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Fibrillin is the major constituent of extracellular microfibrils, which are distributed
throughout connective tissues. Asprosin is derived from the C-terminal region of the
FBN1 gene, which encodes profibrillin that undergoes cleavage by furin protein. In
response to fasting with low dietary glucose, asprosin is released as a secreted factor
from white adipose tissue, and is transported to the liver for the mediation of glucose
release into the blood circulation. Through binding to OLFR734, an olfactory G-protein-
coupled receptor in liver cells, asprosin induces a glucogenic effect to regulate glucose
homeostasis. Bioinformatics analyses revealed that the FBN1 gene is abundantly
expressed in human skeletal muscle-derived mesoangioblasts, osteoblast-like cells,
and mesenchymal stem cells, indicating that the musculoskeletal system might play a
role in the regulation of asprosin expression. Interestingly, recent studies suggest that
asprosin is regulated by exercise. This timely review discusses the role of asprosin in
metabolism, its receptor signalling, as well as the exercise regulation of asprosin.
Collectively, asprosin may have a vital regulatory effect on the improvement of
metabolic disorders such as diabetes mellitus and obesity via exercise.
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INTRODUCTION

Asprosin was initially identified as a new class of hormone, or a centrally acting orexigenic hormone
that regulates the liver to release hepatic glucose and increase plasma glucose levels (Greenhill, 2016;
Romere et al., 2016). It was subsequently revealed that asprosin acts as a central appetite stimulator,
or a fasting-induced glucogenic protein hormone (Duerrschmid et al., 2017), via a signalling pathway
similar to ghrelin, also known as lenomorelin or “hunger hormone” (Donma and Donma, 2018).
Asprosin deficiency is found in patients with neonatal progeroid syndrome (NPS), while excess
production of asprosin is detected in the condition of insulin resistance and obesity (Greenhill, 2016;
Romere et al., 2016). It is proposed that asprosin in cooperation with ghrelin is beneficial to cachexia-
anorexia, a complex metabolic syndrome occurring in severe burns victims (Donma and Donma,
2018). These findings imply that asprosin plays an essential role in a range of metabolic-related
diseases. Exercise improves the outcomes of metabolic disorders, such as promoting energy substrate
redistribution, losing fat mass, and reducing inflammation (Gonzalez-Gil and Elizondo-
Montemayor, 2020). Notably, exercise affects the release of asprosin, which may regulate the
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FIGURE 1 | (A)Multiple sequence alignment analyses signifying amino acid sequence identity and similarity among asprosin in various species of human, mouse,
rat, pig, dog, bovine, and rhesus macaque. (B) A family tree of asprosin proteins is presented.

FIGURE 2 |Molecular structure of human asprosin protein. (A) Asprosin (aa2732-2871) is derived from the C-terminal region of prefibrillin-1 which contains a signal
peptide (aa1-24), propeptide (aa25-44), a furin cleavage motif after RAKR (aa44), fibrillin unique N-terminal (FUN) domain (aa45-81), microfibrillar-associated protein 4
(MFAP4) interacting domain (aa119-329), proline rich domain (aa402-446), RGD motif (aa1541-1543), a furin cleavage motif after RKRR (aa2731), and fribrillin-1 (aa25-
2731). (B) Asprosin is predicted to consist of two alpha helixes and several beta strands based on the analysis by Phyre2 web portal (http://www.sbg.bio.ic.ac.uk/
phyre2/). (C) Tertiary structure analysis showing human asprosin protein that mimics crystal structure of cadherin8 ec1 domain based on template c1zxkB, which has 46
residues (33% of asprosin sequence) have been modelled with 95.2% confidence by the single highest scoring template using Phyre2 web portal analysis (http://www.
sbg.bio.ic.ac.uk/phyre2/).
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corresponding metabolism (Ko et al., 2019). In this review, we
summarize the expression profile of asprosin and the effects of
exercise on asprosin to mediate metabolic diseases, such as
diabetes mellitus (DM), obesity and polycystic ovary syndrome
(PCOS).

