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Abstract: The present study assessed the retention forces corresponding to different telescopic systems
used in removable prosthetic dentures. The telescopic systems were represented by Co–Cr alloy
or zirconia-based primary crowns and Co–Cr secondary crowns. All crowns were manufactured
using computer-aided design/computer-aided manufacturing technology (CAD/CAM). Two types
of reference abutment teeth (upper canine and first upper molar) were selected in order to obtain
the telescopic crowns and two taper angles—of 0◦ and 2◦—were used for the design of the crowns.
A number of 120 samples of telescopic crowns were obtained and subjected to mechanical tests,
following a specific protocol, on a mechanical testing equipment. The retention of the telescopic
systems was evaluated for different sets of cycles (up to 360), represented by movements that simulate
the intraoral insertion and disinsertion of the telescopic systems. The present study highlights that
the telescopic systems in which the primary crown is made of zirconia ceramics presents more
advantages than those made of Co–Cr. All telescopic systems studied, highlighted that by modifying
the taper angle from 0◦ to 2◦, the retention forces have decreased, irrespective of the materials used
for the fabrication of the primary crown, suggesting that by using a taper angle of 0◦, which is
known to be ideal, more efficient, and reliable prosthesis can be developed. Thus, even though the
ceramic–metallic telescopic system exhibited the highest retention, all telescopic crowns evaluated
registered values between 2–7 N, indicating that they are suitable for clinical use.

Keywords: telescopic crowns; cobalt chromium alloy; zirconia; retention forces; computer-aided
design/computer-aided manufacturing (CAD/CAM)

1. Introduction

Telescopic systems are used to retain removable dentures that are usually recommended for
patients with few residual teeth—or who have lost their teeth due to periodontal disease, to patients
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who have undergone surgical treatment (i.e., for craniofacial malignant tumors), or in cases of occlusal
vertical dimension reduction caused by the pathological wear of the teeth [1–3]. This system is
considered an ideal treatment option when fixed prosthetic treatment cannot be applied due to a
compromised, unfavorable general medical condition [4,5].

The classic telescopic system is made of two separate elements, consisting of the primary
crown—permanently cemented on the prepared abutment tooth—and the secondary crown—that is
placed on the mucosal aspect of a removable prosthetic denture [6–12]. Telescopic systems transfer
forces along the long axis of the teeth and provide guidance, support, and protection against the
movements that dislocates the denture [6,13].

The materials used for crowns manufacturing are gold, titanium, titanium alloys, cobalt–chromium
alloys, zirconium-based ceramics, and polymers (especially in the case of three-element systems [14–25]).
These are materials with different friction coefficients and hardness [26–28]. The components of a
telescopic crown can be made of the same material or of different ones, which leads to the formation of
friction nodes with different tribological features [29].

Because of their excellent mechanical properties and high resistance to corrosion and wear, Co–Cr
alloys have been recognized as effective metallic biomaterials for dental applications and medical
devices [30,31].

Co–Cr alloys pose good castability and in dental application are usually used in cast solid-state,
the microstructure of which exhibits a dendritic α-fcc (face-centered cubic) metastable matrix due to
the sluggish nature of the fcc→ hcp (hexagonal close packed) transformation and a precipitate, which
consists in a M23C6 carbides, an intermetallic σ compound and a lamellar phase formed by interlayed
plates of M23C6 carbide [32]. The hardness of the alloy in the cast state is mainly due to carbide
precipitation at grain boundaries and interdendritic regions but also by dislocation interactions with
stacking fault intersections. Alloying elements such as Mo, W, and Si are used for Co–Cr alloys, act as
biomaterials due to increasing the hcp-to-fcc transformation temperature, and are also hcp stabilizers.
This martensitic transformation is closely related to the microstructure and mechanical and chemical
properties of the Co–Cr alloys [31].

Even though Co–Cr alloys present a higher corrosion resistance (resistant to pitting and crevice
corrosion) and tarnish but also a good biocompatibility, in recent years, some studies demonstrated
that Co–Cr alloys could induce cytotoxicity and inflammatory responses in human gingival fibroblasts
and osteoblasts [33,34]. Even so, in the Global Metal Implants and Medical Alloys Market Size, Share
and Trends Analysis Report made by Orion Market Research the Co–Cr alloys market alongside with
stainless steel and titanium is estimated to grow at a significant Compound Annual Growth Rate
(CAGR) of 7.6% during the forecast period (2019–2025).

