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Abstract
We propose a continuum finite strain theory for the interplay between the bioelectricity and the poromechanics of a cell 
cluster. Specifically, we refer to a cluster of closely packed cells, whose mechanics is governed by a polymer network of 
cytoskeletal filaments joined by anchoring junctions, modeled through compressible hyperelasticity. The cluster is saturated 
with a solution of water and ions. We account for water and ion transport in the intercellular spaces, between cells through 
gap junctions, and across cell membranes through aquaporins and ion channels. Water fluxes result from the contributions 
due to osmosis, electro-osmosis, and water pressure, while ion fluxes encompass electro-diffusive and convective terms. 
We consider both the cases of permeable and impermeable cluster boundary, the latter simulating the presence of sealing 
tight junctions. We solve the coupled governing equations for a one-dimensional axisymmetric benchmark through finite 
elements, thus determining the spatiotemporal evolution of the intracellular and extracellular ion concentrations, setting 
the membrane potential, and water concentrations, establishing the cluster deformation. When suitably complemented with 
genetic, biochemical, and growth dynamics, we expect this model to become a useful instrument for investigating specific 
aspects of developmental mechanobioelectricity.
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1  Introduction

Recent endeavors have documented that, alongside genetic 
and biochemical cues, bioelectrical and mechanical signal-
ing is important for development (McCaig et al. 2005; Mam-
moto and Ingber 2010).

In particular, bioelectricity deals with the study of the ion 
redistribution within a network of non-excitable cells and 
its environment, modulating the membrane potential (Levin 
et al. 2017). The latter qualifies as both a key readout and 
regulator of several developmental processes, such as prolif-
eration and differentiation (Sundelacruz et al. 2009), at the 
single cell level, and symmetry breaking (Levin et al. 2002), 
wound healing and regeneration (Levin 2007), and cancer 
progression (Chernet and Levin 2013), at the tissue level.

In addition to experimentation through ion channels 
manipulation, deciphering the bioelectrical dynamics 

requires ad hoc simulators. The BioElectric Tissue Simu-
lation Engine (BETSE), a finite volume code proposed by 
Pietak and Levin (2016), allows one to predict the spati-
otemporal evolution of the ion concentrations and membrane 
potential within a cluster of closely packed cells, in response 
to a perturbation of the bioelectric state. Later, BETSE has 
been augmented to consider the interplay between genetic, 
biochemical, and bioelectrical dynamics, so as to explain 
aspects of planaria regeneration (Pietak and Levin 2017) 
and developmental brain damage and rescue in frogs (Pai 
et al. 2018).

Notably, as argued by Silver and Nelson (2018), bioelec-
trical and mechanical cues are expected to affect each other. 
Indeed, on the one hand, the membrane potential and the 
osmotic pressure are strictly related. On the other hand, sev-
eral ion channels are mechanosensitive, that is, they respond 
electrically to changes in the membrane mechanics (Marti-
nac 2004).

Then, Silver et al. (2020) have proved that mechanotrans-
duction may effectively direct the establishment of mem-
brane potential gradients within a tissue. In particular, 
they show that connexin hemichannels, which are mecha-
nosensitive, preferentially open in the peripheral regions 
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of mammary epithelial tissues, characterized by a higher 
endogenous mechanical stress, thus leading to local depo-
larization. This, in turn, is responsible for transcriptional 
changes that promote cell proliferation.

In order to numerically address the coupling between 
mechanical and bioelectrical signaling, BETSE has been 
endowed with a solid mechanics module in Leronni et al. 
(2020), leading to mecBETSE. Specifically, such a module 
allows one to compute the cluster deformation due to the 
osmotic pressure gradients determined by the bioelectrical 
activity and to account for mechanosensitive channels.

However, mecBETSE is limited to small deformations, 
thus hampering developmental applications. Moreover, it 
does not account for the water flow triggered by osmotic 
pressure gradients, which, according to poromechanics 
frameworks (Coussy 2004), largely employed for cells 
(Moeendarbary et al. 2013), mechanistically establishes the 
deformation field.

So as to overcome the previous limits, we propose a con-
tinuum finite strain theory coupling the bioelectricity and the 
poromechanics of cell clusters. In this theory, the bioelectri-
cal response is governed by mass balances for the intracel-
lular and extracellular concentrations of mobile ions and by 
Gauss laws for the intracellular and extracellular electric 
potentials. The poromechanical response is determined by 
mass balances for the intracellular and extracellular concen-
trations of water molecules and by a momentum balance for 
the displacement field of the solid network of cytoskeletal 
filaments and anchoring junctions.

After introducing the object of modeling, that is, the clus-
ter with its main constituents involved in the mechanobio-
electrical response, in Sect. 2, we systematically derive the 
theory in Sect. 3, starting from first principles. In Sect. 4, 
with reference to a 1D axisymmetric benchmark, we discuss 
the finite element solution of the proposed model obtained 
through the commercial software Comsol Multiphysics®. 
Finally, in Sect. 5 we draw the conclusions of our study and 
outline possible future developments.

2 � Modeling object

We refer to a cluster of closely packed animal cells, as 
sketched in Fig. 1. Each cell is endowed with a cytoskel-
eton of actin filaments, microtubules, and intermediate fila-
ments. Similar to epithelia, actin and intermediate filaments 
of neighboring cells are mechanically joined by adherens 
junctions and desmosomes, respectively (Alberts 1983). 
Importantly, there exists a thin space between cells (Tsukita 
et al. 2001), constituting a porosity network referred to as 
the extracellular (EC) space, within which water and ions 
can freely flow. At the cluster boundary, we assume that 

perfectly sealing tight junctions (TJs) (Tsukita et al. 2001) 
may be either absent or present, respectively allowing or 
preventing the water and ion exchange between the EC space 
and the bath surrounding the cluster. Water and ions can also 
flow directly between neighboring cells through gap junc-
tions (GJs) (Goodenough and Paul 2009; Gao et al. 2011). 
We refer to the porosity network formed by the cytoplasm 
and the GJs as the intracellular (IC) space. Finally, the 
transmembrane water and ion transport, that is, the trans-
port between the IC and EC spaces, is allowed by aquaporins 
(Agre 2006) and ion channels (Hille 1984), respectively. In 
a cluster of plant cells, anchoring junctions are replaced by 
rigid cell walls, and plasmodesmata play the role of GJs 
(Alberts 1983).

3 � Modeling framework

In the following, we develop a continuum Lagrangian finite 
strain theory addressing the mechanobioelectricity of the 
cell cluster described in Sect. 2. By relying on mixture the-
ory (Ateshian 2007), we assume that the solid network and 
the IC and EC spaces coexist within the same material point, 
such that transmembrane fluxes should be regarded as local 
fluxes.
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Fig. 1   Cell cluster with the main constituents involved in the mecha-
nobioelectrical response
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3.1 � Balance equations

The momentum balance, to be solved for the displace-
ment field � , describes the mechanics of the solid network 
of cytoskeletal filaments and anchoring junctions. Under 
the quasi-static approximation, and in the absence of bulk 
loads, it reduces to the mechanical equilibrium

where Div is the material divergence and � is the nomi-
nal stress tensor, such that (Div�)i = �PiJ∕�XJ , in which 
� denotes the material position vector and the small and 
capital case subscripts indicate the spatial and material coor-
dinates, respectively.

The mass balances for the IC and EC water concentra-
tions read 

where �0 and �e
0
 are the initial IC and EC porosities, Cw 

and Ce
w

 are the IC and EC molar concentrations of water 
per unit reference volume of the IC and EC spaces, �w and 
�e
w

 are the IC and EC nominal molar fluxes of water, Jm
w

 
is the transmembrane nominal molar flux of water, posi-
tive if water moves from the IC to the EC space, Ac is the 
reference cell membrane area, and Vc is the reference cell 
volume. The symbol ̇  indicates time derivative, that is, 
Ċw = 𝜕Cw∕𝜕t . Since the cluster is constituted by closely 
packed cells, 𝛷e

0
≪ 𝛷0 . The terms on the right-hand sides 

are self-balancing, that is, a source of water for the IC space 
is a sink for the EC space, or vice versa.

