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A structural deep network 
embedding model for predicting 
associations between miRNA 
and disease based on molecular 
association network
Hao‑Yuan Li1,5, Hai‑Yan Chen2,5, Lei Wang3*, Shen‑Jian Song4*, Zhu‑Hong You3,  
Xin Yan1 & Jin‑Qian Yu1

Previous studies indicated that miRNA plays an important role in human biological processes 
especially in the field of diseases. However, constrained by biotechnology, only a small part of the 
miRNA‑disease associations has been verified by biological experiment. This impel that more and 
more researchers pay attention to develop efficient and high‑precision computational methods 
for predicting the potential miRNA‑disease associations. Based on the assumption that molecules 
are related to each other in human physiological processes, we developed a novel structural deep 
network embedding model (SDNE‑MDA) for predicting miRNA‑disease association using molecular 
associations network. Specifically, the SDNE‑MDA model first integrating miRNA attribute 
information by Chao Game Representation (CGR) algorithm and disease attribute information by 
disease semantic similarity. Secondly, we extract feature by structural deep network embedding 
from the heterogeneous molecular associations network. Then, a comprehensive feature descriptor 
is constructed by combining attribute information and behavior information. Finally, Convolutional 
Neural Network (CNN) is adopted to train and classify these feature descriptors. In the five‑fold 
cross validation experiment, SDNE‑MDA achieved AUC of 0.9447 with the prediction accuracy of 
87.38% on the HMDD v3.0 dataset. To further verify the performance of SDNE‑MDA, we contrasted 
it with different feature extraction models and classifier models. Moreover, the case studies with 
three important human diseases, including Breast Neoplasms, Kidney Neoplasms, Lymphoma were 
implemented by the proposed model. As a result, 47, 46 and 46 out of top‑50 predicted disease‑
related miRNAs have been confirmed by independent databases. These results anticipate that SDNE‑
MDA would be a reliable computational tool for predicting potential miRNA‑disease associations.

MicroRNAs (miRNAs) are one type of small non-coding RNA with length of 20–25  nucleotides1. They normally 
influence their target messenger RNAs (mRNAs) by base pairing binding to the 3′ untranslated region (UTR) 
sites of  mRNAs2. These small molecules could function as negative regulator of target gene expression in post-
transcriptional3. With the development of molecular biology, increasing miRNAs have been  detected4. To date, 
the famous miRbase database have collected 48,860 mature miRNAs from 271 organisms containing more than 
1000 human  miRNAs5. In addition, researchers have found that miRNAs are related with multiple significant 
cell biological activities, involving diffusion, aging, development, death and so  on6–9.

In recent years, an increasing number of experiments have demonstrated that there are close relationships 
between miRNA with  disease10–13. In particular, miRNAs have been new biomarkers for human cancer, which 
is important to cancer preventions and  treatments14. Therefore, identifying the miRNA-disease associations has 
gradually become a hot topic in  biology15. Early traditional biological experiments identified the disease-related 
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miRNAs by detecting the expression level of miRNAs in biological disease  process16. For example, Yohei et al. 
found that miR-200c could build a molecular link between breast cancer cells and normal  cells17. Liu et al. point 
out that many miRNAs are disordered in cancer and this situation occurs because miRNAs participate in tumori-
genesis and function as  oncogenes18. Thum et al. reported that miR-21 adjust expression of the ERK-MAP kinase 
to effect on structure and function of  heart19. Traditional experiments achieve high accuracy, while it has the 
limitations of long experimental time, high cost, and low success  rate20. To resolve these issues, for effectively and 
accurately predict potential miRNA-disease associations, increasing researchers adopted computational model 
and select the most possible related miRNAs for further traditional biological  experiments21.

