
antineoplastic activity will be acquired in the near future,
thereby determining whether SDT warrants further study as
a novel form of cancer therapy.
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