Similarly, the mass balances for the IC and EC concen-
trations of mobile ion i read 

where Ci and Ce
i
 are the IC and EC molar concentrations of 

ion i per unit reference volume of the IC and EC spaces, �i 
and �e

i
 are the IC and EC nominal molar fluxes of ion i , and 

Jm
i

 is the transmembrane nominal molar flux of ion i.
For the sake of clarity, �w and �i , �ew and �e

i
 , and Jm

w
 

and Jm
i

 represent the water and ion fluxes between cells 
through GJs, in the interconnected intercellular spaces, 
and across cell membranes through aquaporins and ion 
channels, respectively.

Finally, the Gauss laws for the IC and EC electric poten-
tials � and �e read 

(1)Div� = � ,

(2a)𝛷0Ċw + Div �w = −Jm
w
Ac∕Vc ,

(2b)𝛷e
0
Ċe
w
+ Div �e

w
= Jm

w
Ac∕Vc ,

(3a)𝛷0Ċi + Div �i = −Jm
i
Ac∕Vc ,

(3b)𝛷e
0
Ċe
i
+ Div �e

i
= Jm

i
Ac∕Vc ,

where � and �e are the IC and EC nominal electric displace-
ments, F is the Faraday constant, and zi is the valency of ion 
i . The terms on the right-hand sides represent the IC and 
EC nominal free charges, and account for both mobile and 
fixed ions.

3.2 � Boundary and initial conditions

In our benchmark, we consider that the cluster is traction-free, 
that is, we supplement Eq. (1) with the boundary condition

where � is the outward unit normal to the reference 
boundary.

The initial conditions for the mass balances (2) and (3) read 

We assume that water and ions can be exchanged with the 
bath surrounding the cluster through the EC space only, pro-
vided that TJs are absent. Therefore, we equip Eqs. (2a) and 
(3a) with the boundary conditions 

where the symbol ⋅ denotes the inner product, such that 
� ⋅ � = JINI.

As for Eqs. (2b) and (3b), in the absence of TJs we impose 
chemical equilibrium at the boundary, that is, 

where �e
w
 and �e

i
 are the EC chemical potentials of water and 

ion i , coinciding with those of the bath 𝜇̄w and 𝜇̄i , in turn 
supposed to be equal to the initial EC ones. Instead, in the 
presence of sealing TJs we impose the boundary conditions 

(4a)Div� = �0F
∑
i

ziCi ,

(4b)Div�e = �e
0
F
∑
i

ziC
e
i
,

(5)�� = � ,

(6a)Cw = C0
w
, Ce

w
= Ce,0

w
,

(6b)Ci = C0
i
, Ce

i
= C

e,0

i
.

(7a)�w ⋅ � = 0 ,

(7b)�i ⋅ � = 0 ,

(8a)𝜇e
w
= 𝜇̄w = 𝜇e,0

w
,

(8b)𝜇e
i
= 𝜇̄i = 𝜇e,0

i
,

(9a)�
e
w
⋅ � = 0 ,

(9b)�
e
i
⋅ � = 0 .
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We assign to Eq. (4a) the boundary condition

in which D̄m is the transmembrane electric displacement at 
the boundary, which is defined in Sect. 3.6.

As for Eq. (4b), in the absence of TJs we impose electri-
cal equilibrium, that is,

where 𝜓̄ is the electric potential of the bath, assumed to be 
zero. Instead, in the presence of TJs, we impose

with D̄tj denoting the electric displacement across the TJs, 
which is defined in Sect. 3.6.

While in the present work we focus on endogenous 
mechanobioelectricity, our framework may be also adopted 
to investigate the effect of an externally applied mechanical 
load or electric field, or of the exposure to an hypotonic or 
hypertonic environment, by enforcing appropriate boundary 
conditions.

3.3 � Thermodynamic restrictions

We follow the approach of Gurtin et al. (2010) for coupled 
problems of mechanics and species transport, suitably aug-
mented to account for the electric charge of ions. Therefore, 
under isothermal conditions, the energy balance reads

where U is the nominal internal energy density, � = � + ∇� 
is the deformation gradient (with � denoting the second-
order identity tensor and ∇ denoting the material gradient, 
such that (∇�)iJ = �ui∕�XJ ), �w and �i are the IC chemical 
potentials of water and ion i,

are the IC and EC nominal electric fields, and

are the IC and EC electrochemical potentials of ion i.
Upon combining Eq. (13) with the second law of ther-

modynamics and introducing the nominal Helmholtz free 
energy density W, we obtain the free energy imbalance

(10)� ⋅ � = D̄m ,

(11)𝜓e = 𝜓̄ = 0 ,

(12)�
e
⋅ � = D̄tj ,

(13)

U̇ = � ⋅ �̇ +𝛷0

(
𝜇wĊw +

∑
i

𝜇iĊi

)
+𝛷e

0

(
𝜇e
w
Ċe
w
+
∑
i

𝜇e
i
Ċe
i

)

+ � ⋅ �̇ + �
e
⋅ �̇

e − �w ⋅ ∇𝜇w −
∑
i

�i ⋅ ∇𝜇̃i − �
e
w
⋅ ∇𝜇e

w

−
∑
i

�
e
i
⋅ ∇𝜇̃e

i
− Ac∕Vc

[
Jm
w
(𝜇e

w
− 𝜇w) +

∑
i

Jm
i
(𝜇̃e

i
− 𝜇̃i)

]
,

(14)� = −∇� , �
e = −∇�e

(15)𝜇̃i = 𝜇i + Fzi𝜓 , 𝜇̃e
i
= 𝜇e

i
+ Fzi𝜓

e

We assume that W is a function of the independent variables 
� , Cw , Ci , Ce

w
 , Ce

i
 , � , and �e , such that Eq. (16) becomes

By relying on the Coleman–Noll procedure, we obtain the 
following constitutive prescriptions: 

Consequently, Eq. (17) reduces to the dissipation inequality

We remark that the terms in the second line are local dis-
sipation terms, arising from the exchange of water and ions 
across the cell membrane within the same material point.

Since water and ions share the same IC and EC spaces, we 
assume that each IC or EC flux is affected by the chemical 

(16)

− Ẇ + � ⋅ �̇ +𝛷0

(
𝜇wĊw +

∑
i

𝜇iĊi

)

+𝛷e
0

(
𝜇e
w
Ċe
w
+
∑
i

𝜇e
i
Ċe
i

)
+ � ⋅ �̇ + �

e
⋅ �̇

e − �w ⋅ ∇𝜇w

−
∑
i

�i ⋅ ∇𝜇̃i − �
e
w
⋅ ∇𝜇e

w
−
∑
i

�
e
i
⋅ ∇𝜇̃e

i

− Ac∕Vc
[
Jm
w
(𝜇e

w
− 𝜇w) +

∑
i

Jm
i
(𝜇̃e

i
− 𝜇̃i)

]
≥ 0 .

(17)

(
� −

𝜕W

𝜕�

)
⋅ �̇ +

(
𝛷0𝜇w −

𝜕W

𝜕Cw

)
Ċw

+
∑
i

(
𝛷0𝜇i −

𝜕W

𝜕Ci

)
Ċi +

(
𝛷e

0
𝜇e
w
−

𝜕W

𝜕Ce
w

)
Ċe
w

+
∑
i

(
𝛷e

0
𝜇e
i
−

𝜕W

𝜕Ce
i

)
Ċe
i
+
(
� −

𝜕W

𝜕�

)
⋅ �̇

+
(
�
e −

𝜕W

𝜕�e

)
⋅ �̇

e − �w ⋅ ∇𝜇w −
∑
i

�i ⋅ ∇𝜇̃i

− �
e
w
⋅ ∇𝜇e

w
−
∑
i

�
e
i
⋅ ∇𝜇̃e

i

− Ac∕Vc
[
Jm
w
(𝜇e

w
− 𝜇w) +

∑
i

Jm
i
(𝜇̃e

i
− 𝜇̃i)

]
≥ 0 .

