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Abstract: Herein, ZnO nanoparticles (NPs) were synthesized using zinc acetate and an amino
hyperbranched polymer. The methods of transmission electron microscope (TEM) and X-ray
Diffraction (XRD) were applied to the characterization of ZnO NPs. Polypropylene (PP)/ZnO fiber
was prepared using 1–5 wt% ZnO NPs via melt spinning. The ultraviolet light (UV)-degradation
behavior, antibacterial activity and mechanical properties of PP fibers were characterized. The PP
fiber filled with ZnO NPs presents better mechanical properties and the resistance to UV light
degradation. For the best effect, the contents of ZnO NPs were set 4 wt% in PP fiber. FTIR analysis
shows significant photo-degradation of PP induced by UV irradiation and a remarkable reduction in
the UV degradation of the fiber filled with ZnO NPs. It is also observed that the ZnO NPs-filled fiber
has good antibacterial actives against Escherichia coli and staphylococcus aureus.
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1. Introduction

Polypropylene (PP) fiber has been extensively applied in the textile industry because of its low
cost, high strength, and resistance to chemicals. However, the physical and mechanical properties of
PP materials are much susceptible to photo-irradiation. The photo-degradation of PP macromolecules
usually results in decreased service life, limiting the application of PP fibers [1–3]. To increase the
resistance of PP fibers to ultraviolet rays and the photo-oxidative degradation, organic and inorganic
particles were used as fillers for anti-UV applications. Nevertheless, organic UV absorbers are not stable
especially at the high temperature and pressure [4–6]. Inorganic materials able to withstand harsh
process conditions such as TiO2, ZnO, MgO, MMT, and CaO have attracted wide attention. Among
them, ZnO nanoparticles (NPs) have been researched a lot because of their low price, unique physical
properties brought by the size effect, and potential applications in UV blocking materials [7–12].

As reported, ZnO as a filler can not only enhance physical and mechanical properties, but also
improve the resistance of PP materials to ultraviolet rays and microorganisms [13–15]. More recently,
the antimicrobial properties of ZnO NPs have been discovered. Compared with silver NPs, ZnO
NPs are expected to provide more affordable and safe solutions in the future [13,16–18]. Zhao et al.
studied the photodegradation characteristics of PP materials filled with ZnO NPs. The evolution of
the carbonyl absorption band at 1780 cm−1 obtained by FTIR analysis showed that UV irradiation
was more likely to cause obvious photodegradation of PP [1]. Karami et al. [14] investigated the
impacts of UV-irradiation exposure on the structure and properties of ZnO NPs-filled PP fibers.
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Both carbonyl and hydroperoxide indexes were found increasing due to the growing UV-irradiation
exposure time; moreover, PP nanocomposite fibers achieved a smaller increase in these indexes than
unfilled PP fibers. Yoann et al. [19] used ZnO NPs as a fungicide to synthesize antibacterial PP surfaces.
The ZnO-functionalized substrate exhibited an antibacterial response in Escherichia coli (E. coli) and the
antibacterial activity of ZnO-PP was significantly higher than pure PP.

Notably, ZnO NPs with large specific surface area and high surface energy are difficult to disperse
homogenously, leading to agglomeration [20–22]. In our previous study, an amino hyperbranched
polymer (HSDA) was synthesized and used to control the synthesis of ZnO NPs. It also served as a
binder to impart and fix the NPs on cellulose fabric, thereby presenting antimicrobial properties [23,24].
This research work is mainly aimed to synthesize high dispersion ZnO NPs, to develop PP/ZnO
nanocomposite fibers by melt spinning, and to investigate UV light-degradation stability, antibacterial
and mechanical properties of the prepared fibers.

2. Materials and Methods

2.1. Materials

Polypropylene powder (F401 melting temperature 163 ◦C) used was from Yangzi Petrochemical
(Yangzhou, China). Zinc acetate, lithium hydrate, and ethyl alcohol (95%) were purchased from
Guoyao Chemical Technology Co., Ltd. Shanghai, China. The hyperbranched polymers (HBP) were
prepared as described in our previous paper [23].

