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in the Drosophila OFF motion pathway
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States

Abstract In flies, the direction of moving ON and OFF features is computed separately. T4 (ON)

and T5 (OFF) are the first neurons in their respective pathways to extract a directionally selective

response from their non-selective inputs. Our recent study of T4 found that the integration of

offset depolarizing and hyperpolarizing inputs is critical for the generation of directional selectivity.

However, T5s lack small-field inhibitory inputs, suggesting they may use a different mechanism.

Here we used whole-cell recordings of T5 neurons and found a similar receptive field structure: fast

depolarization and persistent, spatially offset hyperpolarization. By assaying pairwise interactions

of local stimulation across the receptive field, we found no amplifying responses, only suppressive

responses to the non-preferred motion direction. We then evaluated passive, biophysical models

and found that a model using direct inhibition, but not the removal of excitation, can accurately

predict T5 responses to a range of moving stimuli.

Introduction
Visual motion is not directly measured, rather it is computed by neuronal circuits downstream of

photoreceptors. This computation is fundamental to the extraction of many visual features, is a local

operation implemented by a small circuit, and is simple enough to be approximated by compact

algorithms. Although several different models have been proposed for generating directionally

selective responses across species, they all share three common elements: (1) spatially offset inputs

with a (2) temporal asymmetry between them, that are (3) non-linearly combined. These models gen-

erate Directional Selectivity (DS) by enhancing responses in the preferred direction (seen in flies:

Fisher et al., 2015; Salazar-Gatzimas et al., 2016), suppressing responses in the null, or non-pre-

ferred direction, or by a combination of both (also from flies; Haag et al., 2016; Leong et al., 2016;

Strother et al., 2017, reviewed in Yang and Clandinin, 2018). In flies, local luminance increments

(ON) and decrements (OFF) are processed by largely separate circuits, with motion being computed

separately in each pathway (Behnia et al., 2014; Clark et al., 2011; Franceschini et al.,

1989; Joesch et al., 2010; Silies et al., 2013; Strother et al., 2014; Takemura et al., 2013). The

first neurons to generate directionally selective responses are the T4 cells of the ON pathway and

the T5 cells of the OFF pathway (Maisak et al., 2013; Serbe et al., 2016; Strother et al., 2017)

(Figure 1A).

T4 neurons use both local excitatory and inhibitory inputs to generate directionally selective

responses (Gruntman et al., 2018; Haag et al., 2017; Strother et al., 2017; Takemura et al.,

2017). A recent connectomics study has characterized all the columnar inputs to T5 neurons

(Shinomiya et al., 2019) and a functional imaging study revealed they all depolarize in response to

OFF stimuli (Serbe et al., 2016). However, transcriptional profiling of these neuron types shows that

these inputs are all cholinergic, and therefore unlikely to provide local inhibitory input (Davis et al.,

2018). Does the OFF pathway use a different algorithm to compute motion? To address this ques-

tion, we performed whole-cell recordings of T5 neurons while presenting visual stimulation. First, we

used single bar flashes to map the first-order Receptive Field (RF). These stimuli, which do not
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contain any motion information, allowed us to map the spatial distribution of depolarizing and

hyperpolarizing inputs and revealed that T5 neurons receive local hyperpolarizing inputs. Next, we

used many variants of pairwise bar flashes, an elementary motion stimulus, and consistently found

only a single mechanism responsible for DS. Next, we constructed a conductance-based model for a

T5 cell and used it to predict responses to an array of visual stimuli. The model is comprised of fast

excitation and slow inhibition spatially offset to the trailing side of the RF (Gruntman et al., 2018).

We show that our model, constructed only from the first-order RF responses that contain no motion

information, predicted responses to dynamic stimuli, such as moving bars and drifting gratings.

Finally, we compared the behavior of our model with a model based on the removal of excitation

(rather than direct inhibition). We show why a model based on offset excitation and inhibition is

more directionally selective and is also better at recapitulating T5 responses.

Results

Whole-cell recordings of T5 neurons show small-field, directionally
selective responses
We measured visual responses of T5 neurons by targeting in-vivo whole-cell electrophysiological

recordings to their GFP-labelled somata and presenting stimuli on a hemi-cylindrical LED display

(Figure 1B). We confirmed the identity of the labeled neurons as T5 cells by recording reliable depo-

larizations in response to small OFF flashing squares (~11˚�11˚; pixels turned off from an intermedi-

ate-intensity background). These flashing squares were also used to localize the RF center

(Figure 1C) in a step-wise process that mapped the maximal response position for each recorded

neuron by probing smaller areas at higher resolution until the peak response was localized to a sin-

gle pixel (~2˚�2˚) of the display. Having localized the RF center, we then evaluated DS for each neu-

ron by measuring responses to bars of three widths moving through the RF center along eight

directions. The bars moved at the speed (28˚/s) that produced the largest directionally selective

responses in T4 neurons (Gruntman et al., 2018). Each of the 17 T5 neurons we recorded showed

clear preferred and null directions (PD and ND) of motion, with relatively wide tuning (i.e. similar

magnitude responses in the directions ± 45˚ away from the PD; individual neuron example

Figure 1D; population responses Figure 1E). The PD response shows a clear hyperpolarization fol-

lowing the depolarizing peak, and the ND response shows a dip preceding the depolarization peak.

We quantified these responses with a Directional Selectivity Index (DSI = [PDmax – NDmax]/PDmax),

and found that this measure is significantly different from zero for the three widths tested

(Figure 1E). We note that the smallest bar presented (1-pixel wide,~2˚) generated a clear direction-

ally selective response but did not induce the prominent hyperpolarization observed for the wider

bars. We further note that although wider bars evoked stronger responses, they did not increase the

DSI (Figure 1E), because these stronger stimuli also evoked a corresponding increase in the ND

response magnitude. The response dynamics and the width of the directional tuning are similar to

our T4 responses to moving bars (Figure 1 of Gruntman et al., 2018).

T5 receptive field is comprised of spatially offset depolarization and
hyperpolarization
Classic studies of mammalian directionally selective neurons used decomposable motion stimuli to

map spatial responses to the individual components (the ‘first-order RF’), and to their pairwise inter-

actions (the ‘second-order RF’). This procedure was important in ruling out competing models for

generating DS (Barlow and Levick, 1965; Emerson et al., 1992; Emerson et al., 1987;

Jagadeesh et al., 1993). In our previous work (Gruntman et al., 2018), we adapted this approach

to T4 neurons, and found that a fine-scale characterization of the neuron’s first-order RF was incom-

patible with the Hassenstein-Reichardt model (Hassenstein and Reichardt, 1956), the predominant

model for computing DS in insects. We wondered whether the differences between the signs of T4’s

and T5’s columnar inputs would also produce functional changes in the first-order RF. We therefore

used on-line stimulus generation to map the spatial and temporal properties of T5 receptive fields

using flashing bars presented along the identified PD-ND axis of each cell (Figure 1). We used bars

of width 1, 2, and 4 pixels (corresponding to 2.25˚, 4.5˚, and 9˚ of visual angle), and our RF maps are

plotted (Figure 2) along a stimulus position axis, where a unit change in position is equivalent to a
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1-pixel movement of a width 1 bar (see Figure 2—figure supplement 1 for mapping onto visual

angle for T5 neurons with PDs aligned to diagonal and cardinal directions on our display). Although

these single position bar flashes lack directional information, the temporal and spatial structure of

T5 responses to them make up the first-order RF that is used for all further comparisons, since more

complex stimuli can be comprised of different concatenations of single position flashes.

Aligning the responses from all the cells based on the position of the peak depolarization

(Figure 2A) reveals T5’s (first-order) RF structure: (1) Depolarizing responses dominate the center,

with increased response magnitude for stronger stimuli (wider bars or flashes of longer duration).

This increase is not linear. For example, at certain positions responses cannot be detected for weak

stimuli but clear responses can be seen for stronger stimuli (e.g. compare bar width 1 at position 5,

gray vs. brown traces, downwards arrowhead). (2) Inputs along the PD-ND axis are spatially asym-

metric around the RF center. On the leading side of the RF the responses reflect depolarizing input

(Figure 2A, green positions), while on the trailing side, responses show a mixture of depolarization

and hyperpolarization (Figure 2A, pink positions). This general structure is similar to T5 measure-

ments in a recent paper using voltage imaging (Wienecke et al., 2018). Although stronger stimuli

(wider bars or longer duration flashes) induce a stronger hyperpolarizing component in the response,

this effect is also non-linear. For example, average traces in position 3 (bars of width 2) show no

hyperpolarization for a 40 ms flash (gray trace), but a prominent hyperpolarization when the flash

duration is 160 ms (brown trace, Figure 2A, upwards arrowhead).
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Figure 1. Whole-cell recordings of T5 neurons show small-field, directionally selective responses. (A) Schematic of

the Drosophila visual system with an example T4 (ON) and T5 (OFF) neuron. (B) Schematic of experimental setup.