With the development of biotechnology, some databases were constructed by collecting these biological 
data. These datasets provide the possibility to classify associations of miRNA-disease through computational 
 methods20,22–25. Over the years, these methods mostly are according to the assumption that these functionally 
similar miRNAs tend to be related with semantically similar  diseases2,26–28. These models could be split into under 
similarity network models and machine learning  models29. For example, Jiang et al.22 presented a computational 
model to speculate the relationship between miRNA and disease based on a hypergeometric distribution model. 
This is an early calculation model by fusing multiple sources of information. However, this method built the 
miRNA-related network by functional similarity, which is limited by the relationship between miRNAs. Based 
on random walk method, Xuan et al.30 presented MIDP and MIDPE, an extension method of MIDP. MIDP 
constructed the network by combining the information of each node including similarity, prior information 
and various ranges of topological structure. This model could effectively reduce noise from data by restarting 
the walk. Furthermore, You et al.31 proposed PBMDA constructed a heterogeneous graph including three sub-
graphs. PBMDA is a depth-first algorithm based on path, which could fully use the topology information of 
heterogeneous network. In particularly, the priority of new associations between diseases and miRNAs could 
be identified by evaluating the score of the path. Chen et al.32 proposed a computational method adopted the 
extreme gradient boosting named EGBMMDA. This is the first learning method based on decision tree for clas-
sifying miRNA-disease relationships. EGBMMDA built a comprehensive feature vector by various methods such 
as statistical, graph theory and matrix factorization. These studies have continually improved the performance of 
computational method and played an important guiding role in traditional biological  experiments33. Therefore, 
accurately and effectively predict associations between miRNA-disease through computational method become 
urgently  demanded34.

In this study, based on the assumption of molecules are related to each other in human physiological pro-
cesses, we developed a structural deep network embedding-based model (SDNE-MDA) for predicting miRNA-
disease association using molecular association network. The flow chart of SDNE-MDA is shown as Fig. 1. 
Specifically, we first constructed the molecular association network (MAN)35 by combining multiple different 
molecules with edges of them. This study extracted behavior information from the heterogeneous network by the 
structural deep network embedding (SDNE)36, which could maintain the overall structure of large network to the 
greatest extent. Secondly, SDNE-MDA obtained the miRNA attribute information by the chaos game representa-
tion (CGR) algorithm and disease attribute information by disease semantic similarity. After then, we formed 
the feature descriptor by fusing the behavior information and attribute information of miRNAs and diseases. 
Finally, these feature descriptors are trained and classified by the CNN to predict miRNA-disease associations. 
Five-fold cross validation experiment was carried out for SDNE-MDA to verify the performance of prediction 
and achieved the AUC of 0.9447 with the prediction accuracy of 87.38%. To further evaluate SDNE-MDA, we 
contrasted the proposed model with two feature extraction models and classifier models. Besides, we carry out 
SDNE-MDA with three significant human diseases involving breast cancer, kidney cancer and lymphoma. And 
as a result, 47, 46 and 46 out of top-50 candidate related miRNAs are confirmed by known databases and recent 
literature, respectively. These experiment result demonstrated that SDNE-MDA is a precisely and effectively 
computational method for predicting potential associations between miRNA with disease.

Materials and methods
Benchmark database. Human miRNA-disease associations benchmark database HMDD v3.037 was 
adopted as data support in this paper, which collected 32,281 confirmed miRNA-disease associations, involving 
1102 miRNAs and 850 diseases. Here, after data processing, we chose 16,427 known miRNA-disease associations 
as positive samples including 1023 miRNAs and 850 diseases. What’s more, we defined the adjacency matrix AM 
to represent the miRNA-disease associations. When the miRNA mi(a) have a verified association with the dis-
ease di(b) , we set AM(mi(a), di(b)) = 1 , otherwise AM(mi(a), di(b)) = 0 . In this paper, we introduce two other 
independent databases  (dbDEMC38 and  miR2Ddisease39) to verified the result of case study.

Molecular associations network. In this study, we combined multiple biological molecular informa-
tion according the Molecular association network (MAN). The MAN is a heterogeneous information network 
proposed by Guo et al.40. Currently, this complex network consists of five types of molecular (miRNA, lncRNA, 
protein, disease, drug) and associations between them. The heterogeneous information network MAN provided 
a new comprehensive view to explore the complex physiological process and human disease. The structure dia-
gram of molecular association network is as shown in Fig. 2. In this study, we download the information of 
molecular and associations between them from multiple databases. The number of different molecules is shown 
in Table 1, and the associations between them are shown in the following Table 2.

Chaos game representation (CGR) algorithm. MiRNA sequences contain a lot of complex informa-
tion. However, most of the existing sequence feature information extraction algorithms only quantify one of 
position information and nonlinear information. In order to measure the similarity of these information con-
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Figure 1.  Flowchart of SDNE-MDA to predict potential miRNA-disease associations.

