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Abstract

Initial studies using resting-state functional magnetic resonance imaging on the trajectories

of the brain network from childhood to adulthood found evidence of functional integration

and segregation over time. The comprehension of how healthy individuals’ functional

integration and segregation occur is crucial to enhance our understanding of possible devia-

tions that may lead to brain disorders. Recent approaches have focused on the framework

wherein the functional brain network is organized into spatially distributed modules that

have been associated with specific cognitive functions. Here, we tested the hypothesis that

the clustering structure of brain networks evolves during development. To address this

hypothesis, we defined a measure of how well a brain region is clustered (network fitness

index), and developed a method to evaluate its association with age. Then, we applied this

method to a functional magnetic resonance imaging data set composed of 397 males under

31 years of age collected as part of the Autism Brain Imaging Data Exchange Consortium.

As results, we identified two brain regions for which the clustering change over time, namely,

the left middle temporal gyrus and the left putamen. Since the network fitness index is asso-

ciated with both integration and segregation, our finding suggests that the identified brain

region plays a role in the development of brain systems.

Introduction

The transition from childhood to adulthood involves major changes in cognitive and emo-

tional functions. These changes are driven by continuous dynamic interactions between

genetic profiles and environmental factors, which impact the structural and functional brain

networks [1–3]. Current evidence suggests that such neurodevelopmental changes are the

result of synaptic pruning and myelination [4–6]. Investigating developmental effects on func-

tional networks is fundamental to better understanding cognition maturation, the hierarchical

structure of neural circuitries [2], and the association between neural substrates and many psy-

chiatric and neurological disorders [7–10].

PLOS ONE | https://doi.org/10.1371/journal.pone.0195906 May 24, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Guzman GEC, Sato JR, Vidal MC, Fujita A

(2018) Identification of alterations associated with

age in the clustering structure of functional brain

networks. PLoS ONE 13(5): e0195906. https://doi.

org/10.1371/journal.pone.0195906

Editor: Satoru Hayasaka, University of Texas at

Austin, UNITED STATES

Received: October 24, 2017

Accepted: April 2, 2018

Published: May 24, 2018

Copyright: © 2018 Guzman et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data were

obtained by the authors from the Autism Brain

Imaging Data Exchange ABIDE Consortium (http://

fcon_1000.projects.nitrc.org/indi/abide/). To

download the dataset, one should register to

NITRC (http://fcon_1000.projects.nitrc.org/indi/

req_access.html) and then search for the 1000

Functional Connectomes Project. There are no

restrictions or barriers that prevents the

consortium’s data from being made publicly

available and co-authorship is not required to gain

access to the data set. The consortium ensures

that the data are stable and will be made available

https://doi.org/10.1371/journal.pone.0195906
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195906&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195906&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195906&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195906&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195906&domain=pdf&date_stamp=2018-05-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0195906&domain=pdf&date_stamp=2018-05-24
https://doi.org/10.1371/journal.pone.0195906
https://doi.org/10.1371/journal.pone.0195906
http://creativecommons.org/licenses/by/4.0/
http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/req_access.html
http://fcon_1000.projects.nitrc.org/indi/req_access.html


In several neuroimaging studies, the human brain has been generally modeled as a func-

tional network (graph) composed of regions of interest (vertices) and their connections

(edges). Pioneering studies based on resting-state protocol and functional magnetic resonance

imaging (fMRI) investigated the trajectories of brain networks from childhood to adulthood

and identified evidence of an age-evolving functional integration and segregation [11, 12].

These studies found that during the developmental process, the organization of functional net-

works evolves from a local to a distributed architecture, mainly with regard to long-range con-

nections [7, 12]. In addition, other studies have suggested that children present stronger

subcortical-cortical and weaker cortical-cortical connectivity than young adults do [1, 13]. As

concluded in a review written by [14], who combined results from [12, 13, 15, 16], there is evi-

dence of greater functional segregation in childhood and increased integration in adulthood.