MOLECULAR STRUCTURE, EXPRESSION
AND FUNCTION OF ASPROSIN

Asprosin is encoded by FBN1 gene and belongs to a post-
translationally modified product of fibrillin. Asprosin is
released as the C-terminal propeptide from profibrillin-1,
and is cleaved by pro proteinase furin (Jensen et al., 2014). It
is well conserved between human and mouse based on multiple
sequence alignment (Figure 1). Molecular structure analysis of
human asprosin protein shows that it contains Asprosin (aa2732-
2871) at the C-terminal region of prefibrillin-1 which contains a
signal peptide (aa1-24), propeptide (aa25-44), a furin cleavage
motif after RAKR (aa44), fibrillin unique N-terminal (FUN)
domain (aa45-81), microfibrillar-associated protein 4 (MFAP4)

interacting domain (aa119-329), proline rich domain (aa402-
446), RGD motif (aa1541-1543), a furin cleavage motif after
RKRR (aa2731), and fribrillin-1 (aa25-2731) (Figure 2A).
Further, Asprosin is predicted to consist of two alpha helixes
and several beta strands based on the analysis of the Phyre2 web
portal (Figure 2B). Tertiary structure analysis shows that human
asprosin protein mimics the crystal structure of cadherin8 ec1
domain using the Phyre2 web portal (Figure 2C). FBN1 mRNA
expression was detected widely in human tissues and cell lines
(Figure 3). Gene expression analyses by Genevisible®- based
bioinformatics (Hruz et al., 2008) reveal that FBN1 mRNA
was most abundantly expressed in human tissues of skeletal
muscle-derived mesoangioblasts, meniscal cells, liver artery
endothelium cells, liver vein endothelium cells and osteoblast-
like cells (Figure 3A). It was most highly expressed in human
fibroblast cell lines of GM05659, tendon stem/progenitor cell,
adult stem cells, mesenchymal stem cell, and mesoangioblast
(Figure 3B). These results indicate that asprosin is likely to be
released from these tissues and cell sources. The expression of
asprosin varies between different tissues in pathological
conditions. For instance, the asprosin level is elevated in

FIGURE 3 |mRNA expression profiling of FBN1 gene in human tissues (A) and cell lines (B) predicted by Genevisible
®
bioinformatics analyses (http://genevisible.

com). The ten most highly ranking tissues and cell lines that express FBN1 mRNA are shown.
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gastric and testicular tissues but decreased in liver, kidney, and
heart tissues in diabetic rats compared with normal controls
(Kocaman and Kuloglu, 2020). Asprosin can circulate to the liver
to induce a glucogenic effect through OLFR734, an olfactory
G-protein-coupled receptor in liver cells to regulate glucose
homeostasis (Li et al., 2019). It also crosses the blood-brain
barrier to induce an orexigenic effect via regulating appetite-
modulating neurons in the arcuate nucleus of the hypothalamus
(Duerrschmid et al., 2017).

During diverse progressions of cell metabolism, asprosin
appears to play varying roles. For example, it is shown that
asprosin inhibits apoptosis and reactive oxygen species (ROS)
generation, through the activation of the ERK1/2-SOD2 pathway,
which increases the antioxidant level of mesenchymal stromal
cells (MSCs) in an ischemic heart disease model. But there is no
influence on cell migration and proliferation by asprosin (Zhang
Z. et al., 2019).

ASPROSIN IN METABOLIC DISEASES

The endocrine system acts through hormones in the regulation of
carbohydrate, protein, and fat metabolism, and maintains the
development and functional activities of our body. The level of
circulating asprosin is positively correlated with risk factors of
abnormal metabolism, such as fasting glucose and atherogenesis
index in menopausal women (Wiecek et al., 2019). Asprosin is
shown to mediate lipid metabolism, which negatively regulates fat
browning by reducing the expression of the browning marker,
uncoupling protein 1 (UCP1), and by promoting lipid deposition
by suppressing nuclear factor E2-related factor 2 (Nrf2)
activation, in both a cold-stimulated and high-fat diet murine
model (Miao et al., 2021).