Whole-cell recordings were targeted to soma of GFP-labeled T5 neurons. (C) Responses to 200 ms OFF square

flashes (~11˚�11˚) from an example cell. Each subplot shows the response from a different location on the LED

display, which subtended 216˚ (azimuth) �72˚ (elevation) of the visual space. Individual repeats in gray (n = 3 trials),

mean in black. (D) Responses from the same cell in (C) to a 2-pixel wide dark bar (2 � 9 LEDs,~4.5˚�20.25˚) moving

in eight directions at 28˚/s (80 ms/pixel) through the center of the receptive field. Repeats in gray (n = 3 trials),

mean in brown. Black horizontal bar indicates the stimulus duration. PD indicates the Preferred Direction and ND

indicates the Null Direction. (E) Baseline-subtracted responses (n = 17 cells) to a moving bar of width 1, 2, and 4

pixels (2.25˚, 4.5˚, and 9˚), aligned to the PD of each cell (mean ± SEM). Arrows represent the direction of stimulus

motion. Black horizontal bar indicates stimulus presentation. Inset: DSI = [PDmax – NDmax]/PDmax for moving bar

responses (n = 9, 15, 14 cells).
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Figure 2. T5 receptive field is comprised of spatially offset depolarization and hyperpolarization. (A) Averaged, baseline-subtracted responses

(mean ± SEM) to bar flash stimulus at the indicated positions (numbered below, examples schematized above) along the PD–ND axis of each cell

(n = 17 cells) aligned to the central depolarizing position (=0, see Materials and methods for details). Responses to 40 ms flashes in gray; responses to

160 ms flashes are colored. Elongated bar in each stimulus schematic marks center position. Downwards arrowhead: example non-linearity in responses

Figure 2 continued on next page
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The unipolar structure of Drosophila neurons precludes the use of voltage clamp to separate the

inhibitory and excitatory conductances in the responses. However, a closer examination of the

response dynamics from the leading and trailing side of the RF reveals a temporal interaction

between depolarization and hyperpolarization. Long duration responses on the leading side show a

plateau-like depolarization peak, while responses on the trailing side show a peak that rapidly

decays (Figure 2B, pink vs. green responses). These decaying response peaks likely arise from a

‘competition’ between fast-rising, fast-decaying depolarizing inputs and slow-rising, slow-decaying

hyperpolarizing inputs. At stimulus onset, the fast depolarization is dominant. As the slower hyper-

polarization increases with time, so does the depolarization decay. At stimulus offset, depolarization

decays rapidly, while hyperpolarization persists beyond the stimulus offset (Figure 2B).

Spatially asymmetric hyperpolarization also induces faster decaying responses on the RF’s trailing

side (Figure 2B pink vs. green, quantified in Figure 2C). In T4 neurons, we showed that the asym-

metric, slow-decaying hyperpolarization is the main contributor to DS generation, since ND move-

ment first activates the faster-decaying depolarizing response components, which in turn lead to less

efficient summation and smaller net depolarization (Gruntman et al., 2018). Therefore, the faster

decay times on the trailing side of T5 neurons were also the likely result of hyperpolarization tempo-

rally sharpening responses. Unlike in T4, trailing-side responses started sooner and rose faster than

leading-side responses (Figure 2C; two-tailed t-tests, p<0.05 for all conditions). It is unclear whether

these differences in rise start and rise time play a role in generating directionally selective responses,

or whether they simply reflect a wider range of spatially offset excitatory input types in T5 cells

(Shinomiya et al., 2019).

Plotting the peak depolarization and hyperpolarization for each cell at each position for long

duration flashes of all widths illustrates the RF structure described above: depolarizing component

decaying symmetrically from the center, and an asymmetric hyperpolarizing component on the trail-

ing side (Figure 2D). This structure is comparable to the RF structure we measured for T4 cells

(Figure 2D, black curves). Note that the T4 RF was mapped using responses to a bar of width 1, sug-

gesting a potential size-sensitivity difference between the ON and the OFF pathways (consistent

with Haag et al., 2017). The high degree of similarity in the first-order RF between T4 and T5 cells

suggests that both cell types receive similar (functional) inputs. But do they use a similar DS mecha-

nism? To test this directly we next characterized T5 responses to elementary motion stimuli.

T5 neurons generate directional selectivity using ND suppression
Sequential presentation of two adjacent bar flashes, sometimes referred to as two-step apparent

motion, is a common stimulus used to map the second-order RF of directionally selective cells by

comparing the superposition (summation shifted in time) of the first-order responses with the

responses to the sequential, two position stimulation (Figure 3A). This comparison is a direct test

for the relative contribution of either PD enhancement or ND suppression in generating the direc-

tionally selective response (Figure 3A). To illustrate the general response properties, we focus first

on responses to width two bars that were each presented for 160 ms (Figure 3B,C). Responses on

the leading side of the RF, up to and including the center (position 0), did not exhibit DS. Since both

PD and ND combinations evoke a similar maximal response (e.g. �3 to �1 versus �1 to �3, horizon-

tal lines) the neurons are effectively ‘motion blind’ in this region of the RF. Responses to

Figure 2 continued

to stimuli of different durations. Upwards arrowhead: example non-linearity in hyperpolarization in response to stimuli of different durations. (B) Mean

responses from indicated positions in (A) of width-2 bar flashes, aligned to stimulus presentation (gray rectangle). (C) Response rise start time (time to

reach 10% of max), rise time (10%–50%), and decay time (80%–20%) for positions surrounding the receptive field center (calculated for 160 ms flashes of

width-2 bars). Results presented as differences from the central position (* indicates significantly above/below zero for pooled positions from the

leading/trailing side respectively, two-tailed t-test, p<0.05; n = 17 cells). (D) Maximum depolarizing and hyperpolarizing responses at each stimulus

position for 160 ms bar flashes of all three widths. Dots correspond to median response (size indicates the number of cells for each position), shaded

regions demarcate upper and lower quartiles. Superimposed black line represents the median T4 results for width 1 ON bars (Gruntman et al., 2018).

See also Figure 2—figure supplement 1 for the T5 receptive field corrected for visual angle.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. T5 receptive field comparison between cells aligned to cardinal and diagonal preferred directions, corrected for approximate

visual angle.
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Figure 3. T5 neurons generate directional selectivity using ND suppression. (A) Schematized responses to the elementary motion stimulus of sequential

bar pair flashes. Response could be the sum of the responses to the individual flashes (top), could show preferred direction, PD, enhancement (middle)

or null direction, ND, suppression (bottom). (B) Baseline-subtracted responses (mean ± SEM) to bar pair combinations presented at different positions

along the PD–ND axis (n = 3,11,11,8 cells). Top: responses to PD and ND bar pairs. Middle: responses to PD bar pairs (same as top) with the temporally

aligned sum of the responses to the component bar flashes in pink. Bottom: responses to ND bar pairs (same as top), sum of responses to component

bar flashes in cyan. Stimulus presentation interval indicated with gray rectangles. Stimulus schematic shows positions of both bars (0 position depicted

by elongated bar). (C) Boxplot summary of response maxima for (B) (same color conventions). Top: response maxima, Middle and Bottom: second bar

maxima for measured and summed responses. (D) Boxplot summary of response maxima differences for all (non-overlapping) bar pair stimuli

presented. Top: difference between PD and ND, positive value indicates a directionally selective response. Middle: difference between second bar

response maxima for measured and summed PD responses. Positive value indicates PD enhancement. Bottom: same as middle, but for ND. Negative

value indicates ND suppression (* indicates mean significantly differs from zero, unpaired t-test corrected for multiple comparisons by controlling for

the false discovery rate with q = 0.075). Boldface positions are presented in (B) and (C). (E) Comparison of directional selectivity versus linearity of

response for all presented bar pair combinations, including data from (D) and responses to overlapping positions (see Materials and methods). Each

dot corresponds to the mean (of n � 3 cells) response differences for each position pair (± SEM). Marker size indicates bar width (small for 2, large for 4-

pixel wide), marker fill indicates duration (empty 40 ms, filled 160 ms). Results of linear regression in black (non-significant slope for MeasuredPD -

SumPD vs. MaxPD - MaxND, [�0.402, 0.073], 95% confidence interval; significant slope for MeasuredND - SumND vs. MaxPD - MaxND, [�0.641,–0.301], 95%

confidence interval). See also Figure 3—figure supplement 2 for more details of bar width four responses.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Evidence for ND suppression is robust to measurement type.

Figure supplement 2. Apparent motion responses show evidence only for ND suppression even for larger stimuli.
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combinations that included the trailing side of the RF, where hyperpolarization was detected

(Figure 2D), exhibited a larger maximal response for the PD combination, and therefore exhibited

DS (e.g. Figure 3B 1 to 3 in red versus 3 to 1 in blue, horizontal lines).