(18a)� =
�W

��
,

(18b)�w =
1

�0

�W

�Cw

, �e
w
=

1

�e
0

�W

�Ce
w

,

(18c)�i =
1

�0

�W

�Ci

, �e
i
=

1

�e
0

�W

�Ce
i

,

(18d)� =
�W

��
, �

e =
�W

��e
.

(19)

− �w ⋅ ∇𝜇w −
∑
i

�i ⋅ ∇𝜇̃i − �
e
w
⋅ ∇𝜇e

w
−
∑
i

�
e
i
⋅ ∇𝜇̃e

i

− Ac∕Vc
[
Jm
w
(𝜇e

w
− 𝜇w) +

∑
i

Jm
i
(𝜇̃e

i
− 𝜇̃i)

]
≥ 0 .
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potential gradient of water and by the electrochemical potential 
gradients of all mobile ions, that is, 

where the constitutive operators can be collected into the 
symmetric (Onsager 1931) mobility matrices 

in which the off-diagonal entries account for so-called cross-
diffusion (Vanag and Epstein 2009).

Conversely, aquaporins and ion channels are specific for 
water and ion transport. Therefore, the transmembrane fluxes 
of water and ion i only depend on the difference between the 
EC and IC chemical potentials of water and electrochemical 
potentials of ion i , respectively: 

We assume the mobility matrices M and Me to be posi-
tive definite and the mobility coefficients Mm

w
 and Mm

i
 to be 

positive, in order to fulfill Eq. (19), as detailed in Sect. 3.7.

3.4 � Free energy density

We choose the following additive decomposition for the free 
energy density:

where Wmec accounts for the elasticity of the solid network, 
Wmix and We

mix
 account for the mixing of water and ions in 

(20a)�w = −�ww∇𝜇w −
∑
i

�wi∇𝜇̃i ,

(20b)�i = −�wi∇𝜇w −�ii∇𝜇̃i −
∑
j

�ij∇𝜇̃j , j ≠ i ,

(20c)�
e
w
= −�e

ww
∇𝜇e

w
−
∑
i

�
e
wi
∇𝜇̃e

i
,

(20d)�
e
i
= −�e

wi
∇𝜇e

w
−�

e
ii
∇𝜇̃e

i
−
∑
j

�
e
ij
∇𝜇̃e

j
, j ≠ i ,

(21a)M =

⎡⎢⎢⎢⎣

�ww �w1 �w2 …

�w1 �11 �12 …

�w2 �12 �22 …

⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎦
,

(21b)M
e =

⎡⎢⎢⎢⎣

�e
ww

�e
w1

�e
w2

…

�e
w1

�e
11

�e
12

…

�e
w2

�e
12

�e
22

…

⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎦
,

(22a)Jm
w
= −Mm

w
(�e

w
− �w) ,

(22b)Jm
i
= −Mm

i
(𝜇̃e

i
− 𝜇̃i) .

(23)
W = Wmec(�) +Wmix(Cw,Ci) +We

mix
(Ce

w
,Ce

i
)

+Wpol(�,�) +We
pol
(�,�e) ,

the IC and EC spaces, and Wpol and We
pol

 account for the 
dielectric polarization of the IC and EC spaces.

We adopt for Wmec the compressible Neo-Hookean 
model proposed by Simo and Pister (1984):

where � and G are the first and second Lamé parameters 
of the solid network, � = �T� is the right Cauchy–Green 
deformation tensor, and

is the Jacobian, that is, the volume ratio.
We assume the IC and EC solutions of water and ions 

to be ideal, such that Wmix and We
mix

 are purely entropic and 
read (Ateshian 2007) 

where R is the gas constant and T is the absolute tempera-
ture. We note that Wmix and We

mix
 account for both mobile 

and fixed ions, also the latter being part of the IC and EC 
solutions. We further hypothesize that the IC and EC solu-
tions are dilute, that is, 

∑
i Ci ≪ Cw and 

∑
i C

e
i
≪ Ce

w
 , such 

that we may rewrite Eqs. (26) as 

Finally, we treat the IC and EC solutions as ideal dielec-
trics, such that Wpol and We

pol
 read (Hong et al. 2010) 

in which �0 is the vacuum permittivity and �r is the relative 
permittivity of the IC and EC solutions, assumed to coincide 
with that of water given their diluteness.

(24)Wmec(�) =
G

2
(tr� − 3) − G ln J +

1

2
� ln2 J ,

(25)J = det�

(26a)

Wmix(Cw,Ci) = RT�0

×

�
Cw ln

Cw

Cw +
∑

j Cj

+
�
i

Ci ln
Ci

Cw +
∑

j Cj

�
,

(26b)

We
mix

(Ce
w
,Ce

i
) = RT�e

0

×

�
Ce
w
ln

Ce
w

Ce
w
+
∑

j C
e
j

+
�
i

Ce
i
ln

Ce
i

Ce
w
+
∑

j C
e
j

�
,

(27a)Wmix(Cw,Ci) = RT�0

∑
i

Ci

(
ln

Ci

Cw

− 1

)
,

(27b)We
mix

(Ce
w
,Ce

i
) = RT�e

0

∑
i

Ce
i

(
ln

Ce
i

Ce
w

− 1

)
.

(28a)Wpol(�,�) =
|��|2
2�0�rJ

,

(28b)We
pol
(�,�e) =

|��e|2
2�0�rJ

,
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3.5 � Constraint on the volume ratio

We assume that the solid network, water, and ions are 
incompressible, such that the volume ratio of Eq. (25) is 
inextricably related to the redistribution of water and ions, 
namely

where vw and vi are the molar volumes of water and ion i . In 
the limit of dilute IC and EC solutions, Eq. (29) reduces to

implying that

to be replaced in Eq. (6a). Moreover,

are the IC and EC molar concentrations of ion i per unit 
current volume of the IC and EC spaces.

In order to impose the constraint (30), we modify the 
free energy density (23) as (Hong et al. 2010)

where pw is a Lagrange multiplier field assuming the role 
of water pressure. For later developments, we rearrange Eq. 
(30) for the IC water concentration:

Notably, this operation removes Cw from the list of the inde-
pendent variables, in favor of the independent variable pw 
introduced by Eq. (33).

3.6 � Conservative constitutive laws

We obtain the nominal stress � by combining Eqs. (18a), 
(24), and (33):

(29)

J = 1 +�0

(
vwCw +

∑
i

viCi − 1
)

+�e
0

(
vwC

e
w
+
∑
i

viC
e
i
− 1

)
,

(30)J = 1 +�0

(
vwCw − 1

)
+�e

0

(
vwC

e
w
− 1

)
,

(31)C0
w
= Ce,0

w
=

1

vw
,

(32)ci =
Ci

vwCw

, ce
i
=

Ce
i

vwC
e
w

(33)

W = Wmec(�) +Wmix(Cw,Ci) +We
mix

(Ce
w
,Ce

i
)

+Wpol(�,�) +We
pol
(�,�e)

+ pw

[
1 +�0

(
vwCw − 1

)
+�e

0

(
vwC

e
w
− 1

)
− J

]
,

(34)Cw =
1

vw
+

1

�0vw

[
J − 1 −�e

0

(
vwC

e
w
− 1

)]
.

where ⊗ denotes the tensor product, such that 
(�⊗ �)IJ = DIDJ . The stresses �w , �pol , and �e

pol
 could be 

regarded as active stresses (or eigenstresses), to be balanced 
by �mec through equilibrium (1). The corresponding Cauchy 
stress is

where � = ��T is the left Cauchy–Green deformation tensor 
and � = J−1�� and �e = J−1��e are the IC and EC current 
electric displacements. We define the pressure as

adopting the convention that each contribution to p is posi-
tive if compressive.