Recent approaches have focused on the hypothesis that the functional brain network is

organized into spatially distributed clusters (sets of vertices that are more tightly connected

within a module and less connected to the vertices of other modules) that are associated with

specific cognitive functions [17–19]. Some examples of these modules are the visual, default

mode, cognitive control, motor, and auditory systems, usually identifiable using resting-state

fMRI protocols in groups of subjects.

Several studies have suggested that this modular structure evolves across the life span [20,

21]. For example, [15, 22, 23] investigated the influence of typical trajectories on the modular

structure of brain networks. [22] focused on adulthood (from 25 to 65 years of age) while [15]

focused on adolescence and early adulthood (from 7 to 31 years of age). [20, 21, 24, 25] identi-

fied regions with linear and quadratic trajectories from childhood to adulthood by separately

analyzing intra- and inter-modular connectivity. In a study based on a sample of 780 American

youths (8 to 22 years old), [25] have demonstrated that brain functional connectivity is subject

to a process of modular evolution, balancing within- and between-module connections. This

study also showed that individual variability predicts cognitive performance. Moreover, in a

review study of functional connectivity in resting-state fMRI, [26] concluded that developmen-

tal changes occur through segregation processes of local regions and integration of distant

regions from distinct brain modules.

However, since there is evidence that integration and segregation processes are age

dependent, the relevance of a brain region to each functional module could be different in

childhood, adolescence, and adulthood. As a hypothetical example, one region could present

an increased/decreased integration with a module when the individual gets older. However,

studies exploring the age dependence of the goodness-of-fit of brain regions into a functional

cluster are, to the best of our knowledge, scarce to nonexistent. One challenge in addressing

this point is the lack of a proper methodological framework to analyze the data through this

cluster analysis perspective. Most studies describe developmental changes in integration/segre-

gation by using seed-based or independent components analyses.

In the current study, we tested the hypothesis that some brain regions change in terms of

clustering structure across neurodevelopment (thus, an alternative manner to analyze segrega-

tion/integration during development). To investigate this hypothesis, we: (i) first defined an

index that measures how well one region of interest (ROI) is clustered (i.e., a network fitness

index) in its respective sub-system; and (ii) we identified the ROIs in which this index is associ-

ated with age. The intuitive idea is that, if the network fitness index of a region is altered across

neurodevelopment, then this region presents an altered connectivity within its module (segre-

gation) and also between regions belonging to other modules (integration). Finally, we applied

this method to a large fMRI dataset composed of 397 males under 31 years of age (6.47–30.78

years) collected from the Autism Brain Imaging Data Exchange (ABIDE) Consortium.
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Materials and methods

The data pre-processing, the construction of functional networks, and the clustering approach

used here are similar as those described in our previous studies [27, 28] using the ABIDE data-

set. We briefly describe them in the following sub-sections.

Data description and pre-processing

An fMRI dataset composed of 1112 individuals was downloaded from the ABIDE Consortium

website (http://fcon_1000.projects.nitrc.org/indi/abide/). The research performed at the

ABIDE contributing sites complied with Health Insurance Portability and Accountability Act

(HIPAA) guidelines and the 1000 Functional Connectomes Project/International Data-shar-

ing Initiative protocols. All data distributed via the ABIDE website were fully anonymized in

compliance with the HIPAA privacy rules, and no protected health information was included.

To study how the clustering structure evolves over development, we excluded 367 individuals

diagnosed with autism spectrum disorder (ASD), 57 without ASD subtype classification, all

the 141 females, and 33 older than 31. To pre-process the fMRI data, we used the Athena pipe-

line (http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline), which

excluded 10 subjects. To minimize the effects of head movement during magnetic resonance

scanning, we used the “scrubbing” procedure proposed by [29] and used in several other

works [30–33]. Volumes with frame-wise displacement (FD) or temporal derivative of the root

mean square (RMS) variance larger than the 95% percentile were excluded (two individuals).