To further explore the mechanism underlying DS we compare each two bar stimulus response

(Figure 3B middle and bottom, darker traces) to the superposition of the component responses

(Figure 3B middle and bottom, lighter traces). In the leading side of the RF, where T5 is ‘motion

blind,’ we find that the sequential responses are well approximated by the sum of the individual

responses. However, in the trailing side of the RF, where T5 generates directionally selective

responses, this comparison reveals suppression of ND responses (blue arrow), as can be seen in the

comparison between responses to the second bar (whose location provides the directional compo-

nent of the stimulus pair; Figure 3C). We note that there are no conditions where the summed

responses are smaller than the measured responses, regardless of whether the comparison is made

using response maximum or mean (Figure 3—figure supplement 1). In other words, no combina-

tions of 4.5˚ bars showed PD enhancement. A recent paper using calcium imaging reported PD

enhancement in both T4 and T5 cells, but only for stimuli above a certain size (>6˚ for T5s;

Haag et al., 2017). However, our findings hold for all of the apparent motion conditions we tested:

fast (40 ms) and slow (160 ms), bars of width 2 (4.5˚) and width 4 (9˚), and sequential positions that

were either adjacent or overlapping (Figure 3D,E and Figure 3—figure supplement 2). Although

PD responses exhibited suppression (Figure 3D, middle), these stimuli still evoked directionally

selective responses in trailing side positions due to the asymmetric structure of the RF and the even

larger suppression of ND stimulation (Figure 3D, top).

To summarize the responses to all of these different pairwise combinations we plot the difference

between the peak responses of each PD and ND sequence pair (a measure of DS, with a positive

value indicating PD preference) against the difference between the measured response and the sum

of the component responses (indicating suppression when negative, enhancement when positive).

Although we used an expansive stimulus set, we found numerous combinations showing ND sup-

pression and not a single condition showing an enhanced PD response (this is again valid if the com-

parison is based on mean responses, see Figure 3—figure supplement 1D). Furthermore, we found

a significant correlation between the magnitude of ND suppression and the magnitude of the direc-

tionally selective response (more suppression correlates with more DS), while no such correlation

was found for PD responses (Figure 3E; MeasuredND - SumND vs. MaxPD - MaxND R2: 0.396, slope

95% confidence interval: [�0.64,–0.31]; MeasuredPD - SumPD vs. MaxPD - MaxND R2: 0.02, slope 95%

confidence interval: [�0.402, 0.073]). Taken together, these data provide strong evidence for the

suppression of ND motion as the only mechanism through which DS is generated in the membrane

potential of T5 neurons.

A conductance-based model quantitatively predicts directionally
selective responses
We constructed a conductance-based neuronal model to test our intuitive proposal regarding the

generation of directionally selective responses in T5 cells. The model—henceforth referred to as the

EI model—includes an excitatory and an inhibitory conductance that are combined using a biophysi-

cally inspired non-linearity (Figure 4A). The model, which is slightly simplified from our previous T4

model (Gruntman et al., 2018), is parameterized with spatial and temporal filters for each conduc-

tance (Supplementary file 1 and Materials and methods). Based on our previous T4 modeling

(Gruntman et al., 2018), we hypothesized that the passive integration of these conductances would

be sufficient to explain T5’s response dynamics. Our objective in constructing the EI model was not

only to generate DS responses, but to explore whether the information contained in the responses

to non-moving stimuli is sufficient to predict the neuron’s responses to more complex stimuli, such

as drifting gratings.

We optimized model parameters using an iterative, non-linear, least squares procedure to mini-

mize the difference between the numerical simulation and measured responses for width 2 bar

flashes (Figure 4B). Importantly, since we optimized only based on responses to static flashing bars,

the model parameters were not influenced by any motion-related responses. The model’s responses

to any stimulus are then simply the result of passive integration of excitatory and inhibitory conduc-

tances injected with a temporal pattern determined by the spatial and temporal structure of the

stimulus (see Materials and methods). Since our aim was to predict responses to more complex
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Figure 4. A conductance-based model quantitatively predicts directionally selective responses. (A) T5 EI model schematic with fast spatially symmetric

excitation and slow, trailing-side asymmetric inhibition. (B) Mean measured responses to single bar flashes of 3 widths and two flash durations at eight

different positions (in colors) compared to predicted model responses (gray) from an example cell (same as Figure 1). Model parameters were

optimized to each cell using only responses from bars of width 2 (brown frame). (C) Peak measured response compared to the peak of the predicted

response for all bar flash stimuli from all cells and positions (empty marker denotes short duration flash, filled denotes long flashes). Each dot

represents the mean peak response (for top 10 of 1000 optimization solutions for each cell, estimated by fit error), while vertical lines (most obscured by

markers) represent maximal and minimal values of the peak responses. Diagonal lines surrounding the unity line denote + /- the upper quartile of the

Mean Absolute Deviation (MAD) of responses to repeated presentation of the same stimuli (see Materials and methods). (D) Mean measured responses

to moving bars of three widths and two speeds overlaid with predicted responses from linear (superposition of flash responses) and EI conductance

model for same example cell and the same model parameters as in (B). Note scale change on voltage axis of linear predictions due to overestimation.

(E) Peak measured responses compared to peak predicted responses from both linear and EI models for all moving bars (grouped by bar width).

Plotting conventions as in C; except PD in red, ND in blue. Note consistent overestimation of linear model, which is exacerbated for larger stimuli. See

also Figure 4—figure supplement 1 for distributions of individual cell measurement and EI model prediction responses.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Reliability of model predictions across cells.
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stimuli and since these are sensitive to stimulus position within the RF, we optimized model parame-

ters using responses from individual neurons, and not a population average.

The size of the stimuli used to probe directionally selective cells is a prominent confound when

comparing results from different studies, which has resulted in conflicting interpretations about the

possible mechanisms implementing DS. For example, a previous study using calcium imaging only

observed PD enhancement in T5 cells for stimuli above 6˚ (Haag et al., 2017). Since we optimized

our parameters using responses to width 2 bar flashes alone, we postulated that if increasing the

width of the bar above a certain size evoked qualitatively different responses, we would see a clear

discrepancy between predictions and recorded responses for width four bars, but not for width one

bars. Figure 4B shows the results from an example cell, with the recorded responses and model pre-

diction overlaid for three bar widths and with both fast and slow flash durations. The model predicts

the magnitude and dynamics of the responses to all three widths, with no systematic difference for

the larger or smaller width bars. The broad accuracy of these predictions can be seen when compar-

ing the maximal response magnitude between model output and measurements across all the cells

(Figure 4C). The accuracy of model predictions to measured data will, in part, be limited by trial-to-

trial variability in the recorded responses to identical stimuli. We have used this variability as a simple

bound on the accuracy of model predictions, by plotting the +/- upper quartile of the mean absolute

deviation (MAD) across cells on either side of the diagonal (identity) line (Figure 4C). Since width

two bars were used for optimizing model parameters, the spread around the diagonal is narrowest

for this condition, with most simulation results falling within the ‘MAD bounds’ (see

Materials and methods and Figure 4—figure supplement 1). However, the spread around the diag-

onal for width one or width four is only slightly broader, confirming that the responses across these

bar widths can be predicted without further modifications to the model.

Our simple model accounts for responses to local flash stimuli of multiple widths (containing no

directional information), but how well does it predict responses to moving bars of different widths?

Our moving bar stimuli are comprised of an ordered sequence of bar flashes. This allowed us to

compare EI model responses to moving bar stimuli with the linear superposition of bar flash

responses (summed responses after appropriate temporal alignment). Figure 4D shows example

traces from the same cell as in Figure 4B, with linear predictions on the left and EI model predictions

on the right (same parameters as above). The linear model predictions capture some of the response

dynamics but appear to overestimate response magnitudes, particularly for strong stimuli. Our EI

model, on the other hand, captures both the magnitude of the maximal response in both directions

and the dynamic structure of the response traces. For example, the simulated results to slow ND

motion show a hyperpolarizing dip before the depolarizing peak, but this dip is absent from ND

motion traces for fast motion. This is explained by the slow inhibitory conductance, which cannot

contribute much to the early component of the response to fast motion. We again compared the

maximal responses between both models’ predictions and measured data across all cells. Predic-

tions from the linear model consistently overestimate the measured response (Figure 4E, left), and

this overestimation is most severe for fast responses to wide bars. Although the limitations of a linear

model have already been shown in Figure 3, here we find an even larger discrepancy with predic-

tions of moving bar response due to error accumulation over time. In contrast, the EI model predic-

tions match the measured responses more closely, with comparisons of max responses amplitudes

spread evenly around the diagonal (Figure 4E, right). Notably, if PD enhancement contributed to

generating DS responses to moving bars of width four in our measurements, we would see a consis-

tent underestimate of PD motion by the simulation. However, the EI predicted responses for both

PD and ND motion show the same symmetrical spread around the diagonal (Figure 4E, right), again

confirming that a single, simple non-linear mechanism can account for DS responses to moving bars

of different widths.