Thus, one aim could be the development of biomaterials strong enough to replace the metallic ones.
Zirconia-based ceramic has been introduced and used in medicine as an alternative for aluminum- or
titanium-based alloy, due to its impressive mechanical properties [35]. In the ceramic classification,
zirconia (ZrO2) is a highly resistant, polycrystalline ceramic, characterized by favorable mechanical
properties, good optical characteristics [23,36,37], aesthetic appearance, and chemical resistance, which
are perfectly combined with outstanding biocompatibility proven by clinical studies. In terms of
biocompatibility, it was already demonstrated that zirconia has excellent behavior both in vitro and
in vivo, lower plaque retention, and good radiopacity, that are perfectly combined with its bioinert
character—it is not soluble in water, and its susceptibility to degradation in the harsh, oral environment
is neglectable [23,36–38]. Moreover, the physical properties of zirconia can be enhanced by stabilization
of zirconia with yttrium oxide [39], which is a result of the crystalline modification from a tetragonal to
monoclinic arrangement [40]. As mentioned in the literature, zirconia was also used as material for
telescopic crown systems [41–43] as either primary or secondary crown, or even both.

The components of a telescopic crown system can be manufactured using classical or
unconventional technologies (e.g., casting, computer-aided manufacturing technology, or additive
manufacturing techniques), resulting in differences in surface roughness and dimensional tolerances.
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Computer-aided design and computer-aided manufacturing technologies (CAD/CAM) have greatly
increased and diversified the treatment options available to clinicians by being able to produce very
complex forms and by the simplicity of their use [44–49]. In this context, recent developments in 3D
printing have already impacted the field of medicine, including the manufacturing of components that
are included in telescopic crown systems [50].

A distinctive feature of telescoping systems, often used to describe and compare them, is the
retention force, which is known as a force necessary to separate the two components. Crown retention
depends on many factors that can be attributed to the following general categories: materials used for
manufacturing technology, working conditions, or measurement method.

With respect to the clinical situation, the retention force can be adjusted by modifying the design.
The cross-sectional configuration, conical angle, and contact surface determines the quality and amount
of friction between surfaces, which ultimately controls the retention force. Generally, the retention
forces of telescopic systems recorded in the scientific literature are between 2–7 N [51–53]. One of the
most important factors for the success of double-crown systems is setting the optimum retentive force,
which requires technical skill, ability, and experience [7,54,55].

The stability of the denture during use is ensured by rigid primary telescopes with cylindrical or
conical shapes and a precise match with the secondary telescopes. The narrow configuration between
the contact walls generates a compressive tension between the surfaces [4]. The tension should be
strong enough to hold the prosthesis in its place. An increase in wall inclination reduces retention
between them. The lower the degree of conicity, the greater the friction between the inner and the
outer crown. If the abutment height is reduced, either the contact walls must be kept parallel or the
degree of conicity of the wall must be modified to improve retention.

One of the most common materials used for telescopic retainers are represented by metallic
alloys [56–58]; gold alloys are frequently utilized for telescopic crown manufacturing, but their clinical
application is limited because of high costs and contraindication for certain patients with metal allergies.

Previous studies [59,60] indicate that a stable and retentive telescopic system can be achieved more
easily using the CAD/CAM technology and zirconia (yttria-stabilized tetragonal zirconia polycrystal)
as a material of choice. Thus, compared with the conventional manufacturing of metallic telescopic
systems, the CAD/CAM technology improves workflow efficiency and reduces technical errors.

In addition, in the literature studied, the retentive forces between primary and secondary telescopic
crowns were measured with and without lubrication by a saliva substitute. Bayer et al. [61] stated that
no statistically significant differences between lubricated and unlubricated samples were found.

The main purpose of this study was to analyze, by means of specific mechanical tests, the
retention forces corresponding to different telescopic systems; these systems were represented by
cobalt–chromium (Co–Cr) alloy or zirconia-based primary crowns and Co–Cr secondary crowns.
Relevant aspects regarding the evolution of the retention forces of the selected telescopic systems in
a dry environment for different set of mechanical cycles at different time periods were pointed out.
Additionally, an identification of contact areas between the primary and secondary crowns (displayed
after the applied tests) was made in order to highlight the behavior of the selected telescopic systems.