One hundred and five individuals with less than 100 volumes after scrubbing were also

excluded. Thus, the final dataset used in our analysis was composed of 397 males (mean

age ± standard deviation, 16.29 ± 5.61 years) distributed along 19 datasets collected from

16 international sites (there is more than one dataset per site) of the ABIDE Consortium

(Table 1). All data collection was conducted with local internal review board approval and in

accordance with local internal review board protocols. For further details about this dataset,

refer to the ABIDE Consortium website.

Functional connectivity networks

To define the regions of interest (ROIs), we used the CC400 atlas [34]. Thirty-five ROIs includ-

ing the ventricles were identified by using the MNI atlas and removed, leaving 316 ROIs. The

average time-series signal of all voxels belonging to a ROI was considered to be representative

of the region. The functional brain network for each subject was constructed by estimating

the Pearson’s correlation coefficient among the 316 ROIs (i.e., the similarity matrices Mt for

t = 1, . . ., 397), and the site effects (different fMRI recording sites) were removed using a gen-

eralized linear model with the Pearson’s correlation coefficient as the response variable and

the site as an independent covariate. Residues of this model were considered to be the Pear-

son’s correlation coefficients without the site effect. Then, we discarded negative correlations

as described by [12, 31, 35–37]. Finally, the average functional network ( �M) was constructed

by calculating the average of the Pearson’s correlation coefficients (covariated by site). The

average functional network �M will be used in Clustering analysis section to obtain a reference

clustering structure.

Silhouette statistic

The silhouette statistic was proposed in 1987 by [38] to estimate the number of clusters in a

dataset. The interpretation of this statistic is that it quantifies how well a specific item is fitted

to the cluster it was assigned to by the clustering algorithm. In other words, the silhouette
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statistic is a measure of the goodness-of-fit of the obtained clustering structure. Thus, the num-

ber of clusters that maximize the silhouette statistic is the suggested number of modules in the

dataset.

The silhouette statistic can be formalized as follows. Let X = {x1, . . ., xn} be the ROIs that are

clustered into C = {C1, . . ., Ck} clusters (sub-networks) by the spectral clustering algorithm

(X ¼
Sk

q¼1
Cq) [39]. Let d(x, y) be the dissimilarity between ROIs x and y (one minus the Pear-

son’s correlation coefficient between x and y), and let |C| be the number of ROIs of C. Then,

we define the average dissimilarity of x to all ROIs of cluster C� X as follows:

dðx;CÞ ¼
1

jCj

X

y2C

dðx; yÞ: ð1Þ

Denote by Dq 2 C the cluster to which xq has been assigned by the clustering algorithm and

by Eq 2 C any other cluster different from Dq, for all q = 1, . . ., n. Let aq be the dissimilarity of

xq to the cluster to which it was assigned to and bq be the minimum dissimilarity of xq among

all other clusters different from the cluster that it was assigned to by the algorithm. In other

words, we have the following:

aq ¼ dðxq;DqÞ and bq ¼ min
Eq 6¼Dq

dðxq;EqÞ; for q ¼ 1; . . . ; n: ð2Þ

Then, the silhouette statistic is defined as:

Sq ¼

bq � aq
maxfbq;aqg

if jDqj > 1

0 if jDqj ¼ 1

8
<

:
ð3Þ

Table 1. Demographic summaries for all datasets provided by the ABIDE Consortium. SD: standard deviation.