By using Eqs. (18b), (27), and (33), we obtain the following 
IC and EC chemical potentials of water:

where

(35)

� = G(� − �
-T) + 𝜆 ln J�-T

�����������������������������

�mec

−pwJ�
-T

�����

�w

+
1

2𝜀0𝜀rJ

[
2�(�⊗ �) − � ⋅ (�⊗ �)�-T

]

�����������������������������������������������������������

�pol

+
1

2𝜀0𝜀rJ

[
2�(�e ⊗ �

e) − � ⋅ (�e ⊗ �
e)�-T

]

�����������������������������������������������������������������

�
e
pol

,

(36)

� =
1

J
��

T =
1

J

[
G(� − �) + 𝜆 ln J�

]

�����������������������������
�mec

−pw�
���
�w

+
1

2𝜀0𝜀r

[
2�⊗ � − (� ⋅ �)�

]

�����������������������������������
�pol

+
1

2𝜀0𝜀r

[
2�e ⊗ �

e − (�e ⋅ �e)�
]

�����������������������������������������

�
e
pol

,

(37)

p = −
1

3
tr� = −

1

J

[
G

(
1

3
tr� − 1

)
+ � ln J

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
pmec

+pw

+
1

6�0�r
|�|2

⏟⏞⏞⏟⏞⏞⏟
ppol

+
1

6�0�r
|�e|2

⏟⏞⏞⏞⏟⏞⏞⏞⏟

pe
pol

,

(38)�w = −RT
C

Cw

+ vwpw , �e
w
= −RT

Ce

Ce
w

+ vwpw ,

(39)C =
∑
i

Ci , Ce =
∑
i

Ce
i
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are the IC and EC osmotic concentrations. We remark that 
�w and �e

w
 are affected by both the IC and EC osmotic pres-

sures RTC and RTCe and the water pressure pw . Boundary 
condition (8a) may now be explicited for the independent 
variable Ce

w
 , thus reading

where we have used

By combining Eqs. (15), (18c), (27), and (33) we obtain the 
following IC and EC electrochemical potentials of ion i:

Boundary condition (8b) may now be explicited for the inde-
pendent variable Ce

i
 , thus reading

Finally, the usage of Eqs. (14), (18d), (28), and (33) pro-
vides the IC and EC nominal electric fields, whose inversion 
results in the IC and EC nominal electric displacements

Similarly, the electric displacements at the boundary across 
the cell membranes and the TJs in Eqs. (10) and (12) are 
given by 

in which �m
r

 and �tjr  and Tm and T tj are the membrane and 
TJ relative permittivities and thicknesses, respectively. Eqs. 
(45) neglect the local deformation of cell membranes and 
TJs.

3.7 � Dissipative constitutive laws

We choose the following form for the IC and EC mobility 
matrices of Eqs. (21): 

(40)Ce
w
=

RTCe

vw
(
RTCe,0 + pw

) ,

(41)p0
w
= 0 .

(42)𝜇̃i = RT ln
Ci

Cw

+ Fzi𝜓 , 𝜇̃e
i
= RT ln

Ce
i

Ce
w

+ Fzi𝜓
e .

(43)Ce
i
= vwC

e,0

i
Ce
w
.

(44)� = −�0�rJ�
−1∇� , �

e = −�0�rJ�
−1∇�e .

(45a)D̄m = 𝜀0𝜀
m
r

𝜓 − 𝜓̄

Tm
= 𝜀0𝜀

m
r

𝜓

Tm
,

(45b)D̄tj = 𝜀0𝜀
tj
r

𝜓e − 𝜓̄

T tj
= 𝜀0𝜀

tj
r

𝜓e

T tj
,

in which Dw and De
w
 are the water diffusivities in the IC and 

EC spaces, while Di and De
i
 are the diffusivities of ion i in 

the IC and EC water. As for the transmembrane mobility 
coefficients of Eqs. (22), by still neglecting the local defor-
mation of the membrane, we adopt the forms 

where Dm
w

 and Dm
i

 are the transmembrane diffusivities of 
water and ion i . The mobility matrices M and Me are posi-
tive definite and the mobility coefficients Mm

w
 and Mm

i
 are 

positive for nonzero diffusivities and concentrations, thus 
ensuring the validity of Eq. (19).

Substituting Eqs. (46) into Eqs. (20) leads to 

(46a)

M =
1

RT
�

−1

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DwCw DwC1 DwC2 …

DwC1

�
Dw

C1

Cw

+ D1

�
C1 Dw

C1C2

Cw

…

DwC2 Dw

C1C2

Cw

�
Dw

C2

Cw

+ D2

�
C2 …

⋮ ⋮ ⋮ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(46b)

M
e =

1

RT
�

−1

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

De
w
Ce

w
De

w
Ce

1
De

w
Ce

2
…

De
w
Ce

1

�
De

w

Ce
1

Ce
w

+ De
1

�
Ce

1
De

w

Ce
1
Ce

2

Ce
w

…

De
w
Ce

2
De

w

Ce
1
Ce

2

Ce
w

�
De

w

Ce
2

Ce
w

+ De
2

�
Ce

2
…

⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(47a)Mm
w
=

Dm
w

RT

Cw + Ce
w

2Tm
,

(47b)Mm
i
=

Dm
i

RT

Ci + Ce
i

2Tm
,

(48a)�w = −
Dw

RT
�

−1

[
Cw∇𝜇w +

∑
i

Ci∇𝜇̃i

]
,

(48b)�i =
Ci

Cw

�w −
Di

RT
�

−1Ci∇𝜇̃i ,

(48c)�
e
w
= −

De
w

RT
�

−1

[
Ce
w
∇𝜇e

w
+
∑
i

Ce
i
∇𝜇̃e

i

]
,
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In the perspective of mixture theory, one would obtain the 
same expressions by relying on the individual momentum 
balances for water and ions in the IC and EC spaces sepa-
rately, and assuming that the friction between the different 
ion species and between the ions and the solid network in 
either the IC or EC space is negligible, given the diluteness 
of the solutions (Huyghe and Janssen 1997).

Combining Eqs. (38), (42), and (48) provides the follow-
ing IC and EC fluxes: 

 where the index i refers to mobile ions, whereas the index 
j refers to fixed ions.

In particular, the first terms in Eqs. (49a) and (49c) 
account for the water flux down its pressure gradient; they 
arise because of the coupling of water transport with 
mechanics. The last terms in Eqs. (49b) and (49d) account 
for migration, that is, the ion transport in an electric field; 
they result from the coupling of ion transport with electro-
statics. The second terms in Eqs. (49a) and (49c) describe 
the electro-osmosis of water with mobile ions, while the first 
terms in Eqs. (49b) and (49d) are associated with the con-
vection of ions with water; electro-osmosis and convection 
originate from the coupling of water and ion transport. In 
the absence of ions ( Ci = Cj = Ce

i
= Ce

j
= 0 ), the water 

(48d)�
e
i
=

Ce
i

Ce
w

�
e
w
−

De
i

RT
�

−1Ce
i
∇𝜇̃e

i
.

(49a)

�w = −Dw�
−1

�
vwCw

RT
∇pw +

F

RT

�
i

ziCi∇�

+

∑
j≠i Cj

Cw

∇Cw

�
,

(49b)
�i =

Ci

Cw

�w

− Di�
−1

[
∇Ci −

Ci

Cw

∇Cw +
F

RT
ziCi∇�

]
,

(49c)

�
e
w
= −De

w
�

−1

�
vwC

e
w

RT
∇pw +

F

RT

�
i

ziC
e
i
∇�e

+

∑
j≠i C

e
j

Ce
w

∇Ce
w

�
,

(49d)
�
e
i
=

Ce
i

Ce
w

�
e
w

− De
i
�

−1

[
∇Ce

i
−

Ce
i

Ce
w

∇Ce
w
+

F

RT
ziC

e
i
∇�e

]
,

fluxes (49a) and (49c) reduce to Darcy-like fluxes, as in 
standard poromechanics (Coussy 2004). For immobile water 
( Dw = De

w
= 0 ), the ion fluxes (49b) and (49d) reduce to 

standard Nernst–Planck fluxes, describing the electro-diffu-
sion of ions (Rubinstein 1990).

Substituting Eqs. (38), (42), and (47) in Eqs. (22) leads 
to the following transmembrane fluxes: 

 where

is the membrane potential. Equation (50a) accounts for the 
transmembrane osmosis through aquaporins, whereas Eq. 
(50b) accounts for the transmembrane electro-diffusion of 
ions through ion channels, historically addressed through the 
Goldman–Hodgkin–Katz flux equation (Hille 1984).