2. Materials and Methods

The telescopic systems were manufactured by CAD/CAM procedures in a local dental laboratory
(Fischer Dental Laboratory, Bucharest, Romania) by experienced dental technicians. The materials
used for the manufacturing of the crowns were zirconia (ZrO2) and cobalt–chromium (Co–Cr) alloy,
from NOVADENT (Hamburg, Germany) in the form of discs. A total of 120 telescopic systems were
used. In the present study, the telescopic systems were designed for two reference abutment teeth,
specially prepared for telescopic systems: an upper right canine (tooth no. 1.3) and a first upper left
molar (tooth no 2.6); besides, the crowns design included two taper angles, 0◦ and, respectively, 2◦.
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CAD–CAM technologies used for manufacturing the telescopic system components required in
oral rehabilitation have led to primary and secondary crowns without deviating from the geometry
required and dictated by the anatomical shape of the teeth studied.

The computer-aided design (CAD) stage involves the virtual scanning and modelling of the future
prosthetic work. Scanning the model for the clinical situation on which this study was based was
performed with a D850 Scanner (3Shape, Copenhagen, Denmark). A schematic illustration of relevant
3D frames representing CAD design for the primary and the secondary telescopic crowns is presented
in Figure 1.
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Figure 1. Three-dimensional frames representing the computerized design for the primary (1) and the
secondary (2) telescopic crowns dedicated to an upper canine (A) and an upper molar (B).

Computer-aided manufacturing (CAM) involves the transformation of the previously obtained
virtual work into the physical product. For this transformation, the Millbox Software (CIM Systems,
Pulheim, Germany) and CORiTEC-350i Milling Machine (Imes-Icore, Eiterfeld, Germany) were used.

After obtaining the primary and secondary crowns, all samples were investigated in terms of
elemental composition and surface morphology; also, a visual inspection of the crowns was made
(naked eye and using magnifying glass/×3.5).

The telescopic systems obtained were divided into 8 groups with the following variables: (1) the
material used for fabricating the primary crown (Co–Cr alloy or zirconia); (2) the shape of the abutment
tooth, canine (1.3) or molar (2.6) and (3) the taper angle of 0◦ or 2◦.

Each group of 15 telescopic systems was subjected to simulations for five different intervals.
The applied mechanical tests were planned to simulate the intraoral detaching and recoupling cycles
of the telescopic crowns. These cycles are encountered during daily use, after mounting the telescopic
systems in the prosthetic restorations. The systems were cycled for 30, 90, 180, 270, and 360 cycles,
which correspond to periods of 1, 3, 6, 9, and 12 months. It was estimated that a patient performs one
such cycle per day.

The measurements were achieved in triplicates and the average was calculated. The values
obtained were registered, and the retention forces were extracted from the obtained data. The value of
retention forces for the first cycle were extracted from the values of the first tests included in the set of
30 cycles (the first value upon the detachment of the secondary crown).

The main aspects of the research design and the codification of telescopic system groups are
presented in Figure 2 and Table 1.

Before being mechanically tested, the telescopic systems underwent a preparatory stage, which
consisted of attaching the primary and secondary crown with copper rods of 2.5 mm in diameter and
epoxy resin for fixation. To avoid unwanted loads during mechanical tests and to obtain accurate
retention forces values, a special attention has been directed towards the positioning of the rods, which
needed to be on the same axis. The materials used to prepare the crowns for mechanical testing (copper
rods and epoxy resin) were carefully selected in the experimental design. The tensile strength for both
copper rods (33 MPa) and epoxy resin, respectively, (40–60 MPa) have values that will not induce
errors during the mechanical tests due to deformation of copper rods or crack failure of epoxy resin.
Thus, the cooper rods and epoxy resin behave as rigid bodies during mechanical testing.
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Table 1. Codification of the obtained telescopic systems.

Tooth Type
Telescopic System—Materials

Taper Angle Samples
CodificationSecondary Crown Primary Crown

Canine
(tooth 1.3) Co–Cr

Co–Cr
0◦ 13-CC-0
2◦ 13-CC-2

ZrO2
0◦ 13-CZ-0
2◦ 13-CZ-2

1st molar
(tooth 2.6) Co–Cr

Co–Cr
0◦ 26-CC-0
2◦ 26-CC-2

ZrO2
0◦ 26-CZ-0
2◦ 26-CZ-2

The morphology and elemental composition were investigated using a scanning electron
microscope (SEM) equipped with an energy dispersion spectrometer (EDS; Phenom ProX, Phenom
World, Eindhoven, The Netherlands). SEM images were acquired at 15 kV acceleration voltage using a
backscattered electron detector (BSE). Since zirconia is a non-conductive material, a charge reduction
sample holder (Phenom ProX, Phenom World, Eindhoven, The Netherlands) was employed for the
acquisition of images.