2.2. Preparation of ZnO NPs

Zinc acetate (1.83 g) was completely dissolved in 100 mL of the ethanol solution (95%), refluxed at
80 ◦C in the flask. After the HBP with a concentration of 2 g/L was added, the mixture was stirred in a
magnetic stirrer for 3 h. Then the lithium hydroxide ethanol solution (50mL, 0.1 mol/L) was added
dropwise into the solution, stirred for 2 h until the transparency aqueous solution turned into milky
white. Finally, ZnO precipitate was produced using a centrifuge at 12,000 rpm for 10 min.

2.3. Preparation of PP/ZnO NPs Fiber

ZnO NPs and PP granules were dried at 90 ◦C for 8 h before the PP/ZnO NPs were melt
compounded using a twin-screw extruder (KS220 L/D = 26, Ruiming Co., Ltd., Wuhan, China) at a
temperature of 160 ◦C and a screw rate of 100 rpm. The fiber passed over the godets at a constant draw
ratio (λ = 4). The concentrations of ZnO NPs in PP granules were 1%–5%, respectively. A sample of PP
was prepared under the same conditions without adding NPs for reference.

2.4. Characterization of ZnO NPs

The morphology and lattice characteristics of ZnO NPs were characterized by transmission
electron microscopy (TEM) (2010, JEOL, Tokyo, Japan). The crystalline phases of ZnO NPs were
analyzed by X-ray diffraction (XRD) (Philips, Amsterdam, The Netherlands) via a CuKα X-ray source
at a voltage and current of 40 kV and 30 mA respectively. The UV absorption properties of ZnO NPs
were determined by ultraviolet-visible (UV-vis) spectroscopy (UV-3010 Hitachi, Tokyo, Japan).

2.5. Characterization of ZnO NPs-Filled PP Fibers

To characterize the photo-degradation behavior, PP and ZnO NPs-filled fibers were exposed
to 300 W ultraviolet light (ULTRA-VITALUX, Munich, Germany) for 72 h, 96 h and 120 h, 35 cm
away from the light source. The surface morphology of fibers was characterized by scanning electron
microscopy (SEM) (6510, JEOL, Tokyo, Japan) and energy dispersive spectroscopy (EDS) (Carl Zeiss,
EVO 15, Oberkochen, Germany). The tensile properties of pp and PP/ZnO fibers were studied by
Instron 5969 (Boston, Massachusetts, USA) following the ASTM D3822 standard. The sample with a
length of 20 mm was stretching between the clips of the tensile tester with a rate of 20 mm/min until
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the fiber was ruptured. To characterize the UV-oxidative degradation of PP and PP/ZnO fibers, FT-IR
(Nicolet, Thermo Scientific, Madison, WI, USA) method was used to measure the carbonyl group on
fiber. The spectra were recorded in the range from 400 to 4000 cm−1.

DSC (Q-50, TA Instruments, Newcastle, DE, USA) measurement was performed as follows. The PP
and ZnO/PP fiber (<10 mg) was chopped and placed in a crucible. Under nitrogen protection, the
temperature was firstly reduced from normal state to −20 ◦C at a rate of 10 K/min and then heated to
200 ◦C. After 5 min, the same cooling rate was maintained. The temperature was dropped to −20 ◦C to
eliminate heat history. Then it was again raised from −20 ◦C to 400 ◦C at 10 K/min, and the secondary
heating curve of the fiber was measured. The percentage of crystalline fraction was calculated from
these enthalpies as:

x=
∆Hf

(1−ϕp)×∆H◦f
(1)

where ϕp is the weight ration of ZnO NPs in PP fibers and ∆Hof is the reference melting enthalpy of
PP (207 J g−1).

The antimicrobial activity of ZnO NPs-filled fibers was tested against E. coli and S. aureus using a
shaking flask method following GB/T20944.3-2008 (China) [24].

