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The prevalence of the metabolic syndrome and underlying metabolic disturbances increase rapidly in developed countries. Various
molecular targets are currently under investigation to unravel themolecularmechanisms that cause these disturbances.This is done
in attempt to counter or prevent the negative health consequences of the metabolic disturbances. Here, we reviewed the current
knowledge on the role of C/EBP-𝛽 in thesemetabolic disturbances. C/EBP-𝛽 deletion inmice resulted in downregulation of hepatic
lipogenic genes and increased expression of 𝛽-oxidation genes in brown adipose tissue. Furthermore, C/EBP-𝛽 is important in the
differentiation and maturation of adipocytes and is increased during ER stress and proinflammatory conditions. So far, studies
were only conducted in animals and in cell systems.The results found that C/EBP-𝛽 is an important transcription factor within the
metabolic disturbances of the metabolic system. Therefore, it is interesting to examine the potential role of C/EBP-𝛽 at molecular
and physiological level in humans.

1. Introduction

The prevalence of obesity is increasing worldwide. This is
worrisome regarding the known association of obesity with
the development of the metabolic syndrome. The metabolic
syndrome comprises a cluster of disturbances in metabolism
such as an impaired glucose and lipidmetabolism, high blood
pressure, dyslipidemia, and a proinflammatory state [1]. Eve-
ntually, these disturbancesmight result in the development of
type II diabetes mellitus and cardiovascular diseases [2].

Nowadays it is acknowledged that adipose tissue is a hig-
hly endocrine organ that secretes several adipokines, includ-
ing a variety of proinflammatory cytokines [3]. As a conseq-
uence, there is a constant exposure to low-grade systemic inf-
lammation. Typically, elevated concentrations of C-reactive
protein, various cytokines, prothrombotic molecules, and
adhesionmolecules are present in this inflammatory state [4–
6] which play an essential role in the development of athe-
rosclerosis and insulin resistance [7, 8].

It is intriguing to consider the variety and number of
processes that are differentially regulated between metabolic

syndrome patients and healthy subjects. Many of these pro-
cesses are regulated at the level of gene expression, which is
controlled by downstreamprocesses and factors, such as RNA
processing, mRNA translation, mRNA degradation, and
interaction with other proteins. Probably the most influential
step in regulating gene expression is the rate of transcriptional
regulation. Transcription factors are able to interact with reg-
ulatory sequences of target genes, thereby influencing their
expression level and consequently influencing metabolism in
a direct and/or indirect manner [9].

Next to transcription factors such as PPARs, NF𝜅B, and
chREBP [10–12], there are strong indications that also the
transcription factor CCAAT/enhancer binding protein (C/
EBP-𝛽) is involved in processes related to the metabolic syn-
drome. C/EBP-𝛽 knockout mice fed a high-fat diet showed
a decreased fat mass, decreased serum triacylglycerols and
cholesterol concentrations, and lower hepatic triacylglycerol
concentrations compared to their wild type littermates [13].
Moreover, expression of hepatic lipogenic genes was down-
regulated, while the expression of𝛽-oxidation genes in brown
adipose tissue was increased [13]. These effects are in line
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with earlier observations that the beta variant of C/EBP is
important in the differentiation andmaturation of adipocytes
[13]. Finally, since C/EBP-𝛽 is activated in proinflammatory
conditions [14], there might also be a link between C/EBP-
𝛽 and low-grade systemic inflammation. Therefore, in this
review, we will focus on the influence of CCAAT/enhancer
binding protein 𝛽 and its isoforms onmetabolic disturbances
related to the metabolic syndrome.

2. CCAAT/Enhancer Binding Proteins

2.1.TheC/EBP Family of Transcription Factors. CCAAT/enh-
ancer binding proteins (C/EBPs) are a six-member family
(𝛼 to 𝜁) of transcription factors. They are involved in the
regulation and expression of numerous genes. C/EBPs affect
gene expression by binding to a DNA binding site (con-
sensus sequence “CCAAT”), which is present in many gene
promoter and enhancer regions. All members of the C/EBP
family contain a basic leucine zipper (bZIP) domain at
the carboxyl-terminus (C-terminus), which is involved in
dimerization and binding to the DNA [9]. Specifically, in all
isoforms of C/EBP, an extension of the zipper dimerization
domain, the tail sequence, acts as a motif for protein-protein
interactions. For a detailed description of the structure of
CCAAT/enhancer binding family members, we refer to two
earlier reviews [9, 15].

2.2. Tissue Specific C/EBP Expression of Variants 𝛼 to 𝜁.
C/EBP protein variants are differentially expressed in various
tissues. C/EBP-𝛼 is expressed predominantly in liver and
adipose tissue and at lower level in lungs, intestine, adrenal
gland, placenta, and peripheral-bloodmononuclear cells [16–
19]. C/EBP-𝛽 is highly expressed in the intestine, liver, kidney,
lungs, spleen, adipose tissue, pancreatic 𝛽-cells [20], and
monocytes and granulocytes [9, 16, 17, 21–26].The expression
of the 𝛿-member of the C/EBP family is restricted to adipose
tissue, intestine, and lungs, whereas C/EBP-𝜀 expression is
found primarily in myeloid and lymphoid cells [9, 18, 27, 28].
Finally, C/EBP-𝛾 and C/EBP-𝜁 are ubiquitously expressed in
most tissues [9, 29, 30].