Finally, we note that, in light of Eq. (34), substituting 
Eqs. (49a) and (50a) into Eq. (2a) provides an equation to 
be solved for the water pressure pw.

4 � One‑dimensional axisymmetric 
benchmark

As a representative benchmark, we consider a circular cell 
cluster, of reference radius Rcl , whose innermost circular 
region, of reference radius Rcl∕2 and denoted as �in , is char-
acterized by a transmembrane diffusivity to sodium Dm

Na+
 ten 

times larger than the surrounding annular region, denoted 
as �out , simulating an overexpression of sodium chan-
nels. Given the axial symmetry of the problem, the results 
only depend on the radial coordinate R. We assume plane 
stress conditions in Eq. (1), and that each cell is circular in 
the reference configuration, such that, in Eqs. (2) and (3), 
Ac∕Vc = 2∕Rc , with Rc denoting the reference cell radius.

We derive the governing equations for this 1D axisym-
metric problem in “Appendix A” and detail their finite ele-
ment implementation in Comsol Multiphysics®  in “Appen-
dix B”. After listing the model parameters in Sect. 4.1, we 
first present the results of the simulation in the absence of 
both GJs and TJs, in Sect. 4.2. Then, we introduce and com-
ment on the role of GJs in Sect. 4.3. Finally, we further 
account for TJs in Sect. 4.4.

(50a)Jm
w
= −Dm

w

Cw + Ce
w

2Tm

[
Ce
w
C − CwC

e

CwC
e
w

]
,

(50b)Jm
i
= −Dm

i

Ci + Ce
i

2Tm

[
ln

(
Ce
i

Ci

Cw

Ce
w

)
−

Fzi

RT
�m

]
,

(51)�m = � − �e
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4.1 � Parameters

The model parameters are listed in Table 1. We refer to an 
average animal cell of reference radius Rc = 5�m and mem-
brane thickness Tm = 5 nm . The cluster reference radius is 
Rcl = 500�m , which is much larger than Rc , that is, the char-
acteristic size of a material point, thus ensuring the valid-
ity of our continuum formulation. We assume that cells are 
separated by a reference intercellular space of about 30 nm 
in size (Pietak and Levin 2016), and that approximately the 
70% of the cluster is occupied by fluid. Correspondingly, 
we obtain an estimate of �0 = 0.695 and �e

0
= 0.005 for the 

initial IC and EC porosities.
The simulations are conducted at body temperature 

T = 310K . Accordingly, �r = 80 and vw = 18 cm3/mol are 
reliable estimates for the relative permittivity and molar 

volume of water. We employ �m
r
= 3 for the relative per-

mittivity of the cell membrane (Gramse et al. 2013). The 
thickness of a TJ complex is about T tj = 500 nm (Tsukita 
et al. 2001), and we use �tjr = 30 for its relative permittivity, 
which is an average between those of bulk water and proteins 
inside (Li et al. 2013).

We choose a representative value E = 0.4 kPa for the 
Young modulus and assume a Poisson ratio � = 0.3 (Moe-
endarbary et al. 2013). The Lamé parameters entering Eq. 
(24) thus read � = E�∕[(1 + �)(1 − 2�)] ≈ 0.23 kPa and 
G = E∕[2(1 + �)] ≈ 0.15 kPa . In Sect. 4.3, we also consider 
the case of a larger E, simulating a cluster of plant cells, 
equipped with stiff cell walls.

With reference to a typical mammalian cell, the more 
abundant ions involved in bioelectricity are sodium, potas-
sium, and chloride. We adopt the following initial IC and 
EC concentrations (Alberts 1983): C0

Na+
= 10mol/m3 , 

Table 1   Employed model 
parameters

Name Symbol Reference value Range explored Unit

Reference cell radius R
c 5 �m

Membrane thickness T
m 5 nm

Reference cluster radius R
cl 500 �m

Initial IC porosity �0 0.695 –
Initial EC porosity �e

0
0.005 –

Temperature T 310 K

Water relative permittivity �r 80 –
Water molar volume vw 18 cm3/mol

Membrane relative permittivity �m
r

3 –
TJ thickness T

tj 500 nm

TJ relative permittivity �
tj
r

30 –

Young modulus E 0.4 0.4 ÷ 4000 kPa

Poisson ratio � 0.3 –
Initial IC Na+ concentration C

0

Na+
10 mol/m3

Initial EC Na+ concentration C
e,0

Na+
145 mol/m3

Initial IC K+ concentration C
0

K+
140 mol/m3

Initial EC K+ concentration C
e,0

K+
5 mol/m3

Initial IC Cl− concentration C
0
Cl−

10 mol/m3

Initial EC Cl− concentration C
e,0

Cl−
110 mol/m3

IC fixed anion concentration C
−
A

140 mol/m3

EC fixed anion concentration C
e
A− 40 mol/m3

Transmembrane Na+ diffusivity D
m

Na+
10−18 (�out) m2∕s

10−17 (�in) m2∕s

Transmembrane K+ diffusivity D
m

K+ 5 × 10−18 m2∕s

Transmembrane Cl− diffusivity D
m
Cl− 5 × 10−17 m2∕s

Transmembrane water diffusivity D
m
w 10−8 10−14 ÷ 10−8 m2∕s

EC Na+ , K+ , and Cl− diffusivity D
e
i 10−9 m2∕s

EC water diffusivity D
e
w 10−7 10−8 ÷ 10−6 m2∕s

IC Na+ , K+ , and Cl− diffusivity (with GJs) Di 10−12 m2∕s

IC water diffusivity (with GJs) Dw 10−9 10−10 ÷ 10−8 m2∕s
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C
e,0

Na+
= 145mol/m3 , C0

K+ = 140mol/m3 , Ce,0

K+ = 5mol/m3 , 
C0
Cl−

= 10mol/m3 , and Ce,0

Cl−
= 110mol/m3 . We also con-

sider a fixed generic monovalent anion, whose IC and 
EC concentrations are uniform and constant and equal to 
CA− = 140mol/m3 and Ce

A− = 40mol/m3 . In the IC space, 
A− is intended to represent negatively charged proteins, 
nucleic acids, and other cellular constituents. Notably, CA− 
and Ce

A− ensure the initial electroneutrality in both the IC 
and EC spaces (that is, 

∑
i ziC

0
i
=
∑

i ziC
e,0

i
= 0 ) and also 

the equality of the initial IC and EC osmotic concentra-
tions (that is, C0 = Ce,0 = 300mol/m3 ). By using Eq. (31), 
we obtain C0

w
= Ce,0

w
= 1∕vw ≈ 5.6 × 104 mol/m3 . There-

fore, the IC and EC solutions are actually dilute; indeed, 
C0∕C0

w
= Ce,0∕Ce,0

w
≈ 0.5%.

We employ the following transmembrane ion diffu-
sivities: Dm

Na+
= 10−18 m2∕s , Dm

K+ = 5 × 10−18 m2∕s , and 
Dm

Cl−
= 5 × 10−17 m2∕s . These are on the order of those 

reported in Pietak and Levin (2016), but account for the 
fact that the permeability of artificial lipid bilayers to Na+ , 
K+ , and Cl− is not the same (Alberts 1983). As anticipated, 
in �in we set instead Dm

Na+
= 10−17 m2∕s . We consider that 

the transmembrane water diffusivity is Dm
w
= 10−8 m2∕s , that 

is, ten order of magnitudes larger than Dm

Na+
 , as documented 

in Alberts (1983) with reference to artificial lipid bilayers. In 
Sect. 4.2, we further analyze the case of smaller Dm

w
 , simulat-

ing an underexpression of aquaporins.
We follow Pietak and Levin (2016) and assume 

De
i
= 10−9 m2∕s for the diffusivity of all ions in EC water. 

We set De
w
= 10−7 m2∕s for the EC water diffusivity, as 

approximately obtained through the Kozeny–Carman equa-
tion (Coussy 2004). Given the uncertainty in this parameter, 
in Sect. 4.2 we also explore how the response changes by 
increasing or decreasing De

w
 of one order of magnitude.