Conductance-based EI model recapitulates responses to more complex
spatial and temporal stimuli
Given the strong correspondence between model predictions and response measurements for bar

flashes and moving bars across speeds and widths, we challenged our EI model with more complex

stimuli. Bar flashes have a simple spatial and temporal structure; moving bars are comprised of

sequential activation of adjacent positions. The stimulus presented in the example in Figure 5A,

flashes of gratings in different phases, has a non-contiguous spatial structure, requiring spatial
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integration from different RF regions. As can be seen from the example cell (same cell and parame-

ters as in Figure 4), our model also accurately predicted responses to these grating flashes. Impor-

tantly, when the visual input stimulated both the excitatory and the inhibitory fields (E or I above

stimulus schematic in Figure 5A), the model predicted the dominant conductance, both in this indi-

vidual example and in the population (Figure 5B).

Next, we challenged our model with drifting gratings, the most complex stimulus we presented.

This stimulus has a non-contiguous spatial structure that is swept across the RF in a temporally cyclic

manner. We simulated responses to square wave grating (composed of dark and background level

bars) moving at two different speeds and starting from two different phases (Figure 5C). Although

the model parameters were optimized using only the static stimuli responses (Figure 4B, middle),

the model’s predictions capture several aspects of the recorded responses: the transient responses

to the appearance of the grating (that differ dramatically between the two phases), the amplitude of
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Figure 5. Conductance-based model recapitulates responses to more complex spatial and temporal stimuli. (A) Mean measured responses to fast (40

ms) and slow (160 ms) flashes of grating stimuli (dark and background brightness level) in different phases compared with model predictions (same

example cell, same model parameters as in Figure 4B). Stimulus schematic above traces. In two phases, the expected relative contribution

(bold >normal) of excitation and inhibition based on the position of the dark bars is denoted. (B) Peak measured response compared to peak predicted

response, for flashes of all grating phases, grouped by flash duration. Plotting conventions as in Figure 4C (only results from cells with a cardinal PD-

ND axis are shown; n = 5, see Materials and methods). (C) Mean measured responses to grating stimuli moving at two speeds (temporal frequency of

3.125 Hz and 0.78 Hz, 40 ms and 160 ms steps), with two different starting phases, compared to model prediction for the same example cell and model

parameters as 4B. (D) As in (C), only from a different example cell. Note the difference in phase relations between PD and ND responses for cells in (C)

and D). (E) Top: Fit amplitude values for measured response compared to the model predicted responses for all grating stimuli (see

Materials and methods for details). Plotting conventions as in 4E. Bottom: fit phase values for measured responses compared to model prediction

responses.
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the oscillation (compared in Figure 5E), and even the apparent amplitude adaptation in the

responses to fast-drifting gratings. The model correctly predicted some surprising aspects of mea-

sured responses, such as the different phase relations between PD and ND responses in the different

cells (most cells show out-of-phase responses like Example cell 2, Figure 5D, while a few showed in-

phase responses, like Example cell 1, Figure 5C). The correspondence between prediction and mea-

surement (Figure 5E) suggests that this dramatic phase difference is largely a consequence of the

structure of the first-order RF of each cell. In summary, a simple model that integrates fast, excit-

atory and spatially offset, slow inhibitory inputs predicts T5 responses to a range of visual stimuli.

A conductance model relying on removal of excitatory input cannot
recapitulate T5 responses
In our previous paper (Gruntman et al., 2018), we applied the EI model to T4 neurons from the ON

motion pathway. T4 neurons receive small-field, local inhibitory inputs at a dendritic location that

corresponds to the trailing side in our EI model, but T5 neurons do not (Shinomiya et al., 2019;

Davis et al., 2018). Therefore, we asked whether T5 responses can be modeled without local inhibi-

tory inputs, but rather with the local removal of excitation. The parameters for this model (referred

to as the E+E- model) include the same linear filters that set the temporal dynamics of the conduc-

tances and the same Gaussian filters that establish their spatial receptive fields. To instantiate a

removal of excitation model, we included two additional parameters: a magnitude for a stimulus-

independent excitatory conductance from which excitation can be removed, and a magnitude for a

stimulus-independent inhibitory conductance that ensures the neuron’s baseline will not drift due to

the addition of the above conductance (see Materials and methods and Supplementary file 2).

Figure 6 shows E+E- model simulation results (same optimization procedure) for the same exam-

ple cell as in Figure 4. Although the E+E- model predicts the response magnitude for the bar width

two stimuli that were used in the optimization, it fails to generalize, as evidenced by poor estimates

of responses to wider bar flash stimuli (Figure 6A,B). The E+E- model predictions for moving bar

stimuli also consistently overestimate the measured responses, with larger errors in the responses to

ND stimuli (Figure 6C). The differential overestimation of ND responses means that response magni-

tudes to bars moving in the preferred or the null direction are similar. As a consequence, the direc-

tional selectivity of the E+E- model is lower than measured (DSI for the example cell indicated in

Figure 6C).

In analyzing the low directional selectivity of the E+E- model, we found that it is, in part, due to

saturation of the removed excitatory conductance. To expand the effective dynamic range of the E-

conductance we tried several alternative optimization procedures (Figure 6—figure supplements 1

and 2). We were able to reproduce responses to the stimuli used for optimization, but the same

parameters failed to generalize to other stimuli. Specifically, the E+E- models generated responses

that were less directionally selective than both our measurements and the EI model.

Inhibition is superior to removal of excitation for generating directional
selectivity
To understand the inability of the E+E- model to generate strong directional selectivity for moving

bars, we compared it to our EI model under similar conditions. We found three major differences

contributing to the poor performance of the E+E- model (Figure 7, the relevant comparison for each

major difference is indicated with a circled number).

1. The removal of excitation is bounded. Both models rely on a balance between a depolarizing
conductance, which is excitatory in both, and a hyperpolarizing conductance, which is imple-
mented with inhibition in EI model and the removal of excitation in E+E- model. Both opti-
mized model solutions reduce the (temporal) overlap between the depolarizing and
hyperpolarizing conductances for a bar moving in the preferred direction, and maximize the
overlap when the bar moves in the null direction (Figure 7, PD and ND). Whereas the depola-
rizing and hyperpolarizing conductances in the EI model are of similar magnitude, the hyper-
polarizing conductance in the E+E- model is only half the magnitude of the depolarizing
conductance. This difference stems from an intrinsic limitation of using the removal of an excit-
atory conductance as the mechanism for hyperpolarization. An excitatory conductance can
only be removed from an activated (open) conductance (Figure 7, middle column, indicated
by the dashed line). Furthermore, E- cannot exceed the magnitude of the activated
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conductance, resulting in an upper bound on E- (see Materials and methods for details). Since
this limit on the removed conductance is intrinsic to the model, it cannot be overcome with dif-
ferent optimization procedures (Figure 6—figure supplements 1 and 2).

2. Total normalizing conductance decreases with increasing hyperpolarization. Is the E- bound
the primary difference between the models, or do other factors also contribute? We analyzed
a ‘Scaled EI’ model that was constructed to match the depolarizing and countering hyperpola-
rizing conductances of the E+E- model, a manipulation that eliminated the differences stem-
ming from the E- bound. While both models exhibit similar conductance changes, the Scaled
EI model produces better directional selectivity than the E+E- model (seen in the voltage
traces, Figure 7, bottom), suggesting additional contributions to the EI model’s superior per-
formance. In both models, the voltage responses depend on the weighted difference between
the depolarizing and hyperpolarizing conductances (integrated conductance, DG), normalized
by the total conductance (SG). By construction, the value of the integrated conductance is
identical in the Scaled EI and E+E- models (Figure 7, DG row). However, the normalizing con-
ductance is very different. In the Scaled (and original) EI model, hyperpolarization is achieved
by adding an inhibitory conductance, making the total conductance the sum of the depolariz-
ing and large hyperpolarizing conductances (SG = 1+E+I). In the E+E- model hyperpolarization
is achieved by removal of excitation, making the total conductance the difference between the
two (SG = 1+ E+- E-). This effect is evident in the smaller values of SG of the E+E- model (Fig-
ure 7, SG row).

3. Non-linearity in the E+E- model cannot differentially affect PD and ND. As noted in the previ-
ous point, in the E+E- model the hyperpolarizing conductance identically contributes to both
the integrated (DG) and the total conductance (SG). Consequently, a peak in the time course
of the integrated conductance is always normalized to a corresponding peak of the total con-
ductance (a 1 degree of freedom non-linearity), regardless of the direction of input motion. By
contrast, in both EI models, the difference in DG is normalized with the sum in SG. This distinc-
tion has a profound effect on directional selectivity, since the hyperpolarizing conductance is
less coincident with the depolarizing conductance in response to PD stimuli (Figure 7, PD)
compared to ND stimuli (Figure 7, ND). This increased overlap between the conductances for
ND stimuli leads to increased suppression in the voltage response (Figure 7, vertical lines con-
necting DG peak to SG curve).