Figure 2.  Structure diagram of molecular association network.
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tained in the miRNA sequences comprehensively. In this study, we chose chaos game representation (CGR)50 
to quantize position and nonlinear information to calculate miRNA sequence similarity by pearson coefficient. 
Firstly, the positions of four nucleotides of miRNA are mapped to Euclidean space by the following formula:

where Ti is the position of i th nucleotide, and it is related to the position of the previous nucleotide Ti−1 and the 
nucleotide coefficient Gi . In this paper, the contribution parameter c is equal to 0.5 and T0 is (0.5, 0.5).

Secondly, we divided the CGR space into 64 subspaces as shown in Fig. 3. The attribute information of each 
subspace SSi would be represented by integrating the position information Xi ,Yi and nonlinear information Zi 
by the following formula:

where numi is the number of points in subspace SSi.
Finally, each miRNA sequence information could be represented by the descriptor m(i) . And we calculate 

sequence similarity Msim(m(i),m(j)) by Pearson correlation coefficient.

(1)Ti = Ti−1 + c ∗ (Ti−1 − Gi)

(2)Gi =






(0, 0), if type of nucleotide is A
(0, 1), if type of nucleotide is C
(1, 0), if type of nucleotide is U
(1, 1), if type of nucleotide is G

(3)Xi =
∑

x, if point in subspace SSi

(4)Yi =
∑

y, if point in subspace SSi

(5)Zi =
numi −

∑64
t=1numt

64√
1
64

∑64
r=1(numr −

∑64
t=1numt

64
)
2

(6)SSi = (Xi ,Yi ,Zi), i = 1, 2, . . . , 64

(7)m(i) = (SSi , SS2, . . . , SS64)

Table 1.  The number of different types of nodes in MAN.

Molecular Number

MiRNA 1023

Disease 2026

Drug 1025

LncRNA 769

Protein 1647

Total 6528

Table 2.  The number and database of different types of associations in MAN.

Association Database Number

miRNA-disease HMDD41 16,427

miRNA-protein miRTarBase42 4944

Drug-protein DrugBank43 11,107

lncRNA-disease LncRNADisease44,  LncRNASNP245 1264

Protein–protein STRING46 19,237

miRNA-lncRNA lncRNASNP245 8374

lncRNA-protein LncRNA2Target47 690

Drug-disease CTD48 18,416

Protein-disease DisGeNET49 25,087

Total 105,546
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Disease semantic similarity. In this study, the Directed Acyclic Graph (DAG)51 of diseases could 
be obtained from the Medical Subject Headings (Mesh)52. In the system, a disease d(a) could be defined by 
DAG(d(a)) = (L(d(a)),E(d(a))) , where L(d(a)) is a node set including d(a) and ancestor nodes of d(a) , and 
E(d(a)) indicates directed edge set of all relationships from ancestor node to child node. The semantic value of 
d(a) was contributed by term T as the formula:

where ϑ is a parameter of semantic contribution, and ϑ is equal to 0.5 as previous study. Therefore, DV(D) of D 
could be calculated as follows:

According the assumption that two diseases should have higher similarity if they hold more same parts in 
DAG, the similarity of the diseases d(a) with d(b) could be obtained as follows:

Structural deep network embedding. Since existing network embedding algorithms could not keep 
the high-order proximity of large-scale networks, this paper adopted the structural deep network embedding 
(SDNE) to extract the behavior information of miRNAs and diseases. Many existing network embedding models 
are shallow model (e.g. Laplacian  Eigenmaps53, Graph  Factorization54), which are unable to validly extract the 
highly non-linear structural information of network. SDNE is a semi-supervised model for network embed-
ding. For the part of supervised, first-order similarity based on Laplacian matrix would be adopted to preserve 
local network information. And the part of unsupervised, SDNE used deep autoencoder modeling second-order 
similarity to save the global network information. Therefore, the loss function of SDNE is divided into two parts, 
i.e. Laplacian matrix model and Deep autoencoder model.

First‑order similarity. To make adjacent nodes of graph closer in the latent space, the loss function of first-order 
similarity could be obtained as following formula:

where si,j is the adjacency matrix for heterogeneous information network and y(k)i  indicates the node i of k-th 
layer.