As there is no standard protocol for in vitro studies in which double-crown systems can be
evaluated, the method proposed and used in this study was chosen with great care. Clinically, the
secondary crown is fixed on the primary crown through the chewing forces. The chewing force value
can vary for each person with respect to the clinical situation such as opposite arch situation, tooth
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location in relation to the occlusion, etc. [62]. Mechanical tests were performed using a Lloyd LRX Plus
(Ametek, Largo, FL, USA) testing equipment. Each sample was individually tested, and the sample
rods were positioned into the Lloyd LRX Plus jaws in a vertical position (Figure 3).
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Figure 3. Image of the mechanical testing set-up (A) and schematic representation of 1 cycle (B).

The experimental tests applied to the crowns obtained were projected to mimic the conventional
insertion and disinsertion of a removable prosthetic denture with telescopic systems (one cycle
corresponded to one attaching–detaching movement). As one cycle was supposed to correspond to
one day, force retention measurements were made for different time intervals, as follows: 30 cycles
(representing one month), 90 cycles (representing 3 months), 180 cycles (representing 6 months),
270 cycles (representing 9 months), and 360 cycles (representing 12 months).

To be able to record the forces, the movement of the telescopes was set to 2 mm at a speed of
18 cycles/min. During the tests, the forces were recorded with the NEXYGEN Plus software (Ametek,
Largo, FL, USA). The software allows parameters, such as the number of cycles, the displacement, and
the speed at which all the cycles were performed, to be accurately set in respect of the research design.

Retention was evaluated by measuring the tensile force required to dislodge the primary crowns
from the secondary crown in the universal testing machine. Thus, the extracted values were those of
the retention forces recorded at the end of the set number of predetermined cycles. Retention forces
were carefully recorded and, as previously stated, for every group tested (8 groups/15 samples per
group), for all the different set of cycles, the calculated average values were taken into consideration.

Additionally, in order to study the wear of the crowns surfaces that are in contact with each other,
it was necessary to investigate the telescopic systems after they were obtained, through macroscopic
analysis. After the samples were subjected to mechanical tests, they were again macroscopically
examined (visual inspection of the crown surfaces: naked eye and using magnifying glass/×3.5), to
identify any wear traces that appeared after the cycles were performed. The macroscopic images
obtained after the mechanical tests were compared with those obtained initially, in order to observe the
differences arising from the wear process.
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3. Results and Discussion

3.1. Morphology and Chemical Composition

Initially, the telescopic systems were investigated in terms of elemental composition and surface
morphology by SEM–EDS. According to the SEM images achieved on the outer surface of the primary
telescopic crowns, on Co–Cr crowns the typical casted solid state morphological features with just a
few thin scratches were noticed, while denser and more pronounced scratches for ZrO2 were observed,
as presented in Figure 4.
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Figure 4. SEM images of a (A,B) Co–Cr and (C,D) ZrO2 outer surface of primary telescopic crowns
along with the corresponding elemental composition.

After the Co–Cr crowns were obtained by CAM process, a dental technician, in order to accurately
reproduce the technological steps met in the clinical practice, resulting in a grazed and smooth surface,
polished the outer surfaces. Therefore, as it can be seen, the microstructure consisted of a dendritic
matrix with precipitates at grain boundaries and interdendritic regions, which are in good agreement
with the results reported in the literature for casted Co–Cr alloys [63]. Thus, it can be said that the
milling process has not induced any microstructural modifications in the Co–Cr that might affect or
influence the material behavior under specific working conditions.

In the case of ZrO2 primary crown after the milling process, the outer surfaces remained as such,
even though some thin scratches were noted on the material surface, which are a mark of the CAM
process. The chemical compositions obtained by EDS analysis of the Co–Cr and ZrO2 materials used to
fabricate the telescopic crowns are presented in Figure 4 and were achieved on an area of 90 × 90 µm2.

The elemental composition has evidenced the elements corresponding to Co–Cr alloy (Co, Cr, W,
Mo, Al) as mentioned by the manufacturer in the technical datasheet, and yttrium-stabilized zirconia
ceramic (Zr, O, Y, and Hf).