Dataset Site Male

n age (mean ± SD) range

1 Caltech 9 21.89 ± 3.26 17.00–27.90

2 CMU 7 23.86 ± 2.79 21.00–27.00

3 KKI 21 10.23 ± 1.37 8.39–12.77

4 Leuven 15 23.27 ± 2.91 18.00–29.00

5 Leuven 15 14.60 ± 1.62 12.20–16.90

6 MaxMun 18 22.06 ± 6.86 7.00–30.00

7 NYU 78 15.75 ± 5.99 6.47–30.78

8 Olin 14 16.86 ± 3.82 10.00–23.00

9 Pitt 21 18.05 ± 5.70 9.44–30.66

10 SBL 5 25.40 ± 3.05 20.00–27.00

11 SDSU 15 14.47 ± 1.35 12.58–16.60

12 Stanford 16 10.19 ± 1.66 8.25–12.43

13 Trinity 23 17.48 ± 3.66 12.04–25.66

14 UCLA 19 13.41 ± 1.99 9.50–17.78

15 UCLA 5 12.28 ± 1.54 9.79–13.63

16 UM 38 13.73 ± 3.28 8.20–18.90

17 UM 21 16.73 ± 3.96 13.30–28.80

18 USM 37 19.78 ± 5.62 9.92–29.97

19 Yale 20 12.34 ± 2.79 7.66–17.83

https://doi.org/10.1371/journal.pone.0195906.t001
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The interpretation of the silhouette statistic is as follows [38]: if sq� 1, then aq� bq, i.e., the

distance of ROI xq to the cluster it was assigned to is smaller than the smallest dissimilarity

between xq and other clusters. In other words, the ROI xq has been assigned to an appropriate

cluster because the second-best choice cluster is not as close as the actual cluster. If sq� −1, it

means that aq� bq, i.e., the ROI xq lies much closer to the second-best choice cluster than to

the cluster that this item was assigned to by the clustering algorithm. Hence, it is more natural

to assign the ROI xq to the second-best choice cluster than to the actual cluster because this

ROI xq has been “misclassified”. Finally, if sq� 0, then aq� bq; therefore, it is not clear whether

xq should have been assigned to the actual cluster or to the second-best cluster because it lies

equally far away from both. Based on these interpretations (goodness-of-fit), we will define the

silhouette statistic sq as the Network Fitness Index (NFI).

Clustering analysis

To identify the ROIs associated with age in terms of functional clustering, we developed a

framework based on the NFI. We describe our problem in the following way: let n be the num-

ber of ROIs, t be the number of subjects, and M1, . . ., Mt be (n × n) similarity matrices repre-

senting the functional brain networks, with a column vector age = [age1, . . ., aget]
> containing

the ages of each subject. We would like to identify the ROIs that cluster in a different manner

in accordance with age. To calculate the NFI for each ROI of each subject, it is necessary to

apply a common reference clustering structure (the clustering label of the ROIs) to all individ-

uals. Thus, we applied the spectral clustering algorithm [39] on the similarity matrix �M to

obtain the reference k sub-networks (clusters) C = {C1, . . ., Ck}. Briefly, to cluster the ROIs into

k modules, the spectral clustering algorithm selects the k eigenvectors associated with the k
smallest eigenvalues of the similarity matrix �M and uses them as k-dimensional points. Then,

the k-means clustering algorithm is applied to these k-dimensional points. Here, rather than

using the usual k-means algorithm inside the spectral clustering, we used the k-medoids algo-

rithm because the latter is more robust to outliers than the former [40]. Similar to other clus-

tering algorithms, the spectral clustering algorithm also requires the number of clusters k as an

input. We estimated the number of clusters by using the silhouette criterion, i.e., the number

of clusters that maximizes the silhouette statistic [38].

Identification of brain regions associated with age

The identification of ROIs associated with age regarding their clustering structure was per-

formed using a generalized linear model (GLM) with the NFI as the response variable and age

as the predictor variable in each site with more than 30 subjects separately (because the ABIDE

data set is known to present site effects, i.e., different scanners and acquisition protocols). To

remove the effect of the proportion of volumes removed by the “scrubbing” procedure, we

included it as a covariate. To combine the p-values obtained from the different sites we carried

out the Fisher’s method (meta analysis). ROIs presenting differences in nominal p-values

greater than 5% between results obtained in data with and without “scrubbing” were dis-

carded. A p-value threshold of 5% after correction for multiple tests by the false discovery rate

(FDR) procedure [41] on data with “‘scrubbing” was considered to be statistically significant.