3. Results

3.1. Characterization of ZnO NPs

The principle of synthesizing amino-capped ZnO NPs is illustrated in Scheme 1. The solution of
hyperbranched polymers was added into the Zn(Ac)2 ethanol solution in alkaline medium followed
by the hydrothermal reaction. Under alkaline conditions, Zn2+ can be converted to Zn(OH)2 colloid.
In the hydrothermal process, Zn(OH)2 colloid dissolves to form Zn(OH)4

2− and ZnO spontaneously
nucleates from Zn(OH)4

2− solution to form multinuclear aggregates. HBP, with a special structure
of internally sealed polymer nanocage, will impede the growth of ZnO NPs and protect them from
agglomeration [25,26]. In this way, the size of ZnO NPs can be controlled and the prepared ZnO
NPs/PNP hybrid materials obtain good stability in solution.
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Scheme 1. Schematic illustration of synthesis of amino-capped ZnO NPs.

TEM, SAED, XRD, and UV-vis were used to evaluated the ZnO NPs property. Figure 1a shows the
TEM image of the sample, from which numerous NPs with irregular rod morphology can be clearly
distinguished. The diameter of amino caped ZnO NPs is about 100 nm. A series of diffraction rings
appear in a pattern of the selected area electron diffraction (SAED), as presented in Figure 1b, indicating
the crystalline phase of amino-capped ZnO NPs. The XRD pattern confirms the wurtzite structure
of ZnO NPs. As shown in Figure 1c, all the peaks of (100), (002), (102), (110), (103) and (112) can be
indexed to the planes of wurtzite ZnO and in good agreement with JCPDS data card (36–1451) [27,28].
Interestingly, there is no additional peak corresponding to other impurities in the pattern, implying the
obtained ZnO NPs are purely crystalline. The UV absorption properties of ZnO NPs were investigated
by UV-Vis spectroscopy, with results in Figure 1d. Compared with the HBP solution, there is a new
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absorption peak at 340 nm and the prepared ZnO NPs exhibit a strong absorption between 200–400 nm,
demonstrating the generation of ZnO NPs [23,29].Polymers 2019, 11, x FOR PEER REVIEW 4 of 12 
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Figure 1. (a) TEM images; (b) selected area electron diffraction (SAED); (c) XRD and (d) UV-vis spectra
of ZnO NPs.

3.2. Preparation and Mechanical Properties of PP/ZnO Composites:

The principle of preparing the ZnO NPs-filled PP fiber is described in Scheme 2. The dispersion
of inorganic NPs filled in thermos polymers is much hard, as the inorganic NPs are more likely to be
agglomerated [10,30]. To overcome this problem, we synthesized high dispersion ZnO NPs and used
it for the modified pp fiber. To verify the strength and UV-degradation behavior of ZnO NPs-filled PP
fibers, a test was performed on the tensile strength of PP fiber and ZnO NPS-filled PP fiber exposed
to UV-light, as shown in Figure 2. The results indicate that the strength of PP fiber increases from
4.2 cN/dtex to 4.8 cN/dtex with the rising content of ZnO NPs in PP fiber from 1% to 4%. As the
content grows to 5%, the strength of PP fiber experiences slighly decreases, since ZnO NPs enhance
the toughening effect on PP composite fibers. The nano zinc oxide particles have a small size and a
large specific surface area, and a combination of physical and chemical polymer chains is generated
when the nanoparticles are blending with the polymer. Thereby, the adhesion between the particles
and the polypropylene can be further improved. When the added mass fraction of nanoparticles is
large, the range of the flexible interface layer inside the polymer fiber gets increased; when subject to
an external force, the internal interface layer will be destroyed before the substrate is damaged, which
in turn leads to a decrease in the fiber strength [10,13].
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Figure 2. (a) Breaking strength of polypropylene (PP) and ZnO NPs-filled PP with different UV-light
exposure time (b) Breaking strength rate of PP fiber with different UV-light exposure time.