(8)Msim

(
m(i),m

(
j
))

=
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Figure 3.  The CGR of has-mir-3976 plotted in 8× 8 subspaces and the matrix of its nucleotides with 
probabilities for chaos game representation.
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Second‑order similarity. For the capturing of global structure information, SDNE construct the deep autoen-
coder model. Any given xi could be convert into the latent representation of k th layer as:

here W (k) is the k th layer weight matrix and b(k) as a parameter. According the optimization goal of the autoen-
coder is to reduce the reconstruction error in input and output, therefore, we could define the loss function as 
follows:

The adjacency matrices are often very sparse, which means zero elements are far more than non-zero elements. 
Therefore, the loss function would be optimized as:

where ⊙ is the Hadamard product (multiplying the corresponding elements).
Integrating the first-order similarity and second-order similarity, the finally loss function of SDNE is shown 

as follows:

where Lreg is a regularization term, and α is a parameter to control the loss of the first-order similarity. The 
regularization term is shown as:

Integration of feature information. In this study, we firstly obtained miRNA sequence similarity and 
disease semantic similarity and convert them into attribute feature information Msim(i) , Dsim(j) of same dimen-
sion by stacked autoencoder. The dimension of Msim(i) and Dsim(j) is 64. After then, the behavior feature infor-
mation of miRNAs Mb(i) and diseases Db(j) were extracted by the structural deep network embedding based on 
the molecular association network. The dimension of Mb(i) and Db(j) is 128. Finally, a complete sample feature 
descriptor is constructed by fusing above information based on the HMDD v3.0 database. The feature descriptor 
was a 384-dimensional vector as follows:

Convolutional neural network algorithm. Convolutional neural network (CNN) is a deep-structured 
feedforward neural network with convolution calculations. CNN could shift-invariant classify the input infor-
mation based on layer structure by representation learning capability. With the development of research, CNN 
has been successfully utilized in  bioinformatics55. Therefore, in this paper, we adopted the CNN to train and 
predict potential miRNA-disease association. Specifically, CNN has a multi-layer structure including input, con-
volutional layer, pooling layer, fully-connected layer and output as shown in Fig. 4. The input layer is a matrix 
of all feature descriptor FD

(
i, j
)
 with size 26284× 384 . Two convolutional layers C1 and C2 are obtained by 32 

filters with 3× 1 convolution kernel and 64 filters with 3× 1 convolution kernel. In this study, we adopted max-
pooling 2× 1 kernel to subsample the C2 . After repeatedly convolution and pooling, CNN classifies the features 
from fully-connected layer and output the probability distribution.

Results and discussion
Performance evaluation. In this experiment, we implemented the five-fold cross validation to evaluate 
the performance of proposed model under HMDD v3.037. These known miRNA-disease pairs would be ran-
domly split into five subsets with no intersection. Each cross validation, one of five subsets would be set as test 
set and remaining data sets as train set. To avoid the revelation of test data, we constructed the heterogeneous 
information network by only training data and extract the behavior information. In this study, a class of evalu-
ation criteria were used to assess SDNE-MDA, including accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), 
precision (Prec.), Matthews Correlation Coefficient (MCC) and area under curve (AUC). As a result, the average 
Acc, Sen, Spec, Prec, MCC and AUC achieved 87.38%, 87.28%, 87.47%, 87.45%, 74.76% and 0.9447 with stand-
ard deviations of 0.44%, 0.93%, 1.01%, 0.82%, 0.88% and 0.0027, respectively as shown in Table 3. In addition, 
the receiver operating characteristics (ROC) curve and area under precision-recall (PR) curve by SDNE-MDA 
based on HMDD are shown in Fig. 5.
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Comparison with different feature extraction methods. In this study, these nodes in the network 
could be represented by the attribute and behavior information. Both types of information may influence the 
result of prediction, so we compared the different feature extraction methods including SDNE-MDA_AI com-
posed of attribute information, SDNE-MDA_BI composed of behavior information and SDNE-MDA composed 
of both them. In addition, attribute information of other nodes has scarcely effect on prediction of potential 
miRNA-disease relationships. For reducing the redundancy of model, we only considered the attribute informa-
tion of miRNAs and diseases. The detail result of comparison between proposed model with different feature 

Figure 4.  Structure of the CNN algorithm.