The whole pipeline is summarized in Fig 1.

To further understand how the clustering structure changes at different neurodevelopmen-

tal stages, we divided the data into three groups, namely, children (subjects with ages between

6 and 13), adolescents (subjects with ages between 13 and 18), and adults (subjects with ages

between 18 and 31): (i) 56 children (mean age ± standard deviation, 10.59 ± 1.61), (ii) 46 ado-

lescents (15.72 ± 1.28), and (iii) 51 adults (22.85 ± 3.94).
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Results

We pre-processed the fMRI data and constructed the functional brain networks as described

in the “Materials and Methods” section. To select the number of clusters, we used the

Fig 1. Data analysis pipeline. First, functional connectivity (FC) networks were constructed by estimating the Pearson’s correlation

coefficient between ROIs. Second, the spectral clustering algorithm was applied to the average functional network to obtain the sub-

networks (clusters). Then, the network fitness index (NFI) was calculated for each ROI. To identify the ROIs associated with age, we

modeled the NFI using a generalized linear model with the number of volumes removed by the “scrubbing” procedure as a covariate.

This procedure was applied to data with and without “scrubbing” per site. P-values of different sites were combined by using the

Fisher’s method. ROIs that presented a difference in nominal p-values greater than 5% were excluded. The remaining p-values were

corrected for false discovery rate. ROIs with a corrected p-value lower than 5% in the scrubbed data were considered to be associated

with age.

https://doi.org/10.1371/journal.pone.0195906.g001
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silhouette criterion [38]. Note that the highest value for the silhouette statistic is obtained

when the number of clusters is k = 5 (Fig 2). Therefore, we set the number of clusters to k = 5,

which is the estimated value by the silhouette statistic and also consistent with other reports

[18, 19, 42]. The five sub-networks identified by the spectral clustering algorithm [39] are illus-

trated using different colors in Fig 3, namely the cerebellar network (CeN), default mode net-

work (DMN), fronto-parietal network (FPN), somatomotor network (SN), and visual network

(VN). We also analyzed when the number of clusters is set to k = 4 due to the similar silhouette

statistic. In this case, the default mode and fronto-parietal networks become only one cluster,

and the cerebellar system included part of the default mode network (S1 Fig). Thus, we consid-

ered k = 5 for further analyses.

Then, the identification of the ROIs associated with age was performed on data with and

without “scrubbing”. Eighty-five ROIs presenting a difference in nominal p-values greater

than 5% between the analysis of data with and without “scrubbing” were excluded (high differ-

ences in p-values with and without scrubbing means that they are highly affected by head

movement). Finally, the p-values for the remaining 231 ROIs were corrected for multiple tests

using the FDR procedure [41]. ROIs with p< 0.05 (after correction) were considered as statis-

tically significant.

Only two ROIS presented clustering goodness-of-fit associated with age, namely the left

middle temporal gyrus and the left putamen (Fig 4). Fig 5 illustrates the associations between

age and the network fitness index (NFI—a measure of goodness-of-fit of the ROI in the clus-

ter) for both ROIs. Note that the NFI is negatively associated with age (the slopes are −0.005

with p< 0.001 for the left middle temporal gyrus and −0.007 with p< 0.001 for the left puta-

men). In other words, both ROIs tend to integrate with other brain systems (clusters) from

childhood to adulthood.