This model comparison shows that removing excitation is qualitatively different from adding inhi-

bition. Implementing this seemingly simple change from I to E- leads to changes in the conductance

balance, the creation of an intrinsic bound on the strength of hyperpolarization, and a less efficient

differential suppression of PD and ND responses. This analysis further clarifies the importance of

non-linearity for computing directional selectivity in our EI model. By normalizing the difference

between the depolarizing and hyperpolarizing conductances with their sum, the EI model amplifies

the differences between the PD and ND responses (already present in the DG). Taken together,

these modeling results corroborate our central finding that inhibition appears to sculpt the essential

asymmetry for directionally selective responses in T5 cells.

Discussion
In this study we used whole-cell recordings of T5 cells, the OFF directionally selective neurons in

Drosophila (Figure 1) to uncover the mechanism underlying the generation of directionally selective

motion responses. Using local bar flashes, we mapped the first-order receptive field of T5 neurons

and revealed an asymmetric spatial structure, consisting of offset depolarizing and hyperpolarizing

input fields (Figure 2)—the very same structure we previously described for T4 (ON

directionally selective) neurons (Gruntman et al., 2018). Using pairs of bar flashes, we mapped the

responses to second-order stimuli, and found no amplifying pairwise interactions that are indicative

of a PD enhancing mechanism, rather we only found evidence for ND suppression (Figure 3). We

employed a slightly simplified version of our previous biophysical model (Gruntman et al., 2018),

now applied to single-neuron data, to accurately predict T5 responses to static and moving bars of

different widths, and even static and drifting gratings (Figures 4 and 5). Since T5 neurons are not

known to have small-field inhibitory inputs, we explored a related computational model based on

the removal of excitation rather than direct inhibition, and found that this alternative poorly reprodu-

ces DS responses and is an inadequate model of T5 neurons (Figures 6 and 7).
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The first-order RF of T5 neurons, with a broad depolarization field leading a narrow trailing hyper-

polarization field, strongly resembles the structure we uncovered for T4 neurons (Figure 2D). This

RF characterization agrees with recent measurements made using voltage imaging of T5 neurons

(Wienecke et al., 2018), but augments them with absolute response magnitudes and time con-

stants. The second-order response mapping was used as an explicit test for non-linear interactions

that facilitate motion detection (Figure 3). Across a very large set of stimuli, we find a clear pattern

in the responses: no evidence for an amplifying non-linearity, but abundant evidence for sublinear

integration on the trailing side of the RF due to asymmetric hyperpolarizing inputs. A recent study

reported PD enhancement only occurs for larger (>6˚) stimuli (Haag et al., 2017), however, even

with wide bar stimuli (that nearly cover the T5 RF), we did not observe any instances of PD

Example cell 1

Data max (mV) 

M
o
d
e
l 
m

a
x
 (

m
V

) 

300

30

300

30

Bar width 1 (2¼º) Bar width 2 (4½º) Bar width 4 (9º)

Moving bar

300

30

300

30

300

30

Data max (mV) 

M
o
d
e
l 
m

a
x
 (

m
V

) 

Data max (mV) Data max (mV) 

Bar flashes

PD data

ND data

PD model

ND model

250 ms 

1
0
 m

V

500 ms 

1
0
 m

V

Bar width 2 (4½º)

Bar width 4 (9º)

A B

C

Model 

DSI 

Data 0.73 
0.20 

0.60 
0.16

0.56 
0.02

Figure 6. A conductance model relying on removal of excitatory input cannot recapitulate T5 responses. (A) Mean measured responses to single bar

flashes of two widths flashed for 160 ms at eight different positions from the same example cell as in Figure 4 (in colors) compared to predicted E+E-
model responses (gray). Model parameters were optimized using only responses to bar width two flashes (brown frame). (B) Peak measured response

compared to peak predicted response for bar flash stimuli from all cells and positions. Same conventions as in Figure 4, but only 160 ms flash

responses are shown. The E+E- model overestimates the width 4 bar flash responses. (C) Traces: Mean measured responses from same example cell as

in Figure 4 for slow moving bar stimuli overlaid with E+E- model predicted responses. Scatter plots: Peak measured responses compared to peak

predicted responses from E+E- model for all moving bar responses across cells (grouped by bar width). Plotting conventions as in Figure 4. Note

similar response magnitude for PD and ND stimuli; DSI comparison provided for the example cell and E+E- model. See also Figure 6—figure

supplements 1 and 2 for E+E- model results from different optimization procedures.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. E+E- model relying on removal of excitatory input cannot recapitulate T5 responses, even when optimized with bars of width 2

and 4.

Figure supplement 2. E+E- model relying on removal of excitatory input cannot recapitulate T5 responses, even when optimized with flashing and

moving bars.
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Figure 7. Inhibition is superior to removal of excitation for generating directional selectivity. Each column presents

responses from a different model version to a moving bar stimulus of width 2 with 80ms step duration: EI model

from Figure 4, E+E- model from Figure 6, and a Scaled version of the EI model. Parameters for first and second

column are the best fit (for each model, separately) for the example cell used in Figure 4 and 6. The Scaled EI

model parameters were inherited from the E+E- model (see Materials and methods for details), with coefficients

(CE, CI) required to match the depolarizing and hyperpolarizing conductances in the numerator of the E+E- model.

First and second rows show the dynamics of the depolarizing and hyperpolarizing conductances in each model to

PD and ND stimuli. The dashed line in the E+E- column represents the magnitude of g�E (maximal value for E-, see

Figure 7 continued on next page
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enhancement in the membrane potential responses (Figure 3D,E and Figure 3—figure supple-

ments 1 and 2).

While the computational mechanism appears to be similar between T4 and T5 neurons, we did

measure some differences between these cell types. T5 responses showed a position-dependent

rise time that was slower on the leading side than on the trailing side (Figure 2C), whereas T4 neu-

rons did not (Figure 2D of Gruntman et al., 2018). Since T5 dendrites are retinotopically aligned

with the preferred direction of motion, and since different input types synapse onto different loca-

tions of the T5 dendrite (Shinomiya et al., 2019), it is possible to connect the available functional

data from these input types (Arenz et al., 2017; Serbe et al., 2016) to their input position. Indeed,

Tm9 neurons, that synapse onto the distal branches of T5 dendrites (corresponding to the leading

side of the RF), are also the slowest among the four major input types (Arenz et al., 2017). However,

we found no evidence that this spatial change in rise time plays any functional role in the computa-

tion of DS. The depolarizing part of the RF is ‘motion blind’ (Figure 3) and when we modified our

model to account for this temporal difference, we recorded no substantial improvement in model

performance (results not shown). Perhaps a more important difference between T4 and T5 neurons

is the sensitivity to weak stimuli. Responses to single bar flashes in T4 were roughly equivalent to T5

responses to stimuli of twice the width (Figure 2D). Haag et al. (2017) also reported a similar differ-

ence. Since this difference is already measured in response to non-moving bar flashes, it is likely a

difference in the response sensitivity of upstream neurons. This difference may also suggest different

detection thresholds in the ON and OFF motion pathways, which would in turn suggest different

behavioral responses to small moving dark and bright objects.

In our previous T4 work, we implemented a simple computational model that integrates spatially

offset excitatory and inhibitory conductances in a passive, biophysical model (Gruntman et al.,

2018). In this study we used a slightly simplified version of this EI model to predict single neuron

responses to a range of stimuli (Figures 4 and 5). Importantly, we showed that a model optimized

only to predict single object impulse responses also accurately predicts moving bar and drifting grat-

ing responses (Figures 4 and 5). This EI model concretely instantiates an algorithmic mechanism

while also suggesting a biological implementation for the ND suppressing nonlinearity.

T4 and T5 share a high degree of anatomical similarity (Fischbach and Dittrich, 1989;

Shinomiya et al., 2019; Strausfeld and Lee, 1991; Takemura et al., 2017; Takemura et al., 2013).

Focusing only on their dendrites, both neuron types receive four major columnar inputs, both prefer-

entially synapse onto neurons of their same subtype, and both receive prominent input from CT1, a

single, large GABAergic interneuron (Shinomiya et al., 2019). However, the described anatomy of

the T4 and T5 inputs, combined with transcriptomic data (Davis et al., 2018), shows that T4 receives

mixed inputs from columnar cholinergic, GABAergic, and Glutamatergic cells, while all columnar

inputs to T5 are cholinergic. This substantial difference between the inputs of these two cells is espe-

cially surprising since the DS generation mechanism in T4 and T5 appears to be all but identical: fast

depolarization with asymmetric slow hyperpolarization on the trailing side of the RF.