Table 3.  Five-fold cross validation results performed by SDNE-MDA on HMDD v3.0.

Evaluation criteria Result

Acc. (%) 87.38 ± 0.44

Sen. (%) 87.28 ± 0.93

Spec. (%) 87.47 ± 1.01

Prec. (%) 87.45 ± 0.82

MCC (%) 74.76 ± 0.88

AUC 0.9447 ± 0.0027

Figure 5.  The ROC and PR curves performed in terms of five-fold cross validation by SDNE-MDA on HMDD 
v3.0.
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extraction models are shown in Table  4. The accuracy of SDNE-MDA is 7.78% and 3.43% higher than that 
of SDNE-MDA_AI and SDNE-MDA_BI, respectively. In addition, the AUC of proposed model is 0.0811 and 
0.0260 higher than SDNE-MDA_AI and SDNE-MDA_BI. The ROC curves and PR curves of three experiments 
are shown in Fig. 6. These results indicated that integrating the two kind of information to represent the node 
achieved more distinguished performance.

Comparison with different classifier models. In this study, the CNN was adopted to train and identify 
potential relationships between miRNA and disease. To further evaluate SDNE-MDA, we compare proposed 
model with Bagging, Logistic Regression, Naive Bayes and Adaboost classifier model. In this experiment, we 
implemented the five-fold cross validation in these different classifier models based on the HMDD v3.0. Finally, 
the proposed model yielded average AUC of 0.9447 based on five-fold cross validation and outperformed Bag-
ging (0.8998), LogisticRegression (0.9270), Naive Bayes (0.8881), Adaboost (0.9226) and MLP (0.9320). The 
AUC of CNN is 0.0259 higher than the mean AUC of all five model, and the accuracy is 1.60% higher than that of 
the second highest methods. The detail results of the comparison between SDNE-MDA and other four classifier 
models are shown in Table 5, and we drew the ROC curves as shown in Fig. 7. Therefore, CNN algorithm is the 
optimal selection for the proposed model to predicting potential miRNA-disease associations.

Table 4.  The comparison results between SDNE-MDA_AI model, SDNE-MDA_BI model and SDNE-MDA 
model based on HMDD database.

Feature Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC 

SDNE-MDA_AI 79.60 ± 0.35 81.29 ± 1.87 77.92 ± 1.43 78.65 ± 0.73 59.26 ± 0.73 0.8636 ± 0.0037

SDNE-MDA_BI 83.95 ± 0.72 83.08 ± 6.30 84.83 ± 5.94 84.95 ± 4.07 68.32 ± 1.27 0.9187 ± 0.0048

SDNE-MDA 87.38 ± 0.44 87.28 ± 0.93 87.47 ± 1.01 87.45 ± 0.82 74.76 ± 0.88 0.9447 ± 0.0027

Figure 6.  ROC and PR curves performed by SDNE-MDA_AI, SDNE-MDA_BI and SNDE-MDA model in 
terms of five-fold cross validation based on HMDD database.

Table 5.  The comparison results between SDNE-MDA with other four different classifier models in terms of 
five-fold cross validation based on HMDD v3.0 database.

Model Acc. (%) Sen. (%) Spec. (%) MCC (%) AUC 

SDNE-MDA 87.38 ± 0.44 87.28 ± 0.93 87.47 ± 1.01 74.76 ± 0.88 0.9447 ± 0.0027

Bagging 84.52 ± 0.62 84.77±0.80 84.27 ± 1.34 69.05 ± 1.23 0.8985 ± 0.0042

LogisticRegression 85.13 ± 0.86 84.42 ± 0.92 85.84 ± 1.19 70.27 ± 1.71 0.9272 ± 0.0080