DM

Type 1 diabetes mellitus (T1DM), Type 2 diabetes mellitus
(T2DM), and gestational diabetes mellitus (GDM) are three
subtypes of DM. Serum asprosin is reported to increase in all
these types (Baykus et al., 2019; Ko et al., 2019; Zhang L. et al.,
2019). Oral glucose tolerance test (OGTT) is used to assess
dynamic changes in insulin secretion following oral glucose
load. In normal glucose tolerance (NGT) participants, after a
75 g OGTT, asprosin is negatively correlated with blood
glucose (BG) and C-peptide, after adjusting for age, gender,
and BMI (Zhang X. et al., 2020). Conversely, in T2DM
patients, plasma asprosin level is positively correlated with
fasting blood glucose (FBG), hemoglobin A1c (HbA1c), post-
challenge plasma glucose (2hPG), homeostasis model
assessment for insulin resistance (HOMA-IR), triglyceride
(TG), triacylglycerol (TAG) and waist circumference (Wc).
Among them, FBG and HOMA-IR are independently
correlated with asprosin in T2DM, which was obtained by
multiple stepwise regression analysis (Li et al., 2018; Naiemian
et al., 2020; Wang et al., 2018). Similarly, plasma asprosin is
elevated in GDM patients, as related factors of insulin

resistance are increased in the early stages of gestation
(Zhong et al., 2020).

The prophase of T2DM, also known as impaired glucose
regulation (IGR), including impaired glucose tolerance (IGT)
and impaired fasting glycaemia (IFG) (Alberti and Zimmet,
1998), is associated with insulin resistance and β-cell
dysfunction (Williamson, 2018), and has a high risk of DM
(Tabak et al., 2012). Individuals with IGR show relatively
higher plasma asprosin levels than newly T2DM patients, and
both are higher than non-T2DM subjects. Subsequent correlation
analysis elucidates that plasma asprosin is negatively correlated
with a homeostasis model assessment for β-cell function
(HOMA-β), acute insulin response (AIR), and glucose
disposition index (GDI). Specifically, circulation asprosin level
is correlated with IGR and newly T2DM by multiple logistical
regression analyses (Wang et al., 2018). In newly diagnosed DM,
circulating asprosin is significantly suppressed, after 24-weeks
treatment, as well as HbA1c, FPG, and BMI, by sodium-glucose
co-transporter-2 (SGLT2) inhibitors, a hypoglycemic agent,
which selectively inhibit glucose reabsorption (Jiang et al.,
2021). Asprosin therefore appears to be a potential biomarker
for DM diagnosis.

As diabetes progresses, various complications gradually
emerge. In DM patients with kidney disease, circulating
asprosin is higher than that in individuals without diabetic
nephropathy. Furthermore, patients with macroalbuminuria
and microalbuminuria have a significantly elevated asprosin
level. Moreover, asprosin level is positively associated with
disease duration, urinary albumin-to-creatinine ratio (UACR),
creatinine, blood urea nitrogen (BUN), and negatively correlated
with estimated glomerular filtration rate (eGFR), and the
treatment of metformin, and acarbose, especially in the early
stage of nephropathy. Furthermore, asprosin is independently
related to UACR, BUN, low-density lipoprotein (LDL)-C, and the
development of albuminuria in T2DM patients by regression
analyses (Deng et al., 2020; Wang et al., 2021; Zhang H. et al.,
2020). Similarly, in diabetic retinopathy (DRP) individuals, the
asprosin level is higher compared with non-DRP patients in
blood and aqueous humor (Oruc et al., 2020). Collectively,
asprosin appears to play a role in the onset and progression of
DM and might be a potential therapeutic target for the treatment
of this illness.