In light of this anatomical difference, we explored a related model class, where instead of direct

inhibition, the model neuron integrates an excitatory input together with an offset excitatory input

which is reduced from a tonic baseline level in a stimulus-dependent manner. While this E+E- model

is able to capture several aspects of the first-order receptive field, it does not generalize well, and is

an inferior predictor of moving bar responses (Figure 6 and Figure 6—figure supplements 1 and

2). By analyzing the responses of the EI and E+E- model, we identified multiple factors that explains

why direct integration of excitatory and inhibitory inputs results in superior directional selectivity

(Figure 7). Our analysis suggests that T5 neurons are very likely to receive inhibitory inputs that

respond to local visual stimuli. A potential source for this input is CT1 that was thought to provide

only non-local inhibitory inputs due to its morphology. However, a recent study raises the possibility

that CT1 may function like a small-field, columnar neuron and provide the necessary local inhibitory

Figure 7 continued

Materials and methods). Third, fourth, and fifth rows show, respectively, the integrated conductance, the total

conductance, and the voltage response of each model version. Circled numbers and shaded frames emphasize

comparisons discussed in the Results. Scale bars are shared across columns and, for the top four rows, represent

0.5 normalizing conductance (Leak for EI and scaled EI, total stimulus-independent conductances for E+E-).
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input (Meier and Borst, 2019). In agreement with this proposal, transcriptomic profiling shows that

T5 neurons express several GABA receptors (Davis et al., 2018). A further possibility is that some

fraction of the cholinergic inputs could activate an inhibitory conductance (first proposed

in Shinomiya et al., 2014 ), in which case the T4 model should apply to T5, but be understood to

make use of a rather different molecular implementation. While elaborations of our T5 model could

be pursued to gain further insight on potential implementations, we believe that more experimental

evidence is required to establish the source and role of inhibition in the T5 computation.

In the current study, we expanded the set of visual stimuli we delivered, which allowed us to rec-

oncile our results with those of other groups. First, we found no evidence for a PD-enhancing mecha-

nism in T5 neurons, even with stronger stimuli as was previously shown with calcium imaging

(Haag et al., 2017). A potential resolution to this discrepancy may be the differences between volt-

age and calcium responses in the same neurons. When both calcium and voltage responses were
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Figure 8. Comparison between current models for T4/T5 computation of directional selectivity. One recent model

class, represented here by the proposal of Wienecke et al. (2018) uses a tilted linear spatio-temporal filter to

represent voltage responses, which are then followed by a nonlinear voltage-to-calcium transformation (1 degree

of freedom, dof). Another current model class, represented here by the version from Borst (2018), proposes a

three-arm model that uses a biophysical mechanism to generate PD amplification and ND suppression; the

calcium transformation is not modeled. Both of these models cannot explain our T5 results. The specific results

that challenge these proposals are detailed in the table below each model. The right column shows a unifying

proposal in which our EI model implements a 2 dof nonlinearity (dofs represented by DG and SG, see Figure 7)

that results in ND suppression in the voltage signal. This nonlinearity, which is a consequence of the biophysical

model that captures T5 responses, enables greater selectivity than a single dof transformation (for intution, see

Figure 7). Since our model does not explain the PD enhancement observed in calcium measurements (e.g.

Fisher et al., 2015; Salazar-Gatzimas et al., 2016; Haag et al., 2016), we augment this model with a voltage-to-

calcium transformation.
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imaged in T5 neurons, Wienecke et al. (2018) found amplification only in the calcium signal, and

this amplification was proposed to emerge from the transformation of membrane voltage to fluores-

cent calcium signals. However, the model proposed by Wienecke et al. (2018) is based on a voltage

signal that is integrated linearly across the cell’s receptive field; this linear signal is then amplified or

suppressed by a 1 degree of freedom, non-linear, voltage-to-calcium transformation (Figure 8, left

column). Our electrophysiological measurements show that the voltage signals do not simply inte-

grate linearly but are reliably sublinear (see for example Figures 3 and 4).

Another form of current directional selectivity models, represented by several recent studies

(Borst, 2018; Haag et al., 2016; Strother et al., 2017) have proposed a 3-arm detector that gener-

ates ND suppression by integrating the middle and trailing arms and PD enhancement by integrat-

ing the leading and middle arms. Although the evidence for this form of PD enhancement comes

from calcium imaging, the model in Borst (2018) uses a biophysical framework to generate PD

enhancement in the voltage signal (Figure 8, middle column). Our data shows no evidence for this

form of PD enhancement (Figure 3D,E and Figure 3—figure supplement 1). Instead, we propose

the following unifying framework (Figure 8, right column): the voltage response of T5 (and T4) neu-

rons to OFF (and ON) stimuli is generated by offset excitatory and inhibitory inputs. This integration

has the effect of introducing a nonlinearity (with 2 degrees of freedom) that is a potent and efficient

mechanism for generating directional selectivity. Subsequent to this, a secondary mechanism that

relates the transformation of membrane voltage to calcium in the axon terminals could further

enhance signals for PD motion and suppress signals for ND motion using an additional nonlinearity.

Motion vision in flies has long been a model system for neuronal computation. It is implemented

by a small-scale circuit that is genetically accessible, is a simple yet foundational computation for

vision, and has a well-defined behavioral role. Potential algorithms for this computation were already

suggested in the middle of the last century. These algorithms were designed to explain behavioral

responses and were refined to match responses of neurons downstream of T4 and T5. However, this

approach was under constrained because the available measurements were not from the neurons

implementing directional selectivity. We have proposed a biophysical model for T4 and T5 neurons

that is constrained by high-resolution electrophysiological measurements from these very same neu-

rons. By minimizing the slack between model implementation and experimental measurements, we

have ruled out many alternative models and proposed a parsimonious, robust, and broadly predic-

tive algorithm for motion vision computation.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent
(D. melanogaster)

UAS-GFP Janelia Research Campus pJFRC28-
10XUAS-IVS-GFP-
p10 (attP2)

Rubin Lab
JFRC28

Genetic
reagent
(D. melanogaster)

Stable split
Gal4
(T5)

Janelia Research Campus w; VT055812-
AD(attP40);
R47H05-
DBD(attP2)

Rubin Lab
SS25175

Software,
algorithm

MATLAB Mathworks Inc 2018b

Electrophysiology
Experiments were performed on 1–2 day old female Drosophila melanogaster (flies were reared

under 16:8 light:dark cycle at 24˚C). To target T5 cells, a single genotype was used: pJFRC28-

10XUAS-IVS-GFP-p10 (Pfeiffer et al., 2012) in attP2 crossed to stable split-GAL4 SS25175 (w;

VT055812-AD(attP40); R47H05-DBD(attP2)) generously provided by Aljoscha Nern in Gerry Rubin’s

lab (line details with expression data available from http://splitgal4.janelia.org/). Flies were briefly

anesthetized on ice and transferred to a chilled vacuum holder where they were mounted, with the

head tilted down, to a customized platform machined from PEEK using UV-cured glue (Loctite
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3972). CAD files for the platform and vacuum holder are available upon request. To reduce brain

motion the proboscis was fixed to the head with a small amount of the same glue. The posterior

part of the cuticle was removed using syringe needles and fine forceps. The perineural sheath was

peeled using fine forceps and, if needed, further removed with a suction pipette under the micro-

scope. To further reduce brain motion, muscle 16 (Demerec, 1950) was removed from between the

antenna.

The brain was continuously perfused with an extracellular saline containing (in mM): 103 NaCl, 3

KCl, 1.5 CaCl2 2H2O, 4 MgCl2 6H2O, 1 NaH2PO4 H2O, 26 NaHCO3, 5 N-Tris (hydroxymethyl)

methyl-2- aminoethane-sulfonic acid, 10 Glucose, and 10 Trehalose (Wilson and Laurent, 2005).

Osmolarity was adjusted to 275 mOsm, and saline was bubbled with 95% O2/5% CO2 during the

experiment to reach a final pH of 7.3. Pressure-polished patch-clamp electrodes were pulled for a

resistance of 9.5–10.5 MW and filled with an intracellular saline containing (in mM): 140 KAsp, 10

HEPES, 1.1 EGTA, 0.1 CaCl2, 4 MgATP, 0.5 NaGTP, and 5 Glutathione (Wilson and Laurent, 2005).

250 mM Alexa 594 Hydrazide was added to the intracellular saline prior to each experiment, to reach

a final osmolarity of 265 mOsm, with a pH of 7.3.

The mounted, dissected flies were positioned on a rigid platform mounted on an air table.

Recordings were obtained from labeled T5 cell bodies under visual control using a Sutter SOM

microscope with a 60X water-immersion objective. To visualize the GFP labeled cells, a mono-

chrome, IR-sensitive CCD camera (ThorLabs 1500M-GE) was mounted to the microscope, an 850 nm

LED provided oblique illumination (ThorLabs M850F2), and a 460 nm LED provided GFP excitation

(Sutter TLED source). Images were acquired using Micro-Manager (Edelstein et al., 2014), to allow

for automatic contrast adjustment.

All recordings were obtained from the left side of the brain. Current clamp recordings were sam-

pled at 20 KHz and low-pass filtered at 10 KHz using Axon multiClamp 700B amplifier (National

Instrument PCIe-7842R LX50 Multifunction RIO board) using custom LabView (2013 v.13.0.1f2;

National Instruments) and MATLAB (Mathworks, Inc) software. Shortly after breaking in, recordings

were stabilized with a small injection of a hyperpolarizing current (0–3 pA) setting the membrane

potential to a range between �60 to �55 mV (uncorrected for liquid junction potential). Occasion-

ally, the injected current required adjustments, but these were done prior to the acquisition of the

single bar flash data. To verify recording quality, current step injections were performed at the

beginning of the experiment.