In the presence of GJs, we adopt Di = 10−12 m2∕s 
for the diffusivity of all ions in IC water. In particu-
lar, Di ≤ 10−14 m2∕s should be excluded, as it has no 
impact on the behavior of the cluster. Finally, we adopt 
Dw = 10−9 m2∕s for the IC water diffusivity and, in Sect. 4.3, 
we further explore how the cluster behavior is affected by 
variations of Dw of one order of magnitude.

4.2 � Results in the absence of gap and tight 
junctions

We first assume that GJs are either absent or closed, such 
that Dw = Di = 0 in Eqs. (49a) and (49b). Therefore, the 
mass balances (2a) and (3a) reduce to ordinary differential 
equations. Moreover, we assume that TJs are absent, such 
that boundary conditions (8) and (11) hold. In Fig. 2, we 
represent the relevant bioelectrical and mechanical fields as 
a function of R at different times.
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Fig. 2   a Relative IC osmotic concentration (C − C0)∕C0 , b rela-
tive EC osmotic concentration (Ce − Ce,0)∕Ce,0 , c IC electric poten-
tial � , d EC electric potential �e , e relative IC water concentration 
(Cw − C0

w
)∕C0

w
 , f relative EC water concentration (Ce

w
− Ce,0

w
)∕Ce,0

w
 , g 

water pressure pw , h Jacobian J, i areal Jacobian Ja , and j radial dis-
placement u as a function of R∕Rcl at different times
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The large Dm

Na+
 in �in leads to a prominent influx of Na+ 

from the EC to the IC space, that is, down its concentration 
gradient. Correspondingly, the IC osmotic concentration C 
rapidly increases. We register a little increase in C in �out 
as well, which is essentially due to the large CA− compared 
to Ce

A− , as explained by the Gibbs–Donnan effect (Over-
beek 1956). While C presents a steep gradient at R = Rcl/2 , 
due to the lack of GJs connecting �in and �out , the EC 
osmotic concentration Ce is smoother, because of the inter-
connection of the intercellular spaces. Moreover, while 
Ce initially decreases with time, it then increases as Na+ 
is transported from the outside to the inside of the cluster.

The redistribution of ions establishes a negative IC 
electric potential �  , as of the beginning of the simula-
tion. This is again explained by the Gibbs–Donnan effect. 
In particular, �in is depolarized, that is, at a higher �  , 
with respect to �out , and the depolarization increases over 
time due to the influx of Na+ . The EC electric potential �e 
remains rather small, such that the membrane potential �m 
nearly corresponds to � . In particular, the value of about 
−60mV , registered in �out , is representative of the resting 
�m associated with the adopted initial ion concentrations 
and transmembrane diffusivities, which can be estimated 
through the Goldman–Hodgkin–Katz voltage equation 
(Hille 1984).

As Na+ is transported from the EC to the IC space 
through ion channels in �in , water follows by osmosis 
through aquaporins. Correspondingly, the IC water con-
centration Cw increases with time. In the EC space, as Na+ 
ions enter the cluster to cope with the request for Na+ in 
�in , they drag water molecules by electro-osmosis. There-
fore, the EC water concentration Ce

w
 increases after ini-

tially decreasing, similar to Ce.
As water enters �in , the water pressure pw increases 

therein and is equilibrated by the mechanical stress. The 
IC and EC electrostatic pressures ppol and pe

pol
 , not repre-

sented here, are both irrelevant, being orders of magnitude 
lower than pw . The increase in Cw in �in is also accompa-
nied by an increase in the Jacobian J. We remark that, 
given the smaller variation of Ce

w
 compared to Cw except 

for the initial transient, and, mostly, the close cell packing, 
implying 𝛷0 ≫ 𝛷e

0
 , the contribution of the variation of Ce

w
 

to J, as described by Eq. (30), is negligible.
The areal Jacobian Ja , given by the product of the radial 

and circumferential deformation gradient components (or 
stretches) FrR and F�� , indicates in-plane expansion eve-
rywhere, larger in �in . By comparing J and Ja , we infer 
that there occurs an out-of-plane expansion in �in and a 
little out-of-plane compression in �out . Finally, the radial 
displacement u increases from R = 0 to R = Rcl∕2 , and 
then decreases.
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Fig. 3   a Relative IC osmotic concentration (C − C0)∕C0 , b rela-
tive EC osmotic concentration (Ce − Ce,0)∕Ce,0 , c IC electric poten-
tial � , d EC electric potential �e , e relative IC water concentration 
(Cw − C0

w
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w
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w
− Ce,0
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w
 , g 

water pressure pw , h Jacobian J, i areal Jacobian Ja , and j radial dis-
placement u as a function of R∕Rcl at t = 600 s for different EC water 
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In Fig. 3, we explore how the same fields are affected 
by variations of the EC water diffusivity De

w
 . By increasing 

De
w

 , water is transported more rapidly from the outside to 
the inside of the cluster through the EC space, and con-
sequently from the EC to the IC space across cell mem-
branes. Therefore, fixed the time, Cw , Ce

w
 , pw , J, Ja , and 

u increase. Interestingly, C and Ce increase as well, since 
the convective contribution to ion transport grows with 
De

w
 . The change in the ion redistribution also impacts on 

�m , though mildly. Finally, we note that, by decreasing 
De

w
 to 10−8 m2∕s , the demand for water in �in can be barely 

sustained, such that, for a given time, Cw decreases from 
R = Rcl∕2 to R = 0 ; furthermore, Cw also decreases from 
R = Rcl to R = Rcl∕2 , suggesting that water is transported 
from the IC to the EC space in �out , and then from �out to 
�in through the EC space, resulting in an in-plane shrink-
age of �out.

In Fig. 4, we consider the effect of the transmembrane 
water diffusivity Dm

w
 , modulated by the density and open 

fraction of aquaporins. Increasing Dm
w

 above 10−8 m2∕s or 
decreasing it up to 10−12 m2∕s does not affect the results. 
By further decreasing Dm

w
 to 10−14 m2∕s , the transmembrane 

water transport is hampered, such that Cw strongly decreases 
and Ce

w
 increases. In turn, this determines a decrease in pw , J, 

Ja , and u. Importantly, while varying De
w
 strongly impacted 

on the ion redistribution, changing Dm
w

 mildly affects it. 
Indeed, De

w
 enters the EC ion fluxes through the convective 

contribution [see Eqs. (49c) and (49d)], while Dm
w

 does not 
govern the transmembrane ion fluxes, given that aquaporins 
and ion channels are specific for water and ions [see Eqs. 
(50)]. The impact of Dm

w
 on �m is also negligible.

4.3 � Introducing gap junctions

We now investigate on the role of GJs on the mechanobio-
electricity of the cluster. As reported in Sect. 4.1, we adopt 
Di = 10−12 m2∕s uniformly for all ions and Dw = 10−9 m2∕s.

In Fig. 5, we compare the relevant fields at the end of the 
simulation with and without GJs. If GJs are present, the Na+ 
ions entering the IC space in �in flow down their IC electro-
chemical potential gradient toward �out . Therefore, account-
ing for GJs smooths out the steep gradient of C at R = Rcl∕2 , 
thus leading to a reduction in C in �in and to an increase in 
C in �out . The different ion redistribution in the IC space 
also influences � , with a lesser depolarization occurring in 
�in and a larger one characterizing �out . Similarly, the water 
entering the IC space in �in flows toward �out through GJs, 
mainly dragged by ions through electro-osmosis. Predict-
ably, the EC fields are almost no affected by GJs. Notably, 
the IC water redistribution in the presence of GJs leads to 
a decrease in Ja in �in and to an increase in Ja in �out ; cor-
respondingly, u(Rcl∕2) diminishes, but u(Rcl) remains equal.
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Fig. 5   a Relative IC osmotic concentration (C − C0)∕C0 , b rela-
tive EC osmotic concentration (Ce − Ce,0)∕Ce,0 , c IC electric poten-
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In Fig. 6, we compare the responses for different values 
of Dw . By increasing Dw , more water is transported from 
�in to �out , such that the difference in Cw between �in and 
�out reduces, along with that in Ja . However, again, u(Rcl) 
remains the same. The difference in C between �in and �out 
reduces as well, which confirms the relevance of ion trans-
port by convection as Dw is risen. Decreasing Dw below 
10−10 m2∕s does not affect further the results.