Visual inspection of the crown surfaces (naked eye and using magnifying glass/×3.5) revealed no
defects of the telescopic system crowns, except for some green color traces from the post-processing
verification process carried out in the dental laboratory by a dental technician that has marked certain
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areas that required additional processing on some of the samples (Figure 5). Thus, the sets of telescopic
systems did not show manufacturing defects.

Materials 2020, 13, x FOR PEER REVIEW 8 of 16 

 

Visual inspection of the crown surfaces (naked eye and using magnifying glass/×3.5) revealed 
no defects of the telescopic system crowns, except for some green color traces from the post-
processing verification process carried out in the dental laboratory by a dental technician that has 
marked certain areas that required additional processing on some of the samples (Figure 5). Thus, 
the sets of telescopic systems did not show manufacturing defects. 

 
Figure 5. Macroscopic images of the manufactured telescopic system: primary crown made from 
CoCr (a), ZrO2 (b), and secondary crown (c) of tooth 1.3 and primary crown made from CoCr (d), 
ZrO2 (e), and secondary crown (f) of tooth 2.6. 

3.2. Mechanical Tests—Retention Forces 

A total of 120 telescopic systems divided into eight groups were evaluated in terms of retention 
forces by mechanical tests. Each group contained 15 samples, and for each time interval, three 
samples were attributed. The results obtained were exported and calculations were made to 
determine the mean values of the retention forces and their standard deviations (Table 2). 

Table 2. Retention forces registered for the telescopic systems. 

Telescopic 
System 

Retention Forces [N] 
1 Cycle 30 Cycles 90 Cycles 180 Cycles 270 Cycles 360 Cycles 

13-CC-0° 1.90 ± 0.51 2.38 ± 0.44 3.12 ± 0.38 2.34 ± 0.64 2.83 ± 0.55 1.38 ± 0.19 
13-CC-2° 1.60 ± 0.36 1.74 ± 0.24 0.98 ± 0.27 1.47 ± 0.69 1.49 ± 0.67 1.51 ± 0.71 

13-CZ-0° 5.92 ± 0.35 6.55 ± 0.61 4.84 ± 0.18 4.58 ± 0.36 4.65 ± 0.55 3.71 ± 0.58 

13-CZ-2° 4.52 ± 0.62 4.04 ± 0.84 2.87 ± 0.77 3.47 ± 0.72 1.69 ± 0.68 2.10 ± 0.61 
26-CC-0° 2.73 ± 0.67 3.00 ± 0.61 3.14 ± 0.31 2.48 ± 0.72 5.12 ± 0.58  5.26 ± 0.62 
26-CC-2° 1.40 ± 0.42 1.32 ± 0.34 1.68 ± 0.32 2.34 ± 0.23 2.15 ± 0.44 2.42 ± 0.22 
26-CZ-0° 3.82 ± 0.38 3.31 ± 0.44 3.33 ± 0.52 3.26 ± 0.67 3.52 ± 0.46 5.98 ± 0.45 
26-CZ-2° 3.01 ± 0.22 2.89 ± 0.41 3.40 ± 0.16 3.85 ± 0.28 2.72 ± 0.22 3.51 ± 0.39 

After the mechanical tests, the values of the forces of detaching the crowns from each other 
indicated that the component materials, the angle of the primary crown walls, but also the telescopic 
geometry dictated by the anatomical shape of the teeth analyzed have a strong influence on the 
retention forces. 

Analyzing the results of the retention forces recorded, it can be said that many of them meet the 
minimal necessary values dictated by the clinical needs [51–53,64]. Moreover, according to a study 
achieved by Stančić and Jelenković [65], the retention forces registered on a canine’s specimen is 6.5 
N, while for molars, it is 3.5 N. 

In this context, recent studies [64] highlight the advances of artificial intelligence and machine 
learning in the simulation of 3D bio-prosthetic printing, their impact on safe design, prediction, 
evaluation, and manufacturing of future generations of medical products. The evolution of 
technology allows large perspectives for the development of new materials, more performing ones, 
including in the domain of dental medicine. 

From the values recorded after the mechanical tests, it can be observed that the initial values of 
the retention force of the telescopic system manufactured for tooth 1.3 at a 2° angle are smaller than 
in the case of 0°, irrespective of the material from which the primary crown was manufactured (Figure 
6). The same observation was made in the case of the telescopic tooth system 2.6  

Figure 5. Macroscopic images of the manufactured telescopic system: primary crown made from CoCr
(a), ZrO2 (b), and secondary crown (c) of tooth 1.3 and primary crown made from CoCr (d), ZrO2 (e),
and secondary crown (f) of tooth 2.6.