Owing to a large number of unstable tertiary carbon atoms in the PP molecule, the tensile strength
of PP fibers was reduced after being exposed to the UV-light. To examine the UV-light degradation
properties of PP fibers, PP and ZnO NPs-filled PP fibers were exposed to UV-light irradiation from
72 h–120 h. The results show that as the content of ZnO NPs in PP fiber increases from 0 to 5%, the
fiber strength is declined from 25% to 10% under 120 h of UV-light irradiation. With the UV-light and
oxygen, the energy can be used to put the tertiary carbon atom; after the removal of hydrogen, the
tertiary carbon radicals become the starting active center, thus breaking the macromolecular chain.
When the ZnO NPs-filled fiber is irradiated by UV light, the nano zinc oxide shields against part of the
UV light, improving the resistance of the ZnO NPs-filled fiber to the UV light.

3.3. SEM Images of PP and ZnO NPs-Filled PP Fibers

The surface of PP and ZnO NPs fibers were examined by SEM and EDS to determine the
distribution of ZnO NPs on PP fibers. PP and ZnO NPs-filled fibers with different contents are
shown in Figure 3. The smooth surface of PP fiber can be clearly found in Figure 3a. SEM images
of ZnO NPs-filled PP fibers, as shown in Figure 3b–d, change with the distribution of ZnO NPs.
Some aggregations are observed in the fibers filled with 4% of ZnO NPs, as illustrated in Figure 3d.
It indicates partial aggregation of ZnO NPs during the preparation of ZnO NPs-filled fibers.
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To verify the materials of PP fibers, EDS was used to determine the chemical composition of the
prepared fibers. Figure 4 presents the EDS of 4 wt% ZnO-filled PP. In addition to C and O, Zn can also
be observed, indicating the presence of ZnO on the surface of PP fibers.
Polymers 2019, 11, x FOR PEER REVIEW 8 of 12 

 

 177 

 178 
Figure 4. EDS analyses of 4 wt% ZnO NPs-filled fibers. 179 

To verify the materials of PP fibers, EDS was used to determine the chemical composition of the 180 
prepared fibers. Figure 4 presents the EDS of 4 wt% ZnO-filled PP. In addition to C and O, Zn can 181 
also be observed, indicating the presence of ZnO on the surface of PP fibers. 182 

3.4. Differential Scanning Calorimetry Results 183 
DSC measurement was performed to investigate crystallization and melting behaviors of ZnO 184 

NPs-filled fibers. DSC thermograms and melting temperatures of PP and ZnO NPs-filled fibers are 185 
shown in Figure 5 and Table 1, respectively. 186 
  187 

Figure 4. EDS analyses of 4 wt% ZnO NPs-filled fibers.

3.4. Differential Scanning Calorimetry Results

DSC measurement was performed to investigate crystallization and melting behaviors of ZnO
NPs-filled fibers. DSC thermograms and melting temperatures of PP and ZnO NPs-filled fibers are
shown in Figure 5 and Table 1, respectively.
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Table 1. Thermal properties of the samples obtained from DSC.

Sample Melting Temperature
(Tm) (◦C)

Melting Enthalpy
(∆Hm) (Jg−1)

Crystalline Ratio (%)

PP 162.16 90.14 43.75
PP/ZnO 3% 162.78 92.05 44.46
PP/ZnO 4% 162.25 92.38 44.62
PP/ZnO 5% 162.18 91.22 44.06

Crystallinity of PP fiber grows with the increasing content of ZnO NPs and reaches the maximum
at 4 wt%. The crystallinity of pure fiber, 3 wt% ZnO NPs-filled fiber and 4 wt% ZnO NPs-filled fiber
are obtained to be 43.75%, 44.46% and 44.62%, respectively. It demonstrates that ZnO NPs can increase



Polymers 2019, 11, 1841 7 of 10

the crystallization of PP fiber and function as heterogeneous nucleation [10]. For explanation, ZnO
NPs agglomerates will be heterogeneously nucleated after reaching a certain size, thus increasing the
crystallization rate of PP. As the content of ZnO NPs increases to 5 wt%, the fiber’s crystallinity reaches
44.06%. It is generally accepted that the aggregates of ZnO NPs are able to hinder crystal growth and
thus reduce crystallinity [14].