NaiveBayes 75.90 ± 1.27 60.04 ± 3.94 91.76 ± 1.64 54.68 ± 1.77 0.8881 ± 0.0059

Adaboost 85.69 ± 0.51 84.74 ± 1.72 86.63 ± 2.07 71.43 ± 1.06 0.9226 ± 0.0036

MLP 85.78 ± 1.06 84.75 ± 0.87 86.82 ± 2.78 71.72 ± 1.83 0.9320 ± 0.0051
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Comparison with related work. An increasing number of researchers have focused on the prediction of 
miRNA-disease associations, and a mass of model have been proposed. To further evaluate the predictive per-
formance of our method, the SDNE-MDA was compared with six state-of-the-art classical methods under five-
fold cross validation, including  RWRMDA56,  MTDN57,  EGBMMDA32,  LMTRDA58,  DBMDA59 and  PBMDA31. 
Since these algorithms have not calculated multiple evaluation criteria, we only compare the AUC on the terms 
of five-fold cross validation based HMDD database. The detail results of the comparison between SDNE-MDA 
and other six related works are shown in Table 6. The proposed method is 0.0399 higher than the average AUC 
of all algorithms, and 0.0275 higher than that of the second highest methods. This is mainly due to SDNE-MDA 
integrated two types of information of miRNAs and diseases, and extract the feature more comprehensively. 
Therefore, the proposed model is an effective and reliable computational tool for predicting potential miRNA-
disease associations.

Case studies. For further evaluating the prediction ability of SDNE-MDA, we implemented case studies 
based on three significant human diseases (Breast Neoplasms, Kidney Neoplasms, Lymphoma). In this study, 
these known miRNA-disease associations based on HMDD v3.0 database would be the training set. To avoid the 
overlap in the train data and prediction list, the test set is the unknown relationship pairs between three diseases 
and all possible miRNAs. As a result, 47, 46 and 46 of top-50 candidate related miRNAs were confirmed by inde-
pendent databases. Therefore, SDNE-MDA is a feasible and reliable model for predicting potential relationships 
between miRNA and disease.

Breast Neoplasms is the most universal neoplasms in female and the risk of breast cancer is up to 13% in the 
United States. Although men may also develop breast cancer, 99% of patients are women. There are approxi-
mately 276,480 novel cases in women and 42,170 were die from breast cancer in  202060. In previous few years, 
studies had indicated the expression level of miRNA have strong impact to growth and division of breast tumor 
 cell61. Therefore, we implemented a case study of Breast Neoplasms-miRNA associations by SDNE-MDA. In the 

Figure 7.  Performance comparison between SDNE-MDA with other four different classifier models based on 
HMDD v3.0 database.

Table 6.  The comparison results between SDNE-MDA with other related works.

Method AUC 

RWRMDA 0.8617

MTDN 0.8872

EGBMMDA 0.9048

LMTRDA 0.9054

DBMDA 0.9129

PBMDA 0.9172

SDNE-MDA 0.9447
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prediction list shown as Table 7, 47 of top 50 predicted Breast Neoplasms related miRNAs were verified based 
on independent databases.

Kidney Neoplasms is a novel cancer with higher adult  incidence60. In the past few years, however, morbidity 
and mortality of kidney neoplasms have been increasing. There are about 73,750 novel cases in kidney neoplasms 
with about 45,520 in male and about 28,230 in female in United States and about 14,830 deaths for this cancer 
(9860 men and 4970 women) in 2020. Recently, increasing researchers have indicated miRNAs are related with 
kidney  neoplasms62. Thus, we take Kidney Neoplasms as a case study for SDNE-MDA and prioritize the candidate 
miRNAs. In the prediction list shown as Table 8, 46 of top-50 potential kidney neoplasms-related miRNAs were 
confirmed by independent databases.

Lymphoma is one of the most common malignant cancers (~ 4% of all new cancer) especially in teenagers 
in United  States60. Lymphoma mainly contains two types of Hodgkin Lymphoma (HL) and non-Hodgkin Lym-
phoma (NHL). In 2020, it is estimated that about 85,720 new cases of Lymphoma (47,070 of men and 38,650 of 
women) and 20,910 deaths for HL and NHL (12,030 of men and 8,880 of women). Therefore, we implemented 
SDNE-MDA to prioritize possible miRNAs for Lymphoma based on HMDD v3.0. As shown in Table 9, 46 out 
of top 50 predicted Lymphoma candidate miRNAs were verified by independent databases.