Visual stimuli
The display was constructed from an updated version of the LED panels previously described

(Reiser and Dickinson, 2008). The arena covered slightly more than one half of a cylinder (216˚ in

azimuth and ~72˚ in elevation) of the fly’s visual field, with the diameter of each pixel subtending an

angle of (at most) 2.25˚ on the fly eye. Green LEDs (emission peak: 565 nm) were used, dark stimuli

(off pixels) were presented on an intermediate intensity background of ~31 cd/m2.

Visual stimuli were generated using custom written MATLAB code that allowed rapid generation

of stimuli based on individual cell responses. In contrast to the published stimulus control system

(Reiser and Dickinson, 2008), we have now implemented an FPGA-based panel display controller,

using the same PCIe card (National Instrument PCIe-7842R LX50 Multifunction RIO board) that also

acquired the electrophysiology data. This new control system (implemented in LabView) streams pat-

tern data directly from PC file storage, allowing for on-line stimulus generation. Furthermore, this

new control system featured high precision (10 ms) timing and logging of all events, enabling reliable

alignment of electrophysiology data with visual stimuli.

To map the receptive field (RF) center of each recorded cell, three grids of flashing dark squares

(on the same intermediate intensity background) were presented at increasing resolution. Each flash

stimulus was presented for 200 ms. First, a 6 � 7 grid of non-overlapping 5 � 5 LEDs (~11˚�~11˚)

dark squares was presented (Figure 1C). If a response was detected, a denser 3 � 3 grid with 50%-

overlapping 5 � 5 LEDs (~11˚�~11˚) bright and dark squares (to further verify these were T5 Cells)

was presented at the estimated position of the RF center. If a recorded cell was consistently respon-

sive to the first two mapping stimuli, a third protocol was presented to identify the RF center. A

5 � 5 grid of 3 � 3 LED bright squares separated by one pixel-shifts was presented at the estimated

center of the second grid stimulus. The location of the peak response to this stimulus was used as

the RF center in subsequent experiments. Once the RF center was identified, the moving bar
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stimulus was presented in 8 directions with 80 ms step duration (equivalent to ~28˚/s). The bar was

nine pixels in height and 1, 2, or 4 pixels in width (results in Figure 1D,E). When moving in the cardi-

nal directions, the motion spanned nine pixels. In the diagonal directions bar motion included more

steps to cover the same distance (9 steps vs. 13 steps; see also Figure 2—figure supplement 1).

Once the preferred direction had been estimated, dark bar flashes were presented on the relevant

axis for widths 1,2 and 4. To verify full coverage of RF, this stimulus was presented over an area

larger than the original motion window (at least 13 positions; results in Figure 2). In addition to

these stimuli, most cells were also presented with additional stimuli following this procedure. All

stimuli were presented in a pseudorandom order within stimulus blocks. All stimuli were presented

three times, except for single bar flashes which were repeated five times. The inter-stimulus interval

was 500 ms for moving stimuli and 800 ms for single bar flashes (to minimize the effect of ongoing

hyperpolarization on the responses to subsequent stimuli).

Other presented stimuli were:

1. Moving bar. after identifying the PD-ND axis, moving bar stimuli were presented along this
axis using either 40 ms or 160 ms steps (equivalent to 56˚/sec or 14˚/sec respectively). Bar
height was the same for the mapping stimuli and width was either 1,2 or 4 pixels (correspond-
ing to 2.25, 4.5 or 9˚). Results in Figure 4.

2. Apparent motion. Bar pairs were presented in two different configurations. Either bars were of
width two and the delay between the first and the second bar was adjusted to maintain fixed
speed (i.e. correcting the temporal delay to account for the spatial difference in positions), or
bars were of width four and the second bar was presented directly after the first, regardless of
positional difference. This second configuration was meant to elicit the strongest responses
possible. Results in Figure 3 and Figure 3—figure supplements 1 and 2.

3. Flashes of different grating phases. Square wave gratings were of a constant spatial frequency
(4 pixels OFF/4 pixels background intensity), presented in the same window size as the moving
bar stimulus (nine steps for cells with PD along a cardinal direction, 13 steps for cells with PD
along the diagonals). 8 phases of the grating stimuli were presented for 40 ms or 160 ms.
Results in Figure 5.

4. Moving grating. Square wave grating with the same properties as above were presented with
phases moving either in the forward or the reverse direction (PD or ND), and the initial phase
presented being either 0 or 0.5. Results in Figure 5.

Analysis
All data analysis was performed in MATLAB using custom written code. Since the T5 baseline was

typically stable, we included only trials in which the mean pre-stimulus baseline did not differ from

the overall pre-stimulus mean for that group of stimuli by more than 10 mV. We also verified that

the pre-stimulus mean and overall mean for that trial did not differ by more than 15 mV (or 25 mV

for slow moving bars, due to their strong responses). This is the same criteria we used for our previ-

ous T4 study (Gruntman et al., 2018). Responses were later aligned to the appearance of the bar

stimulus and averaged (or the appearance of the bar in the central position in case of the 8-orienta-

tion moving bar). T5 cells are expected to signal using graded synapses. Consistent with this expec-

tation, we find that T5 recordings only occasionally feature very small, fast transients (~1–2 mV in

size) that could not be verified as spikes. Therefore, we have focused our analysis on the graded

(sub-threshold) components of T5’s responses.

Determining PD: After presenting the cell with 1 and 2 pixel wide bars moving in eight different

directions at 80 ms per step (speed which was optimal for determining directional selectivity for T4

cells; Gruntman et al., 2018), the preferred direction for the cell was determined by a visual esti-

mate of the responses to determine the middle of the relatively wide range of large responding

directions (see Figure 1). Because stimuli were presented in 45˚ intervals, and the tuning of T5 neu-

rons to direction is relatively wide, the more precise method for PD estimation that was used for T4

cells (Gruntman et al., 2018) was unnecessary.

DSI calculation: direction selectivity index was defined as DSI = [PDmax – NDmax]/PDmax, with each

response max defined as the 0.995 quantile (a more robust estimate of the max than peak) within

the stimulus presentation window.

Single Position Flash Response – depolarization: responses were defined as the 0.995 quantile (a

robust estimate of the max) of the response during the time between bar appearance and flash
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duration + 75 ms. If this number did not exceed 2.5 standard deviations of the pre-stimulus baseline,

the response was defined as zero. For bars of width 2 and 4 the threshold was 2.7 and 2.9 standard

deviations, since the responses were stronger. Standard deviation of the baseline was determined

by fitting a gaussian to the pre-stimulus baseline values for all the stimulus presentations and extract-

ing the sigma value from the fit.

Single Position Flash Response - hyperpolarization: same as above only the time window used

was until the end of the trial (due to slower time course for hyperpolarization) and lower thresholds

were used (1.5, 1.7, and 1.9 standard deviations, due to lower magnitude of hyperpolarization).

These calculations were used for Figure 2C,D.

Rise start/Rise time Calculation: Only presentations in which the average SPFR was detected as

depolarizing were used for this calculation. Start time was defined as the time from stimulus presen-

tation to 10% of the of the value of the maximal response for that position. Rise time was defined as

the time from 10% of the response maximum to 50% of the maximum. The data in Figure 2C are

plotted as relative to the center (0) position, since the above values for the center position have

been subtracted from all other positions for each cell separately. For each position in Figure 2C at

least 10 cells passed the selection criteria.

Apparent motion linear approximation (superposition): Single bar flash responses were aligned to

the time of the corresponding position appearance in the apparent motion stimulus (bar pairs in Fig-

ure 3 and moving bars in Figure 4). Responses were padded with zeros (since all were baselines

subtracted) to extend brief single bar responses to the timescale of apparent motion. This procedure

was used for the linear estimation throughout Figure 3, and in Figure 4D.

Mean absolute deviation (MAD) calculation: For each stimulus presentation the mean absolute

deviation was calculated between the maximum of the mean response to the stimulus, and the maxi-

mum of the individual repeats. Once a maximal response was identified for the mean response, the

maximal response was found for each corresponding repeat within a 100 ms window surrounding

the mean peak response. We verified that there was no relationship between the maximal response

magnitude and the MAD magnitude (by calculating MAD for different magnitude range) and pooled

all the MAD estimates from all the different stimuli and all the cells for a global estimate. Figure 4C,

E and Figure 5B,E are using the upper quartile for a MAD estimate for all the cells. In Figure 4—fig-

ure supplement 1 we use the upper quartile from all the stimuli for each neuron separately.

Data selection: For Figure 5, only cells that showed a non-diagonal preferred direction (n = 5) are

presented. Since we regard the receptive field as one dimensional (PD-ND axis) and since our LED

arena is limited when generating diagonal stimuli, we chose to focus only on non-diagonal (cardinal)

PD cells instead of fitting a second dimension to the receptive field of diagonal cells.