In Fig. 7, we examine the cluster behavior by varying its 
Young modulus E. Increasing it up to one order of magni-
tude does not affect the results, except for pw , which grows 
proportionally to E. Therefore, we conclude that, for suitably 
small values of E, proper of animal cells, the response of the 
cluster to the imposed bioelectrical perturbation is independ-
ent of E. More specifically, the ion redistribution triggers the 
water redistribution, which establishes the cluster deforma-
tion. However, for larger values of E, which may be proper 
of plant cells endowed with stiff walls, the mechanics affects 
the water redistribution as well. Indeed, the accumulation 
of water in the IC space of �in determines the build-up of a 
large water (turgor) pressure gradient ∇pw , forcing water to 
flow back toward �out , through both GJs and the EC space 
according to our model [see Eqs. (49a) and (49c)]. Con-
sequently, Cw and Ce

w
 both diminish, along with Ja and u. 

Though at a lesser extent, C and Ce are affected as well, 
while �m practically remains unaltered, given the similar 
reductions in both � and �e.

In Fig. 8, we investigate the cluster behavior in the pres-
ence of GJs until the steady state, reached at about 24 h . The 
IC fields monotonically increase with time, both at R = 0 
and, albeit slower, as ions and water flow outward through 
GJs, at R = Rcl . At the steady state, the IC fields attain 
the uniform values (C − C0)∕C0 = (Cw − C0

w
)∕C0

w
≈ 2.5 

and � = 0 . The EC fields at R = 0 rapidly decrease in 
the first 2min and then slowly increase. At the steady 
state, the EC fields Ce − Ce,0 , Ce

w
− Ce,0

w
 , and �e attain 

uniform zero values. Therefore, the EC space is unde-
formed at the steady state. Notably, at the steady state 
c = C∕(vwCw) = C0 = Ce,0 = Ce∕(vwC

e
w
) = ce  [see Eq. 

(32)]; moreover, we could show that ci = ce
i
= C

e,0

i
∀i . The 

volume ratio J behaves similar to Cw , as Ce
w
 is not significant 

for J in the absence of TJs. While initially u(Rcl∕2) ≈ u(Rcl) , 
they progressively diverge and, at the steady state, 
u(Rcl) = 2u(Rcl∕2) ≈ 0.4Rcl . To conclude, this simulation 
reveals that, in the absence of TJs and for a sufficiently com-
pliant cluster [such that pw is irrelevant in Eq. (40)] devoid 
of ion pumps, at the steady state the current IC and EC ion 
concentrations and the IC and EC electric potentials become 
equal to those of the bath surrounding the cluster, in turn 
coinciding with the initial EC ones. This is accompanied by 
large cluster deformations, exclusively attributable to the 
deformation of the IC space.
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Fig. 7   a Relative IC osmotic concentration (C − C0)∕C0 , b rela-
tive EC osmotic concentration (Ce − Ce,0)∕Ce,0 , c IC electric poten-
tial � , d EC electric potential �e , e relative IC water concentration 
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 , f relative EC water concentration (Ce
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water pressure pw , h Jacobian J, i areal Jacobian Ja , and j radial dis-
placement u as a function of R∕Rcl at t = 600 s for different Young 
moduli E, in the presence of gap junctions
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4.4 � Introducing tight junctions

In this section, we comment on the cluster response in the 
presence of TJs, that is, by considering that the EC space 
cannot exchange neither water nor ions with the bath sur-
rounding the cluster. Boundary conditions (9) and (12) now 
hold. As in Sect. 4.3, we also account for GJs. We display 
the results of the simulation in Fig. 9, by focusing on a rela-
tively short time interval of 30 s.

As for the previous case, the large Dm

Na+
 in �in leads to a 

rapid inflow of Na+ from the EC to the IC space. However, 
in the presence of TJs, the ions of the outside bath cannot 
replace those lost by the EC space. Therefore, given that 
𝛷0 ≫ 𝛷e

0
 , the increase in C with time is limited, while the 

decrease in Ce is more pronounced and nearly uniform with 
R.

While �e remained nearly null everywhere in the absence 
of TJs, such that �m practically coincided with � , here both 
� and �e contribute to �m , being comparable in magnitude. 
We observe that, initially, �m is very close to the value regis-
tered in the absence of TJs. We further note that the positive 
�e at R = Rcl corresponds to the transepithelial potential 
established by TJs (Nuccitelli 2003).

Following Na+ , water molecules pass from the EC to 
the IC space by osmosis through aquaporins, leading to an 
increase in Cw and to a decrease in Ce

w
 . As reported for C and 

Ce , given the impermeability of the boundary to water and 
the large difference between �0 and �e

0
 , Cw little increases, 

while Ce
w
 strongly decreases.

Given the limited water redistribution, the mechanical 
fields are much smaller in magnitude than in the absence of 
TJs. Furthermore, we highlight that J and consequently pw 
are negative in �out , meaning that the decrease in the EC 
volume is larger than the increase in the IC volume. Indeed, 
we remark that, in the presence of TJs, the great disparity 
between |Cw − C0

w
| and |Ce

w
− Ce,0

w
| makes both contributions 

important for the estimation of J through Eq. (30). The radial 
displacement u increases from R = 0 to R = Rcl∕2 , though 
remaining very small, and then decreases becoming nearly 
zero at R = Rcl.

In Fig. 10, we display the time evolution of the relevant 
fields until the steady state. After quickly increasing in 
the first 30 s , C(R = 0) slowly decreases to a steady state 
value ≈ 1.005C0 , reached at about t = 60min . Similarly, 
C(Rcl) increases quite rapidly in the first 30 s , but then keeps 
increasing, though slower, until the same steady state value 
of C(0). Both Ce(0) and Ce(Rcl) decrease to the same steady 
state value ≈ 0.3Ce,0 at about t = 30 s . Therefore, we con-
clude that Na+ ions electro-diffuse from the EC to the IC 
space of �in in the first 30 s and then flow from �in to �out 
through GJs until the steady state, when C becomes uniform 
within the whole cluster.
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Fig. 8   a Relative IC osmotic concentration (C − C0)∕C0 , b rela-
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The evolution of Cw and Ce
w
 at R = 0 and R = Rcl in the 

first 30 s is analogous to that observed for C and Ce . How-
ever, between approximately t = 30 s and t = 3min , Cw(0) 
increases, while Cw(R

cl) decreases. This suggests that, in 
this time interval, some water flows from �out to �in , either 
directly through GJs or by passing through the EC space. 
After 3min , water starts flowing back from �in to �out , until 
both Cw(0) and Cw(R

cl) reach the same steady state value 
≈ 1.005C0

w
 . Notably, c = C0 = Ce,0 = ce at the steady state; 

moreover, we could show that ci = ce
i
≈ C0

i
∀i.

The Jacobian J and the areal Jacobian Ja increase at R = 0 
and decrease at R = Rcl until t = 3min and then asymptoti-
cally tend to one. In particular, Ja is equal to the out-of-
plane stretch J∕Ja . The radial displacement u at R = Rcl∕2 
increases until t = 3min and then goes to zero.

To conclude, in the presence of TJs and in the absence 
of ion pumps, at the steady state the current IC and EC ion 
concentrations are equal and close to the initial IC values, 
and both the IC and EC spaces are electroneutral. Moreover, 
within the same material point, the volume increase in the IC 
space balances the volume decrease in the EC space, such 
that the cluster is globally undeformed.

5 � Concluding remarks

We have proposed a continuum finite strain theory for the 
coupling of electrostatics, ion transport, water transport, and 
mechanics of a closely packed cell cluster.