Conclusion
In previous few years, accumulating number of researches demonstrated that miRNAs have closely link with 
diseases. Various of biological experiments and computational methods are committed to classify the association 
of them. In this paper, we proposed a structural deep network embedding-based model SDNE-MDA to predict 
miRNA-disease associations. This model constructed a complex network MAN by fusing miRNAs, diseases 
and three related molecular (lncRNA, drug and protein) with their relationships. Through the comprehensive 
heterogeneous information network, potential miRNA-disease associations could be predicted more accurate 
and efficient. And CNN is utilized to train and classify the potential miRNA-disease associations. Compared 
with other classifiers and feature extraction models, SDNE-MDA showed outstanding performance. In addition, 
case studies were implemented on three significant human disease for further validate performance of SDNE-
MDA. As a result, 47, 46 and 46 of top-50 predicted miRNAs have been confirmed by independent databases. 
These results demonstrated that SDNE-MDA is a reliable computational tool for predicting miRNA-disease 
associations.

Table 7.  Prediction of top 50 miRNAs related to Breast Neoplasms based on known miRNA-disease 
associations in HMDD V3.0 database.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-miR-124-3p dbdemc 26 hsa-miR-200b-3p dbdemc

2 hsa-miR-483-5p dbdemc 27 hsa-miR-181d-5p dbdemc

3 hsa-miR-200c-3p dbdemc 28 hsa-miR-23b-3p dbdemc

4 hsa-miR-101-3p dbdemc 29 hsa-miR-532-5p dbdemc

5 hsa-miR-27a-3p dbdemc 30 hsa-miR-193b-3p dbdemc

6 hsa-miR-28-5p dbdemc 31 hsa-miR-126-3p dbdemc

7 hsa-miR-455-5p dbdemc 32 hsa-miR-92b-3p dbdemc

8 hsa-miR-186-5p dbdemc 33 hsa-miR-539-5p dbdemc

9 hsa-miR-99b-5p dbdemc 34 hsa-mir-138-2-3p Unconfirmed

10 hsa-miR-141-3p dbdemc 35 hsa-miR-506-3p dbdemc

11 hsa-miR-330-5p dbdemc 36 hsa-miR-223-3p dbdemc

12 hsa-miR-19b-2-5p dbdemc 37 hsa-miR-19a-3p dbdemc

13 hsa-miR-154-5p dbdemc 38 hsa-miR-29c-3p dbdemc

14 hsa-miR-744-5p dbdemc 39 hsa-miR-188-5p dbdemc

15 hsa-miR-1271-5p dbdemc 40 hsa-miR-25-3p dbdemc

16 hsa-miR-377-3p dbdemc 41 hsa-miR-300 dbdemc

17 hsa-miR-200a-3p dbdemc 42 hsa-miR-376b-3p dbdemc

18 hsa-miR-211-5p dbdemc 43 hsa-mir-208b-5p Unconfirmed

19 hsa-miR-216a-5p dbdemc 44 hsa-miR-376a-3p dbdemc

20 hsa-miR-449b-5p dbdemc 45 hsa-miR-543 dbdemc

21 hsa-miR-346 dbdemc 46 hsa-miR-130a-3p dbdemc

22 hsa-miR-328-3p dbdemc 47 hsa-miR-302a-3p dbdemc

23 hsa-miR-494-3p dbdemc 48 hsa-miR-29a-3p dbdemc

24 hsa-mir-885-5p Unconfirmed 49 hsa-miR-302e dbdemc

25 hsa-miR-202-3p dbdemc 50 hsa-miR-363-3p dbdemc
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Table 8.  Prediction of top 50 miRNAs related to Kidney Neoplasms based on known miRNA-disease 
associations in HMDD V3.0 database.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-146a-5p dbdemc 26 hsa-mir-19a-5p dbdemc