Phase and amplitude calculation: For Figure 5, we calculated the phase by fitting a cosine to the

response after removing the first cycle (to eliminate the effect of the grating appearance). When pre-

sented in Figure 5E, phase is shown between �2p and p to facilitate the separation of PD and ND

responses for moving grating starting at the two different phases.

Statistics
To determine statistically significant differences, the one-sided, unpaired Student’s t-test was used

for comparing groups (Figures 1E, 2C, and 3D). In Figure 3D, we controlled for the false discovery

rate using the Benjamini and Hochberg procedure (Benjamini and Hochberg, 1995), with q = 0.075.

We noted that data were approximately normally distributed in general, but no formal test was con-

ducted. Regression analysis for Figure 3E and Figure 3—figure supplement 1D) was performed

using MATLAB fit function, fitting a first-degree polynomial. No statistical methods were used to

pre-determine sample sizes, however our sample sizes are similar to those reported in previous pub-

lications (Bahl et al., 2015; Turner-Evans et al., 2017; Tuthill et al., 2014). Data collection and anal-

ysis could not be performed blind to the conditions of the experiments.

Data plotting conventions
All boxplots presented were plotted with these conventions: box represents upper and lower quar-

tile range, line represents median, whiskers were omitted, and individual data points are overlaid on

the box.
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T5 neuron models (Figures 4, 5 and 7)
Model membrane potential
The models that follows are largely based on the T4 model we previously introduced

(Gruntman et al., 2018). We modeled the dynamics of T5 somatic membrane potential, VðtÞ, as a

single-compartment conductance-based neuron

t _VðtÞ ¼�ðVðtÞ�VLÞ� ðg�E þ gEðtÞÞðVðtÞ�VEÞ� ðg�I þ gIðtÞÞðVðtÞ�VIÞ (1)

where t denotes the integration time constant of the model neuron and VE, VI , VL denote, respec-

tively, the excitatory, inhibitory, and leak reversal potentials. g�E denotes a baseline excitatory con-

ductance that is stimulus-independent, from which a stimulus-dependent conductance could be

added or removed ðgEðtÞÞ. To ensure the baseline membrane potential will not drift due to the stim-

ulus-independent conductance g�E, we added a stimulus-independent inhibitory global conductance,

g�I . Finally, gIðtÞ denotes a stimulus-dependent inhibitory conductance. To simplify the model, and

based on our results from the T4 model (Gruntman et al., 2018), we assumed negligible integration

on the membrane and set t¼ 0.

The model membrane potential (Equation 1) can thus be written as

V ¼
VLþðg�E þ gEÞVE þðg�I þ gIÞVI

1þ g�E þ g�I þ gE þ gI
(2)

where, for simplicity, we omitted the time dependence in the conductances and membrane poten-

tial. When there is no input stimulus into the system, the baseline voltage is

Vb ¼
VL þ g�EVE þ g�IVI

1þ g�E þ g�I
(3)

Note that in the presence of stimulus-independent conductances, the baseline voltage is not nec-

essarily identical to the leak reversal potential. The difference between baseline voltage and leak

reversal potential is

Vb�VL ¼
g�EðVE �VLÞþ g�I ðVI �VLÞ

1þ g�E þ g�I
¼ ðVE �VLÞ

g�E �ag�I
1þ g�E þ g�I

;a¼
VL �VI

VE �VL

(4)

The membrane potential in Equation 2 can thus be written as

V ¼
Vbð1þ g�E þ g�I Þþ gEVE þ gIVI

1þ g�E þ g�I þ gE þ gI
(5)

We can then compute the membrane potential change with respect to baseline as

V �Vb ¼
ðVE �VbÞgE þðVI �VbÞgI

1þ g�E þ g�I þ gE þ gI
¼ ðVE �VbÞ

g0E �a0g0I
1þ g0E þ g0I

(6)

where g0E ¼
gE

1þg�
E
þg�

I

, g0I ¼
gI

1þg�
E
þg�

I

denote the conductances normalized to the stimulus-independent

total conductance, and a0 ¼ Vb�VI

VE�Vb
.

Finally, we can define an integrated conductance DG ¼ g0E � a0g0I and a total conductance

SG ¼ 1þ g0E þ g0I , so that the model response (Equation 6) can be written as

V �Vb ¼ ðVE �VbÞ
DG

SG
(7)

T5 neuron model – EI version
In this model there is a stimulus-dependent excitatory conductance ðgE ¼ EÞ, a stimulus-dependent

inhibitory conductance ðgI ¼ IÞ, and no stimulus-independent conductances ðg�I ¼ g�E ¼ 0Þ. With

these choices, the baseline membrane potential (Equation 3) becomes Vb ¼ VL, and the membrane

potential (Equation 6) becomes
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V �VL ¼ ðVE �VLÞ
E�aI

1þEþ I
(8)

as in our previously published model (Gruntman et al., 2018).

T5 neuron model – E+E- version (Figures 6 and 7)
We assume that both the stimulus-dependent added conductance (E+) and the stimulus-dependent

removed conductance (E-) share the same reversal potential and therefore represent the total stimu-

lus-dependent conductance in the model as gE ¼ Eþ � E�.

We rectified E� to prevent negative conductance values,that is E� never exceeds the stimulus

independent conductance ðg�EÞ. The stimulus-dependent inhibitory conductance was assumed to be

absent ðgI ¼ 0Þ.

Bound for E- conductance
With these choices, we can write Equation 6 as

V �Vb ¼ ðVE �VbÞ
E0
þ �E0

�

1þE0
þ �E0

�

(9)

where

E0
þ=� ¼

E0
þ=�

1þ g�E þ g�I
(10)

Since E� is removed, we demand E� � g�E. Therefore, E� �
g�
E

1þg�
E
þg�

I

<1

Additionally, from Equation 4 we know that

Vb ffi VL ) g�E ffi ag�I (11)

Leading to the following bound for the E- conductance

E0
� �

g�E
1þ g�E þ g�E=a

(12)

T5 neuron model – scaled EI version (Figure 7)
To generate this version of the model we used the dynamics of the EI model with the spatial and

temporal parameters from the E+E- model. The parameters of the E conductance were matched to

the E+ conductance, while the parameters of the I conductance were matched to the E- conduc-

tance. Due to the stimulus-independent conductances in the E+E- model the amplitudes could not

be directly matched. Therefore, we scaled the E and I conductance to match the numerator of the

E+E- model so that the depolarizing and hyperpolarizing conductances are equal.

Model conductances, inputs, and optimization
Model conductances
The dynamics of the excitatory and inhibitory conductances ðkðtÞ; k ¼ E; Eþ;E�; IÞ, measured in

units of leak conductance, are described by two first-order linear filters in series

tRk
_hkðtÞ ¼�hkðtÞþ Istimk ðtÞ

tDk
_kðtÞ ¼�kðtÞþ hkðtÞ

(13)

where ðtRk ; t
D
k ; k ¼ E; Eþ;E�; IÞ denote the rise and decay time constants of the conductances, and

Istimk ðtÞ is determined by the spatial receptive fields of the conductances and the spatiotemporal pro-

file of the visual stimulus.

Model inputs
The input to the conductance equations
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Istimk ðtÞ ¼ SxRkðxÞSðx; tÞ;

is determined by the spatiotemporal profile of the visual stimulus Sðx; tÞ and the spatial receptive

field of the conductance ðRkðxÞ; k ¼ E; Eþ;E�; IÞ. The integer index x runs over locations along the

ND-PD axis of a cell. This spatial discretization is dictated by the smallest size of the bars used in the

experiment (width 1). The arbitrary reference x¼ 0 denotes the empirically determined location in

the cell receptive field where a flashed bar elicited the strongest depolarization. The stimulus Sðx; tÞ

can assume two possible values, 0 or 1, denoting respectively the absence or presence of an OFF

bar of width one at the corresponding spatial location and time. We are not explicitly considering

the height of the bar, hence our model stimuli replicate the one-dimensional equivalent of the stimuli

used in the experiments.

Receptive fields
We modeled the spatial receptive field of the excitatory and inhibitory conductances as a Gaussian

profile

RkðxÞ ¼ Ake
�
ðx��kÞ

2

2s2

k

centered at location �k, with amplitude Ak and width sk ðk ¼ E; Eþ;E�; IÞ.

Model optimization
We numerically integrated the model dynamics with a 4th-order Runge-Kutta integration scheme.

We obtained model parameters by numerically minimizing the squared error between the mem-

brane potential dynamics of the model and the measured membrane potential of T5 cells in

response to flashed bars of width 2. A constrained minimization procedure was performed 1000

times for each cell, starting from random uniform initialization of the parameter values within speci-

fied bounds (Supplementary file 1). Predictions for the remaining sets of stimuli from the top 1% of

models (10/1000, based only on the magnitude of the error for the width 2 bar flash stimuli) were

then compared with the measured responses (Figures 4 and 5). All simulations were performed in

Matlab. Code and data are available at https://github.com/reiserlab/T5ConductanceModel (copy

archived at https://github.com/elifesciences-publications/T5ConductanceModel).
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