The researchers have explored the pathogenic mechanism
of asprosin in DM. In vivo experiments suggest that asprosin
could only elevate BG level in normoglycemic mice but not in
diabetic ones. Further, intraperitoneal injection of asprosin
was found to decrease excessive hepatic TG, cholesterol, and
LDL of diabetic animals (Hekim et al., 2021). In vitro findings
indicated that asprosin could affect the physiological function
of insulin-releasing pancreatic β-cells. For example, Lee et al.
(2019) examined the knockdown effects of asprosin and its
downstream toll-like receptor (TLR) 4 or JNK expressions in a
pancreatic β-cell line MIN6. The results demonstrate that
asprosin increases the level of inflammatory cytokines TNF
and MCP-1, and phosphorylation of nuclear factor-kappa B
(NF-κB) to exacerbate inflammation. Analogously, cell
viability and insulin secretion are all attenuated via
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asprosin treatment, through the TLR4/JNK signal pathway.
Similarly, research on MIN6 cells reports that recombinant
asprosin inhibits the expression of autophagy marker LC3-II/
LC3-I and beclin 1, and promotes apoptosis through an AMP-
activated protein kinase (AMPK)-mTOR pathway in β-cells
(Wang and Hu, 2021).

In addition to disrupting β-cells secretion, asprosin also
contributes to insulin resistance. The maintenance of blood
glucose homeostasis depends on the insulin sensitivity of
tissues such as muscle, liver, and fat. When the extracellular
environment is disturbed, increased cellular stress in these tissues
hinders the metabolic activity of insulin, resulting in insulin
resistance, which is a major determinant of T2DM progression
(DeFronzo and Tripathy, 2009; Petersen and Shulman, 2018;
Fazakerley et al., 2019). In a normoglycemic hyperinsulinemic
model, skeletal muscle takes up about 80% of the total glucose
metabolism (DeFronzo et al., 1981), while in a study of leg muscle
glucose uptake, insulin-stimulated glucose uptake was reduced by
approximately 50% in T2DM. This suggested that skeletal muscle
insulin resistance is considered the incipient metabolic disorder
of T2DM (DeFronzo et al., 1981; DeFronzo and Tripathy, 2009).
Specifically, impaired glycogen synthesis is a major mechanism
leading to muscle insulin resistance. During the process of
insulin-mediated glucose uptake, it has been suggested that the
IRS-1/PI-3 kinase/Akt pathway is critical (Krook et al., 2000;
DeFronzo and Tripathy, 2009). However, the regulatory role of
asprosin in this pathway remains to be elucidated. An
intervention with asprosin in myocyte cell line C2C12 and
soleus skeletal muscle reveals that asprosin accelerates insulin
resistance by stimulating the ER stress/inflammation-mediated
pathway. In addition, asprosin suppresses the expression of
protein kinase C-δ (PKCδ) phosphorylation by high-affinity
binding and inhibits sarcoplasmic reticulum Ca2+ ATPase 2b
level, resulting in impaired myocyte insulin sensitivity (Jung et al.,
2019).

Obesity
Obesity, especially abdominal obesity, is often accompanied by
metabolic disorders such as hyperglycemia and dyslipidemia, and
cardiovascular disease morbidity and mortality (Engin, 2017). In
obese subjects, circulating asprosin is not only increased compared
with normal weight but also elevated to accompany the rising BMI, in
both adults and children (Ugur andAydin, 2019; Sunnetci Silistre and
Hatipogl, 2020). Analogously, in underweight subjects and weight
reduction after bariatric surgery participants, asprosin levels are also
associated with BMI (Ugur andAydin, 2019;Wang C. Y. et al., 2019).
The studies of obesity in children reveal that asprosin level is
increased in children with insulin resistance as compared with the
non-insulin resistance group. Among obesity-related indicators,
waist-to-hip ratio (WHR) and HOMA-IR are positively associated
with asprosin, which is considered to be a predictor of obesity by
multiple regression analysis (Wang M. et al., 2019; Sunnetci Silistre
and Hatipogl, 2020).