2 hsa-mir-223-5p dbdemc 27 hsa-mir-133a-5p Unconfirmed

3 hsa-mir-125b-5p dbdemc 28 hsa-mir-29b-3p dbdemc

4 hsa-mir-145-5p dbdemc 29 hsa-mir-222-5p dbdemc

5 hsa-mir-150-5p dbdemc 30 hsa-mir-29c-5p dbdemc

6 hsa-mir-181a-5p dbdemc 31 hsa-mir-18a-5p dbdemc

7 hsa-mir-182-5p dbdemc 32 hsa-mir-1-3p dbdemc

8 hsa-mir-26a-5p dbdemc 33 hsa-mir-181b-5p dbdemc

9 hsa-mir-9-5p dbdemc 34 hsa-mir-206 dbdemc

10 hsa-mir-31-5p dbdemc 35 hsa-mir-124-5p Unconfirmed

11 hsa-mir-16-5p dbdemc 36 hsa-mir-205-5p Unconfirmed

12 hsa-mir-143-5p dbdemc 37 hsa-mir-23a-5p dbdemc

13 hsa-mir-221-5p dbdemc 38 hsa-let-7c-5p dbdemc

14 hsa-mir-20a-5p dbdemc 39 hsa-mir-22-5p dbdemc

15 hsa-mir-26b-5p dbdemc 40 hsa-mir-34b-5p dbdemc

16 hsa-let-7b-5p dbdemc 41 hsa-mir-19b-3p dbdemc

17 hsa-mir-92a-3p dbdemc 42 hsa-mir-132-5p dbdemc

18 hsa-mir-29a-5p dbdemc 43 hsa-mir-106b-5p dbdemc

19 hsa-mir-375-5p Unconfirmed 44 hsa-mir-34c-5p dbdemc

20 hsa-mir-142-5p dbdemc 45 hsa-mir-100-5p dbdemc

21 hsa-let-7a-5p dbdemc 46 hsa-mir-124-3p dbdemc

22 hsa-mir-122-5p dbdemc 47 hsa-mir-125a-5p dbdemc

23 hsa-mir-146b-5p dbdemc 48 hsa-mir-148a-5p dbdemc

24 hsa-mir-30a-5p dbdemc 49 hsa-mir-200b-5p dbdemc

25 hsa-mir-24-3p dbdemc 50 hsa-mir-486-5p dbdemc

Table 9.  Prediction of top 50 miRNAs related to Lymphoma based on known miRNA-disease associations in 
HMDD V3.0 database.

Rank miRNA Evidence Rank miRNA Evidence

1 hsa-mir-34a-5p dbdemc 26 hsa-mir-138-5p dbdemc

2 hsa-mir-223-5p dbdemc 27 hsa-mir-106a-5p dbdemc

3 hsa-mir-125b-5p dbdemc 28 hsa-mir-34b-5p dbdemc

4 hsa-mir-145-5p dbdemc 29 hsa-mir-140-5p dbdemc

5 hsa-mir-182-5p dbdemc 30 hsa-mir-132-5p dbdemc

6 hsa-mir-27a-5p Unconfirmed 31 hsa-mir-106b-5p dbdemc

7 hsa-mir-9-5p dbdemc 32 hsa-mir-100-5p dbdemc

8 hsa-mir-26b-5p dbdemc 33 hsa-mir-34c-5p dbdemc

9 hsa-let-7b-5p dbdemc 34 hsa-mir-148a-5p dbdemc

10 hsa-mir-29a-5p dbdemc 35 hsa-mir-124-3p dbdemc

11 hsa-let-7a-5p dbdemc 36 hsa-mir-25-5p dbdemc

12 hsa-mir-192-5p dbdemc 37 hsa-let-7i-5p dbdemc

13 hsa-mir-146b-5p dbdemc 38 hsa-mir-335-5p dbdemc

14 hsa-mir-30a-5p dbdemc 39 hsa-mir-141-5p Unconfirmed

15 hsa-mir-24-3p dbdemc 40 hsa-mir-99a-5p dbdemc

16 hsa-mir-214-5p dbdemc 41 hsa-mir-107 dbdemc

17 hsa-mir-96-5p dbdemc 42 hsa-mir-15b-5p dbdemc

18 hsa-mir-183-5p dbdemc 43 hsa-mir-144-5p dbdemc

19 hsa-mir-206 dbdemc 44 hsa-let-7e-5p dbdemc

20 hsa-mir-181b-5p dbdemc 45 hsa-mir-30d-5p dbdemc

21 hsa-mir-1-3p dbdemc 46 hsa-mir-218-5p dbdemc

22 hsa-let-7c-5p dbdemc 47 hsa-mir-130a-5p Unconfirmed

23 hsa-mir-205-5p dbdemc 48 hsa-mir-429 Unconfirmed

24 hsa-mir-124-5p dbdemc 49 hsa-mir-101-5p dbdemc

25 hsa-mir-23a-5p dbdemc 50 hsa-mir-195-5p dbdemc
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