Specifically, we have regarded the cluster as the super-
position of a solid network of cytoskeletal filaments and 
anchoring junctions and intracellular (IC) and extracellu-
lar (EC) solutions of water and ions. We have described 
the mechanics of the solid network through compressible 
hyperelasticity. Given the diluteness of the IC and EC 
solutions and the incompressibility of all the constituents, 
volumetric deformations are established by water redistribu-
tion only. We have obtained the IC and EC fluxes, the first 
being allowed by gap junctions, by considering cross-dif-
fusing effects. Correspondingly, the IC and EC water fluxes 
result from the contributions of water pressure and electro-
osmosis, while the IC and EC ion fluxes are due to electro-
diffusion and convection. We have further accounted for 
transmembrane osmosis and ion electro-diffusion through 
aquaporins and ion channels, respectively.

We have tested our model to an in-plane circular cluster 
whose central region �in presents an overexpression of 
sodium channels. The model correctly predicts the accu-
mulation of ions and, consequently, of water, in the IC 
space of �in , and the resulting depolarization and in-plane 
expansion. The presence of gap junctions smooths out the 

steep gradients in all the relevant fields otherwise existing 
at the boundary of �in . The contribution of the pressure to 
the water flux becomes relevant in stiff plant cell clusters, 
while in deformable animal cell clusters the water flow is 
exclusively dictated by osmotic phenomena. In the absence 
of tight junctions, the ion and water redistribution may be 
severe, leading to large deformations; moreover, the mem-
brane potential and the volumetric deformation are essen-
tially established by the IC fields only, as the EC space 
remains nearly electroneutral and undeformed, except for 
the very initial transient. Differently, in the presence of 
cluster-sealing tight junctions, the ion and water redistri-
bution is much more limited, resulting in small deforma-
tions, and both the IC and EC spaces contribute to setting 
the membrane potential and the volumetric deformation.

The model may be quite straightforwardly comple-
mented with the addition of (i) the active transmembrane 
ion transport through ion pumps, (ii) the dependency of 
the diffusivity of ion channels and gap junctions on the 
membrane potential and tension (so as to account for volt-
age gating and mechanosensitivity), and (iii) genetic and 
biochemical dynamics required for specific applications, 
as already addressed in the literature (Pietak and Levin 
2016, 2017; Leronni et al. 2020).

A major and cumbersome advancement would be the 
inclusion of growth into the model, toward exploring the 
interplay between mechanical and bioelectrical dynamics 
in development and regeneration. This could be achieved 
by introducing an inelastic (growth) deformation gradient, 
multiplying the elastic contribution and being modulated 
by the membrane potential, so as to relate growth and 
depolarization (Sundelacruz et al. 2009; Ambrosi et al. 
2019; Silver et al. 2020).
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Appendix A

Governing equations 
for the one‑dimensional axisymmetric 
benchmark

In a 1D axisymmetric space dimension, equilibrium (1) 
reduces to

where P�
rR

= �PrR∕�R , and PrR and P�� are the radial and 
circumferential nominal stresses, given by [see Eq. (35)] 

 where

with 

 and FzZ denoting the radial, circumferential, and out-of-
plane deformation gradient components (or stretches), and u 

(52)P�
rR
+

1

R
(PrR − P��) = 0 ,

(53a)
PrR = G

(
FrR −

1

FrR

)
+ �

ln J

FrR

− pw
J

FrR

+
FrR

2�0�rJ

[
D2 + (De)

2
]
,

(53b)
P�� = G

(
F�� −

1

F��

)
+ �

ln J

F��

− pw
J

F��

−
F2
rR

2�0�rJF��

[
D2 + (De)

2
]
,

(54)J = FrRF��FzZ ,

(55a)FrR = 1 + u� ,

(55b)F�� = 1 +
u

R
,

being the radial displacement. Under plane stress conditions, 
the out-of-plane nominal stress PzZ is zero:

We equip Eq. (52) with the following boundary conditions 
[see Eq. (5)], with that in R = 0 ensuing from symmetry:

Mass balances (2) and (3) become 

 where the radial IC and EC nominal fluxes read [see Eq. 
(49)] 

 The IC nominal concentration of water Cw and the trans-
membrane nominal fluxes Jm

w
 and Jm

i
 are still given by Eqs. 

(34) and (50). We supply Eqs. (58) with the following initial 
conditions [see Eqs. (6b), (31), and (41)]: 

(56)

PzZ = G

(
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1

FzZ
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ln J
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J
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D2 + (De)

2
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= 0 .

(57)u(0) = 0 , PrR(R
cl) = 0 .
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Ċe
i
+ (Je

i
)� +

Je
i

R
= Jm

i

2

Rc
,

(59a)

Jw = −
Dw

F2
rR

�
vwCw

RT
p�
w
+

F

RT

�
i

ziCi�
� +

∑
j≠i Cj

Cw

C�
w

�
,

(59b)

Je
w
= −

De
w

F2
rR

�
vwC

e
w

RT
p�
w
+

F

RT

�
i

ziC
e
i
(�e)�

+

∑
j≠i C

e
j

Ce
w

(Ce
w
)�
�
,

(59c)Ji =
Ci

Cw

Jw −
Di

F2
rR

(
C�
i
−

Ci

Cw

C�
w
+

F

RT
ziCi�

�

)
,

(59d)

Je
i
=

Ce
i

Ce
w

Je
w
−

De
i

F2
rR

(
(Ce

i
)� −

Ce
i

Ce
w

(Ce
w
)� +

F

RT
ziC

e
i
(�e)�

)
.

http://creativecommons.org/licenses/by/4.0/


553Modeling the mechanobioelectricity of cell clusters﻿	

1 3

 and with the following boundary conditions [see Eqs. (7), 
(9), (40), and (43)]: 

 Finally, Gauss laws (4) reduce to 

 where the IC and EC electric displacements are given by 
[see Eq. (44)] 

 We complement Eqs. (62) with the following boundary con-
ditions [see Eqs. (10)–(12) and (45)]: 

(60a)pw = 0 , Ce
w
=

1

vw
,

(60b)Ci = C0
i
, Ce

i
= C

e,0

i
,

(61a)Jw(0) = Jw(R
cl) = 0 ,

(61b)

Je
w
(0) = 0 ,

Ce
w
(Rcl) =

RTCe(Rcl)

vw
[
RTCe,0 + pw(R

cl)
] without TJs ,

Je
w
(Rcl) = 0 with TJs ,

(61c)Ji(0) = Ji(R
cl) = 0 ,

(61d)

Je
i
(0) = 0 ,

Ce
i
(Rcl) = vwC

e,0

i
Ce
w
(Rcl) without TJs ,

Je
i
(Rcl) = 0 with TJs .

(62a)D� +
D

R
= �0F

∑
i

ziCi ,

(62b)(De)� +
De

R
= �e

0
F
∑
i

ziC
e
i
,

(63a)D = −�0�r
J

F2
rR

� � ,

(63b)De = −�0�r
J

F2
rR

(�e)� .

(64a)D(0) = 0 , D(Rcl) = �0�
m
r

�

Tm
,

(64b)

De(0) = 0 ,

�e(Rcl) = 0 without TJs ,

De(Rcl) = �0�
tj
r

�e

T tj
with TJs .

Appendix B

Finite element implementation

We solve the coupled governing equations presented in 
“Appendix A” by employing the finite element commer-
cial software Comsol Multiphysics®. We use the Gen-
eral Form PDE interface to implement equilibrium (52), 
mass balances (58), and Gauss laws (62), and the Domain 
ODEs and DAEs interface to impose the plane stress 
constraint (56). We employ quadratic Lagrange shape func-
tions to approximate the independent variables u, pw , Ce

w
 , 

Ci , Ce
i
 , � , �e , and FzZ . The mesh consists of 100 elements, 

whose size decreases linearly from the boundaries to the 
interface between �in and �out , where the independent vari-
ables undergo steep gradients, especially in the absence of 
GJs. Specifically, the ratio between the largest and smallest 
elements is 10. We employ the BDF method for the time 
integration and adopt the Fully Coupled approach, 
equipped with the MUMPS linear solver, to solve all the 
discretized equations simultaneously at each time step.
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