3.5. FTIR Analysis of PP and ZnO NPs Filled PP Fiber with UV Irradiation

The PP materials are known to be sensitive to the wavelength of over 300 nm, including sunlight
and UV light. The photo-degradation of PP materials is invisible and results in the formation of
hydroperoxides and carbonyl species. The degradation C=O radical group absorption peaks are found
by the FTIR method to be near the wavenumber of 1700 cm−1. The photo-degradation degree of PP
fiber is closely correlated to the carbonyl content: the smaller the carbonyl content, the low degradation
rate the PP fiber. As depicted in Figure 6a, for the pure pp fiber exposed to UV-light for 72 h and
120 h, the absorption peak appears at 1726 cm−1. The PP fiber exposed to 120 h of UV-light presents a
stronger peak than the fiber exposed to 72h of UV-light. It verifies that the degradation degree of PP
fiber has a positive relationship with the time of UV-light irradiation. For the fiber filled with ZnO
NPs, as shown in Figure 6b, the absorption peak at 1726 cm−1 has no obvious change, confirming that
ZnO NPs can inhibit the UV-light degradation of PP fibers.Polymers 2019, 11, x FOR PEER REVIEW 10 of 12 
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3.6. Antibacterial Activity of ZnO NPs-Filled PP Fiber

The antimicrobial activity of ZnO NPs-filled fibers was evaluated by calculation of the percentage
reduction in E.coli and S. aureus colonies. With pure PP fiber as control, the results are listed in Table 2.
Pure PP samples show no antibacterial properties against both E.coli and S. aureus. By contrast, ZnO
NPs-filled PP fibers exhibit good antibacterial activities. Specifically, when the contents of ZnO NPs
increase 3% and more, the bacterial reduction rates of both S. aureus and E. coli reach above 99%.

Table 2. Antibacterial activity of ZnO NPs-filled PP fiber.

Sample
S. aureus E. coli

Surviving Cells
(CFU/mL) Reduction (%) Surviving Cells

(CFU/mL) Reduction (%)

Pure fiber 1.47 × 106 - 2.3 × 105 -
1% ZnO filled fiber 7.5 × 105 64.6 1.2 × 105 47.85
2% ZnO filled fiber 1.1 × 105 92.51 2.6 × 104 88.7
3% ZnO filled fiber 2.4 × 103 99.83 1.6 × 103 99.3
4% ZnO filled fiber 7.2 × 102 99.9 6.5 × 102 99.71
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Zhang et al. reported that a PLA film containing 3% ZnO NPs has antibacterial activity for S. aureus
and E. coli and the inhibition rate was 60% and 58%, respectively. [31] Silvestre et al. reported that
PP composites containing 5% ZnO NPs has 85.3 percent reduction of E. coli with 24 h. [17] However,
in our study, the 3% ZnO NPs filled PP fiber showed better bactericidal efficacy against S. aureus and
E.coli, the inhibition rate more than 99%.The antimicrobial mechanism of ZnO NPs-filled PP fiber can
be explained from two aspects seen in Scheme 3. Generally, bacteria are negatively charged, which
can be adsorbed by positively charged amino HBP via electrostatic adhesion. The direct interaction
of HBP-ZnO NPs with bacteria will result in cell inactivation by disrupting the integrity of the cell
membrane. In addition, under light irradiation, ZnO NPs on the surface of PP fibers generate reactive
oxygen species, contributing to the decomposition and damage of bacterial cells.Polymers 2019, 11, x FOR PEER REVIEW 11 of 12 
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4. Conclusions

In this paper, the amino capped ZnO NPs were obtained by simply using amino HBP and zinc
acetate. ZnO NPs-filled PP fibers were prepared by melt spinning. Moreover, the morphology, thermal
property, UV-light degradation behavior, antibacterial activity and mechanical properties of ZnO
NPs-filled fibers were determined. The results show the improvement in the mechanical properties,
resistance to UV-light degradation and antibacterial activity of ZnO NPs-filled fiber. In particular,
the PP fiber with 4 wt% ZnO NPs is proved to be the optimum selection for PP modification.
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