Additional research of asprosin regulation in an obesity model
of monosodium glutamate (MSG)-induced hypothalamic obesity
mice showed that 3-weeks treatment by AM6545, a peripheral
cannabinoid receptor 1 (CB1R) blocker, diminishes the level of
asprosin while reducing the increased body weight, dyslipidemia
and intraperitoneal fat mass (Ma et al., 2018). Irisin, a peptide
hormone secreted by skeletal muscle, also regulates asprosin
expression. Ozcan et al. (2020) reported that asprosin level is
decreased in female obese rats with irisin subcutaneous
administration, as well as excessive blood glucose, LDL, and TG.

For obesity, appetite is an effective predictor of reduced energy
intake and weight loss (Drapeau et al., 2007). Duerrschmid et al.
found that decreasing the plasma asprosin level by monoclonal
antibody reduces both appetite and body weight in obese mice
to ameliorate BG level. This result is due to the appetite-
regulating effect of asprosin, which promotes the activity of
orexigenic receptor protein tyrosine phosphatase receptor δ
(Ptprd) in AgRP+ neurons in a cAMP-dependent manner; whilst

FIGURE 4 | The role of asprosin in metabolic disorders, such as insulin resistance, decreased insulin release and obesity. Exercise plays an inhibitory role to
asprosin, helping to mitigate metabolic disorders.
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inhibiting anorexic POMC+neurons in aGABA-dependent pathway,
thereby stimulating appetite and promoting bodyweight
accumulation similar to ghrelin (Duerrschmid et al., 2017; Donma
& Donma, 2018; Mishra et al., 2022).

PCOS

Polycystic ovary syndrome (PCOS) is a gynaecological syndrome
with characteristics of hyperandrogenemia, ovulatory
dysfunction, and/or ovarian polycystic pathology. PCOS
patients have metabolic disorders, such as insulin resistance
and dyslipidemia (Deniz et al., 2021). Asprosin levels are
found to be higher in PCOS patients, and in addition,
individuals with the highest asprosin secretion have the
greatest risks of PCOS (Alan et al., 2019). Plasma asprosin
concentration is an independent risk factor for PCOS,
according to the binary logistic regression analysis (Li et al.,
2018). Similar to T2DM, asprosin is reported to be positively
associated with FBG, HbA1c, HOMA-IR, and testosterone in
PCOS (Deniz et al., 2021; Li et al., 2018). Asprosin could therefore
become a novel metabolic marker of PCOS.

In other endocrine diseases, studies have found that asprosin is
involved in different pathological processes. Non-alcoholic fatty
liver disease (NAFLD) is a type of hepatic disease, which is
associated with insulin resistance, metabolic syndrome, and
type 2 diabetes (Cobbina and Akhlaghi, 2017). In NAFLD
patients, serum asprosin is higher than in healthy individuals,
and is independently related to FBG and HOMA-IR by
multivariate linear regression analyses (Ke et al., 2020).

ASPROSIN IN EXERCISE-REGULATING
METABOLIC DISEASES

Exercise is essential for human health, especially for the endocrine
system. Lack of exercise and obesity are attributed to chronic
oxidative stress, which leads to instability of insulin secretion and
vascular complications. Physical exercise could induce adaptive
responses to maintain the redox balance, thereby controlling
disease progression and complications (Poblete-Aro et al.,
2018). Meta-analysis shows that structured exercise
intervention is effective for glycaemic control in T2DM
patients with decreased insulin resistance (Sampath Kumar
et al., 2019).

Exercise affects the expression of asprosin, such that untrained
women have higher circulating asprosin concentrations during
the menstrual cycle especially in the follicular phase, compared
with trained women (Leonard et al., 2021). A single short-term
anaerobic exercise for a 20s bicycle sprint indicated that both
circulating asprosin and BG are elevated after exercise,
interestingly, this influence only appears in women, and the
mechanism remains unknown (Wiecek et al., 2018). In
addition, exercise also plays a different role in diverse
metabolic diseases through asprosin.