Additionally, we calculated the proportion of subjects assigned to each brain module in

each neurodevelopmental stage (children, adolescents, and adults) (Fig 6). By analyzing Fig 6,

it is clear that the left putamen gradually diverges from the sensorimotor network to become

Fig 2. Application of the silhouette statistic to estimate the number of sub-networks. The x and y axes represent the

number of clusters and the silhouette statistic, respectively. Note that the largest silhouette statistic is obtained when

the number of clusters is equal to five. In other words, the silhouette statistic suggests clustering the brain functional

network into five sub-networks.

https://doi.org/10.1371/journal.pone.0195906.g002
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Fig 3. Three-dimensional views and sagittal slices of the entire brain. The five sub-networks obtained by the spectral clustering

algorithm, namely, cerebellar, default mode, fronto-parietal, somatomotor, and visual, are discriminated by different colors. L: Left; R:

Right.

https://doi.org/10.1371/journal.pone.0195906.g003

Fig 4. ROIs associated with age. The left middle temporal gyrus and the left putamen are highlighted in different

colors. L: left; R: right.

https://doi.org/10.1371/journal.pone.0195906.g004
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more integrated with the cerebellar system during development. Additionally, after childhood,

the left middle temporal gyrus starts diverging from the default mode network to also partici-

pate in other systems, particularly, the somatomotor network.

Fig 7 shows how the NFI changes over each developmental stage (childhood, adolescence,

adulthood). For the left putamen, in fact the NFI decreases as the age increases. In other

words, it corroborates the results obtained in Figs 4 and 5 that the left putamen is clustered in

a different manner along neurodevelopment (and not in a specific transition between two

stages). Furthermore, the same effect is observed in the left middle temporal gyrus.

To certify that these results are not due to numerical fluctuations or another source of error

that was not taken into account, we verified the control of the type I error. The ages of the indi-

viduals were permuted and the association between the NFI and age re-calculated for the left

Fig 5. Fitted line obtained for the left middle temporal gyrus and the left putamen. The x and y axes represent the

age in years and the network fitness index (NFI), respectively. Note that the NFIs are negatively associated with age in

both ROIs. The slopes are −0.005 with p< 0.001 for the left middle temporal gyrus and −0.007 with p< 0.001 for the

left putamen.

https://doi.org/10.1371/journal.pone.0195906.g005

Fig 6. The proportion of subjects that present the left middle temporal gyrus and the left putamen assigned to a

specific cluster in each neurodevelopmental stage (children, adolescents, and adults). CeN: cerebellar network;

DMN: default mode network; FPN: fronto-parietal network; SN: somatomotor network; and VN: visual network.

https://doi.org/10.1371/journal.pone.0195906.g006
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middle temporal gyrus and left putamen. This procedure was repeated 1000 times. The pro-

portion of falsely rejected null hypothesis for p-values lower than 1, 5, and 10% were 1.1, 3.7,

and 10%, respectively for the left middle temporal gyrus and 0.5, 4.5, and 10.7%, respectively

for the left putamen. Therefore, these results confirm that the type I error is effectively con-

trolled in this data set.

To exclude the possibility that our results are due to unbalanced data (the number of

individuals in the three sites used to estimate the association between NFI and age are 56

children, 46 adolescents, and 51 adults, i.e., a lower number of adults when compared to the

set children + adolescents), we carried out the following experiment. We randomly re-sam-

pled (with replacement) the same number of adults and children + adolescents, i.e., 51

adults and 51 from the set children + adolescents. Then, we performed the regression

between NFI and age. We repeated this procedure 100 times and estimated the slope and

respective p-value for the left middle temporal gyrus and the left putamen. The number of

times that the slope’s p-values were lower than 5, 1, and 0.1% were 99, 91, 49 for the left mid-

dle temporal gyrus, and 100, 96, 59 for the left putamen. Therefore, these results suggest that

the significant relationships between NFI and age in these two ROIs are not due to unbal-

anced data.

Discussion

In the current study, we performed a whole brain functional network analysis to identify

regions that are differentially clustered among childhood, adolescence, and adulthood. Func-

tional connectivity was identified by using the Pearson’s correlation coefficient. We defined

the sub-networks by applying the spectral clustering algorithm, namely, the cerebellar network

(CeN), default mode network (DMN), fronto-parietal network (FPN), somatomotor network

(SN), and visual network (VN). These five modules are very similar to those that we identified

in our previous studies [27, 28] using other subsets of the ABIDE dataset.