3.2. Mechanical Tests—Retention Forces

A total of 120 telescopic systems divided into eight groups were evaluated in terms of retention
forces by mechanical tests. Each group contained 15 samples, and for each time interval, three samples
were attributed. The results obtained were exported and calculations were made to determine the
mean values of the retention forces and their standard deviations (Table 2).

Table 2. Retention forces registered for the telescopic systems.

Telescopic System
Retention Forces [N]

1 Cycle 30 Cycles 90 Cycles 180 Cycles 270 Cycles 360 Cycles

13-CC-0◦ 1.90 ± 0.51 2.38 ± 0.44 3.12 ± 0.38 2.34 ± 0.64 2.83 ± 0.55 1.38 ± 0.19
13-CC-2◦ 1.60 ± 0.36 1.74 ± 0.24 0.98 ± 0.27 1.47 ± 0.69 1.49 ± 0.67 1.51 ± 0.71
13-CZ-0◦ 5.92 ± 0.35 6.55 ± 0.61 4.84 ± 0.18 4.58 ± 0.36 4.65 ± 0.55 3.71 ± 0.58
13-CZ-2◦ 4.52 ± 0.62 4.04 ± 0.84 2.87 ± 0.77 3.47 ± 0.72 1.69 ± 0.68 2.10 ± 0.61

26-CC-0◦ 2.73 ± 0.67 3.00 ± 0.61 3.14 ± 0.31 2.48 ± 0.72 5.12 ± 0.58 5.26 ± 0.62
26-CC-2◦ 1.40 ± 0.42 1.32 ± 0.34 1.68 ± 0.32 2.34 ± 0.23 2.15 ± 0.44 2.42 ± 0.22
26-CZ-0◦ 3.82 ± 0.38 3.31 ± 0.44 3.33 ± 0.52 3.26 ± 0.67 3.52 ± 0.46 5.98 ± 0.45
26-CZ-2◦ 3.01 ± 0.22 2.89 ± 0.41 3.40 ± 0.16 3.85 ± 0.28 2.72 ± 0.22 3.51 ± 0.39

After the mechanical tests, the values of the forces of detaching the crowns from each other
indicated that the component materials, the angle of the primary crown walls, but also the telescopic
geometry dictated by the anatomical shape of the teeth analyzed have a strong influence on the
retention forces.

Analyzing the results of the retention forces recorded, it can be said that many of them meet the
minimal necessary values dictated by the clinical needs [51–53,64]. Moreover, according to a study
achieved by Stančić and Jelenković [65], the retention forces registered on a canine’s specimen is 6.5 N,
while for molars, it is 3.5 N.

In this context, recent studies [64] highlight the advances of artificial intelligence and machine
learning in the simulation of 3D bio-prosthetic printing, their impact on safe design, prediction,
evaluation, and manufacturing of future generations of medical products. The evolution of technology
allows large perspectives for the development of new materials, more performing ones, including in
the domain of dental medicine.

From the values recorded after the mechanical tests, it can be observed that the initial values of
the retention force of the telescopic system manufactured for tooth 1.3 at a 2◦ angle are smaller than in
the case of 0◦, irrespective of the material from which the primary crown was manufactured (Figure 6).
The same observation was made in the case of the telescopic tooth system 2.6
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Figure 6. Evolution of the retention forces as a function of the materials used for manufacturing the
telescopic system. (a) tooth 1.3—taper angle 0◦; (b) tooth 1.3—taper angle 2◦; (c) tooth 2.6—taper angle
0◦ and (d) tooth 2.6—taper angle 2◦.

From the visible differences between the values obtained in the mechanical tests, it appears that
the shape of the telescopic system (anatomically dictated by the shape of the tooth) also plays an
important role in its performance over time, the systems being affected in different ways of wear.

For tooth systems 1.3, the forces recorded after 360 cycles to simulate use for one year were
inferior to those initially recorded after the first detach of the crowns; while tooth 2.6 had the opposite
performance, the forces have increased with the passage of time. This is due to their shape, because in
the case of the tooth 2.6, the walls’ contact surfaces are much larger, and the friction points through
which the crown coupling is made, in time, shifted into friction surfaces, requiring a greater force
to separate them, unlike the case of the crowns of tooth 1.3, where the contact surfaces are smaller.
The taper angle of the primary crown walls also affected the retention forces, and higher values were
required for detaching the systems with an angle of 0◦ than for 2◦, both initially and after 360 cycles.