In DM, appropriate exercise ameliorates hyperglycemia by
regulating hepatic glucose metabolism. Asprosin is reported to

increase the release of hepatocyte glucose via a cAMP-PKA axis,
independent of glucagon or epinephrine (Romere et al., 2016).
While, an eight-week aerobic exercise decreases the hepatic
asprosin level by PKA/TGF-β pathway, and increases the
AMPK-related signal pathway to alleviate impaired glucose
metabolism and help with DM treatment, in a study of
streptozotocin (STZ)-induced diabetic rats (Ko et al., 2019).
Additionally, exercise also accelerates insulin sensitivity and
glycogen storage of skeletal muscle by increasing glucose
transporter 4 (GLUT4) expression (Holloszy, 2005; Richter
and Hargreaves, 2013). Conversely, a recent study of skeletal
muscle glucose uptake indicates that asprosin has three
glycosylation sites and enhances glucose transport by elevating
the level of GLUT4 in myotubes. Further, the glucose uptake is
promoted by AMPK phosphorylation in skeletal muscle by
exogenously administering asprosin (Zhang et al., 2021). These
findings contradict other studies considering the differential
effects of asprosin on various pathways, which deserves further
research. Notably, different forms of exercise have diverse effects
on DM improvement. A meta-analysis shows that both aerobic
and resistance exercise are effective for the reduction of HbA1c,
but combined exercise generates more improvement than either
aerobic or resistance exercise (Pan et al., 2018).

In obesity, regular physical activity reduces adipose tissue and
weight and improves fat browning by increasing UCP1 (Reisi
et al., 2016; Mu et al., 2021). During exercise, triacylglycerols, an
adipose tissue energy metabolite, are hydrolyzed into free fatty
acids (FA), which are then released into the circulation to
empower the muscle to function (Mika et al., 2019). After
moderate intensity aerobic exercises, serum asprosin is
significantly decreased in overweight and obese participants
(Ceylan et al., 2020).

In PCOS, a previous meta-analysis concludes that vigorous-
intensity exercise accelerates the indicators such as VO2peak,
BMI, and waist circumference in patients, thereby improving
cardiopulmonary function, insulin sensitivity, and ovulation
function (Hakimi and Cameron, 2017; Patten et al., 2020).
Asprosin is reported to downregulate mTOR expression,
which inhibits follicular activation in PCOS (Wang and Hu,
2021; Zhang et al., 2022), while exercise decreases asprosin
level and improves mTOR concentration (Ko et al., 2019;
Stepto et al., 2020), so it is speculated that asprosin might play
a role in alleviating PCOS with exercise.

Both NAFLD and thyroid function benefit from exercise
(Farzanegi et al., 2019; Masaki et al., 2019). For instance, exercise
enhances lipophagy to diminish liver steatosis by stimulating the
AMPK/SIRT1 pathway (Li et al., 2021). In prophyltiouracil (PTU)
induced hypothyroidism rats, asprosin level is lower than the control
group, and after thyroxine treatment, asprosin is elevated (Mogulkoc
et al., 2020).However, the role of asprosin in these conditions requires
further investigation.

SUMMARY

As a new protein discovered recently, asprosin has attracted great
interest for its role in metabolism and diseases. In metabolic
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disorders such as DM, obesity, and PCOS, asprosin could serve as
a biomarker for early diagnosis and a therapeutic target. Exercise,
as an effective intervention for regulating metabolism and
endocrine activity, is a preferred non-pharmacological therapy
in many metabolic diseases. The regulation of asprosin on
metabolic abnormalities and the important role of exercise are
summarized in Figure 4. Asprosin has a vital regulatory effect on
the improvement of metabolic diseases by exercise and is
expected to become an important target of exercise regulation
in future scientific research and clinical practice.
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