The left putamen (Fig 4) identified as exhibiting significant age effects on clustering net-

work fitness index (NFI) presented a reduction in the NFI over development (Fig 4), suggest-

ing that this region may function as inter-system bridge with age. An increase in the inter-

modular connectivity could be explained by the increasing connections between other

Fig 7. The average and 95% confidence intervals (represented by error bars) of the network fitness index for the

left middle temporal gyrus and the left putamen in each developmental stage. The error bars represent the 95%

confidence intervals.

https://doi.org/10.1371/journal.pone.0195906.g007
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modules through myelination of the brain pathways [43]. The putamen is well established as

an associative region. Thus, it is reasonable to expect developmental effects on this region,

mainly regarding its role as integrative region in the overall brain network. The putamen, an

element of the basal ganglia, is a hub that connects many systems, and it is involved in several

functions, such as motor control [44], learning [45], and motivational outcomes of action [46].

Previous studies have investigated developmental effects on functional integration and segre-

gation [14] by using centrality measures. However, none of them were based on the analysis

of the evaluation of the quality of modular organization (i.e., clustering goodness-of-fit). Fig 6

suggests that during development, the left putamen becomes more integrated with the

cerebellum. To the best of our knowledge, this is the first study to report this finding. Notably,

it is well established in the literature that the putamen plays different roles in motor control

[47].

Similarly, the left middle temporal gyrus, an associative region well established in cognitive

processes involving memory, was also found to present a reduction in NFI. This finding points

out that this region plays a role in integrating the DMN and other subsystems. However, fur-

ther studies are necessary to understand the role of temporal regions in the dynamics of other

brain systems, but this result is in agreement with previous neurodevelopmental studies

reporting that DMN organization changes during childhood establishing long-range connec-

tions [7, 12, 15].

As limitations of the current study, we first note that head movement during fMRI scanning

may affect functional connectivity estimates in developmental studies [29, 48] by increasing

short-distance correlations (between blood oxygen level-dependent signals) and decreasing

long-distance correlations. Thus, to minimize the effects of head movement in our analyses,

we applied the “scrubbing” procedure proposed by [29] and adopted a conservative approach,

i.e., we discarded any ROI with difference in p-values greater than 5% between data with and

without scrubbing. Since this is a developmental sample, we preferred to discard any findings,

which could potentially be altered by scrubbing. Moreover, we included the proportion of

scrubbed volumes in each subject as a covariate in the GLM model. The rationale is that indi-

vidual realignment at preprocessing and scrubbing may not be completely eliminated due to

non-linear artifactual components. It is important to remark that data scrubbing impacts the

p-values associated with functional connections, by reducing the evidence against the null

hypothesis. Thus, our approach based on p-values instead of the correlation coefficient is con-

servative. Second, note that the dataset is cross-sectional, whereas longitudinal data would be

more appropriate for determining neurodevelopmental trajectories and also to identify the

subgroup of subjects that presents the characteristics observed here. However, cross-sectional

data are sufficient to demonstrate age effects on brain organization. Finally, the data were col-

lected from 16 different sites, which may have used different scanners and protocols. For these

reasons, we analyzed each site independently and also included the site as a covariate in GLM

to minimize its effects.

Conclusion

In conclusion, we identified two regions with NFI associated with age and that maybe more

integrated with other brain system, perhaps playing the role as a bridge between multiple sys-

tems. However, additional studies based on diffusion imaging and/or histology are still neces-

sary. Finally, it is important to mention that defining typical developing age effects is a crucial

first step to identifying deviant patterns that may lead to future mental disorders [49]. Possible

future studies would be the investigation of divergent patterns in clinical and sub-clinical

populations.
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Supporting information

S1 Fig. Three-dimensional views of the entire brain when the number of clusters is set to

four. The four sub-networks obtained by the spectral clustering algorithm are discriminated

by different colors. L: Left; R: Right).
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