One of the main aspects that the present study has highlighted, is that, regardless of the tooth
position on the arcades or taper angle, it is obvious that the telescopic system made from ZrO2 for the
primary crown and the Co–Cr alloy for the secondary crown registered the highest values, indicating
an enhanced behavior in terms of retention forces (Figure 7).
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Figure 7. Evolution of the retention forces as a function of the tapper angle used in the manufacturing
the telescopic system. (a) tooth 1.3—Co–Cr alloy for both crowns; (b) tooth 1.3—Co-Cr alloy for
secondary crown and ZrO2 for primary crown; (c) tooth 2.6—Co–Cr alloy for both crowns and (d) tooth
2.6 —Co–Cr alloy for secondary crown and ZrO2 for primary crown.

In terms of crown materials, zirconia primary crown systems have registered higher forces than
those with both Co–Cr alloy crowns, suggesting that they are more feasible for the use of telescopic
systems. The values of the forces recorded for the Co–Cr system are largely within the range of 1–3 N,
which are rather low values, that could cause potential problems during use. This could be explained
through the usage of a hard and wear resistant primary crown material (ZrO2) against a less hard
secondary crown material (Co–Cr), as in the metal-ceramic biomaterials coupling, which may be
considered advantageous.

If we also take into consideration the taper angle of the telescopic system, it is obvious that
the retention force has increased when the angle decreased in all samples. This finding is in strong
correlation with other literature studies [61,65–67]. According to Langer [7,54], in the double-crown
systems with a taper angle, the compressive stress is induced by the primary crown, which acts like a
wedge due to the occlusal force. A higher angle between the primary and secondary crown leads to a
lower compressive force.

The values of the forces for tooth 1.3 decreases after the 360 cycles, while for tooth 2.6, they had
grown regardless of the taper angle at which the telescopic system was designed. The variations
in the retention forces recorded during the tests are probably due to friction wear products, the
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formation of new contact micro-zones and/or the modification/disappearance of existing ones between
the components of the telescopic system.

3.3. Identification of Contact Areas between the Primary and Secondary Crowns

After the samples were subjected to mechanical tests to evaluate the retention forces by mechanical
traction tests, they were macroscopically analyzed (visual inspection of the crown surfaces: naked eye
and using magnifying glass/×3.5) in order to study the wear traces that appeared as a result of the
cycles performed. The surfaces were compared with those obtained initially to observe the differences
arising from the wear process.

Following the first set of 30 cycles that is the equivalent of 1 month, very few differences occurred,
and only small scratches were observed. Wear traces were not identified even on the second set of
cycles for the simulation of 3 months (90 cycles). Commencing with 180 cycles (6 months simulation),
traces left on the crown surface start being more obvious. The same phenomenon was encountered for
the samples tested for 270 cycles (9 months simulation).

The macroscopic images of the crowns surface of the telescopic systems subjected to mechanical
tests, simulating 360 cycles showed defects in the form of scratches on large surfaces and with depths
greater than those previously exposed by the wear process. Nevertheless, all wear traces identified
on the surfaces examined are due to the friction between the primary and secondary crowns of the
telescopic system and are indicated by arrows in Figure 8. Wear traces differ not only in the number of
cycles but also as a function of the material. Telescopic systems with zirconia primary crowns generally
presented fewer and smaller defects, often two or three, and were positioned in the upper surface of
the contact walls, compared to the telescopic systems composed of Co–Cr, where scratches were visible
on the entire surface of the contact walls. These traces are due to the different level of material hardness
used to manufacture the primary and secondary crowns, components of the telescoping system.

Thus, it can be said that zirconia primary crown telescopes presented more advantages, compared
to Co–Cr alloy primary crowns, especially in terms of the retention forces evolution, but also of the
wear and friction suffered during the period of 360 cycles test (approximately one year of use). From a
clinical point of view, the present study can open new perspectives in terms of biomaterials that can be
used for manufacturing the telescopic systems, and which taper angle can offer an overall higher and
more adequate behavior.
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Figure 8. Macroscopic aspect of the telescopic system after the mechanical tests for 360 cycles (the
arrows indicate the wear traces). (a) tooth 1.3 with taper angle of 0◦ and 2◦, respectively and (b) tooth
2.6 with taper angle of 0◦ and 2◦, respectively.

4. Conclusions

The results obtained in this study indicate that the retention forces corresponding to the telescopic
systems in which the primary crown is made of zirconia registered the highest values, comparing
to the ones corresponding to the telescopic systems with Co–Cr primary crowns. Furthermore, the
evolution of the retention forces and wear resistance during the 360 cycles (representing the equivalent
of one-year usage of the system) is favorable for the zirconia telescopic primary crowns.

Moreover, by using zirconia-based ceramic as the material of choice for the development of
primary crowns, some limitations, such as unaesthetic aspects that are usually associated with metallic
materials [68], can be overcome. Thus, by using a telescopic system made from zirconia as primary
crown and Co–Cr as material for the secondary crown several enhancements can be brought in both
aesthetic and functionality terms.

All the telescopic systems studied highlighted that by using a taper angle of 2◦, the retention force
decreases, irrespective of the materials used for the fabrication of the primary crown, indicating that by
using a taper angle of 0◦, which is known to be ideal, a more efficient and reliable prosthesis can be
developed. Even though the ceramic–metallic telescopic system exhibited the best retention, it is worth
mentioning that all the double crowns evaluated have registered values between 2–7 N, indicating that
they are suitable for clinical use.

Nevertheless, further investigations of these aspects require intraoral follow-up studies, in terms
of retention force evaluation combined with monitoring of the patient level of satisfaction.
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65. Stančić, I.; Jelenković, A. Retention of telescopic denture in elderly patients with maximum partially
edentulous arch. Gerodontology 2008, 25, 162–167. [CrossRef] [PubMed]

66. Aranda Yus, E.; Cantarell, J.M.A.; Miñarro Alonso, A. Comparison of the marginal fit of milled yttrium
stabilized zirconium dioxide crowns obtained by scanning silicone impressions and by scanning stone
replicas. J. Adv. Prosthodont. 2018, 10, 236. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.prosdent.2014.05.002
http://dx.doi.org/10.1016/j.matchemphys.2018.09.063
http://dx.doi.org/10.4028/www.scientific.net/KEM.583.163
http://dx.doi.org/10.3390/app9040811
http://dx.doi.org/10.1016/S0022-3913(13)60325-X
http://dx.doi.org/10.1016/j.jmbbm.2017.01.042
http://dx.doi.org/10.1016/S0022-3913(99)70107-1
http://dx.doi.org/10.1016/0022-3913(78)90116-6
http://dx.doi.org/10.1111/j.1532-849X.2012.00897.x
http://dx.doi.org/10.1016/j.msec.2012.04.025
http://www.ncbi.nlm.nih.gov/pubmed/24364945
http://dx.doi.org/10.4012/dmj.2010-011
http://www.ncbi.nlm.nih.gov/pubmed/21099161
http://dx.doi.org/10.4012/dmj.2016-258
http://www.ncbi.nlm.nih.gov/pubmed/28228628
http://dx.doi.org/10.1007/s00784-009-0315-z
http://dx.doi.org/10.1055/s-0039-1697833
http://dx.doi.org/10.1016/j.jmbbm.2015.06.020
http://dx.doi.org/10.1002/adhm.201901862
http://www.ncbi.nlm.nih.gov/pubmed/32627972
http://dx.doi.org/10.1111/j.1741-2358.2007.00204.x
http://www.ncbi.nlm.nih.gov/pubmed/18194328
http://dx.doi.org/10.4047/jap.2018.10.3.236
http://www.ncbi.nlm.nih.gov/pubmed/29930794


Materials 2020, 13, 4814 16 of 16

67. Bayer, S.; Zuziak, W.; Kraus, D.; Keilig, L.; Stark, H.; Enkling, N. Conical crowns with electroplated gold
copings: Retention force changes caused by wear and combined off-axial load. Clin. Oral Implants Res. 2011,
22, 323–329. [CrossRef] [PubMed]

68. Hadyaoui, D.; Daouahi, N.; Nouira, Z.; Cherif, M. Gingival Harmony in Anterior Aesthetic Restorations.
Dent. J. 2014, 2, 155–162. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1600-0501.2010.02003.x
http://www.ncbi.nlm.nih.gov/pubmed/20868454
http://dx.doi.org/10.3390/dj2040155
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Morphology and Chemical Composition 
	Mechanical Tests—Retention Forces 
	Identification of Contact Areas between the Primary and Secondary Crowns 

	Conclusions 
	References