2.3. A Focus on the CCAAT/Enhancer Binding Proteins Family
Member C/EBP-𝛽. Given the large number of publications
describing a link between the 𝛽 isoform of C/EBP and one or
more characteristics of the metabolic syndrome, we decided
to focus in more detail on the C/EBP-𝛽 isoform. In the
literature, C/EBP-𝛽 is known under various names: NF-IL6
(nuclear factor for IL-6), TCF5 (transcription factor 5), LAP
(liver-enriched activator protein), IL-6DBP (IL-6 depen-
dent DNA binding protein), CRP2 (C/EBP-related protein
2), AGP/EBP (alpha-1-acid glycoprotein enhancer binding
protein), NF-M, SF-B (silencer factor), or ApC/EBP [9].
C/EBP-𝛽 forms hetero- and homodimers, thereby altering its
preferential DNA binding to initiate transcription of target
genes involved in various cellular processes [9, 14, 19, 31–34].

2.4. C/EBP-𝛽 Isoforms. C/EBP-𝛽 is an intronless gene that co-
des for the production of a single mRNA [16, 35]. The mouse
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Figure 1: Human C/EBP-𝛽 protein expression in human liver
carcinoma cells (HepG2 cells) under normal and after inflammation
induced C/EBP-𝛽 activation by the addition of a cytokine cocktail
for 48 h (IL-6, IL-1𝛽, and TNF-𝛼), detected by western blotting.
Human C/EBP-𝛽 isoforms LAP∗, LAP, and LIP are indicated using
the arrows (note: they run at different size as the mouse isoforms
(Santa Cruz Biotechnology, C/EBP-𝛽 (C-19): sc-150). Just above
37 kDa and below the 37 kDa breakdown fragments of the larger
human isoforms are detected.

C/EBP-𝛽 mRNA transcript can translate into four differ-
ent protein isoforms: full length C/EBP-𝛽 or LAP∗ (liver-
enriched transcriptional activating protein star) with an
atomic mass of 38 kDa, LAP (liver-enriched transcriptional
activating protein), which has an atomic mass of 35 kDa, the
20 kDa isoformLIP (liver-enriched transcriptional inhibitory
protein), and a smaller 16 kDa isoform (Figure 1). The iso-
form LAP is a transcriptional activator, while the isoform
LIP, which lacks the transactivation domain, is a transcrip-
tional inhibitor (Figure 2). This results in isoform specific
transcriptional activation potential [16, 36, 37]. Already in
1991, Descombes and Schibler [35] have shown that the
isoforms LIP and LAP have antagonistic activities. Also
in heterodimerized form with other family members, LIP
inhibits the transcriptional activation activity of its partner [9,
36]. Together, these data suggest that LIP acts as a dominant
negative regulator of other C/EBP family members.

In some articles authors use the term “LIP/LAP ratio” to
refer to changes in the amount of LAP∗, LAP, or LIP protein
that is produced. In our perception, one should also refer
to exact concentrations of LAP∗, LAP, or LIP, since a ratio
does not give information on the amount of each isoform
that is produced. For example, there is a difference between a
LIP/LAP ratio, for example, 8/2 or 100/25, while both ratios
seem equal: 4. At high amounts of the transcription factors
the biological effects are likely to differ when compared to
lower concentrations, for example, at high dose (one of)
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Figure 2: Alignment of CEBPb isoforms LAP∗, LAP, and LIP created and annotated using reference sequence (LAP∗: NP 005185; LAP:
NP 001272807; LIP: NP 001272808) [38, 39]. Transactivation domain (TAD) 1–4, the DNA binding domain (DBD), and the leucine zipper
domain (LZ) are indicated with the shaded boxes. Phosphorylation sites are indicated using the letter “p” and acetylation sites with the letter
“a.”

the heterodimeric partners of LIP/LAP might become lim-
iting or all binding places might become fully occupied.

3. Transcription of C/EBP-𝛽

3.1. Activation of C/EBP-𝛽 Transcription. In the C/EBP-𝛽
promoter various binding sites allow binding of transcrip-
tion factors that directly influence transcription of C/EBP-
𝛽 mRNA (Table 1). Furthermore, there are two cAMP-like
responsive elements (CRE-like sites) in the region close to
the TATA box of the C/EBP-𝛽 gene.The PKA/CREB pathway
targets these two CRE-binding sites and thereby regulates the
transcription of C/EBP-𝛽 [40]. In addition, C/EBP-𝛽 is able
to stimulate its own transcription [40].

3.2. Isoform Specific Translation. A possible model to explain
the production of the various C/EBP-𝛽 isoforms involves a
“leaky ribosome scanning mechanism” [72]. In this model,
the first AUG codon is ignored by the ribosomes that
are scanning the C/EBP-𝛽 mRNA, resulting in translation
initiation starting from the next AUG codon (Figure 2) [72].
As an alternative, Timchenko et al. [73] proposed another
pathway for LIP production named “proteolytic cleavage,”
which is regulated by another member of the C/EBP family;
C/EBP-𝛼 [74]. Since low proteolytic activity was found in
cultured cells, they also concluded that the generation of LIP
is predominantly depending on translational regulation [73].

4. C/EBP-𝛽 Target Genes

Although C/EBP-𝛽 increases the expression of a wide variety
of target genes that regulate numerous metabolic processes
(Table 1), C/EBP-𝛽 binding sites are particularly found in
regulatory sequences of genes that are associated with, that
is, the inflammatory response [21], or the ER stress pathway
[75]. In addition, several C/EBP-𝛽 protein interactions and
regulatory factors that are involved in C/EBP-𝛽 transcription
have been reported (Table 1).

HDL 
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Figure 3: Simplified scheme of the involvement of C/EBP-𝛽 in
factors related to the metabolic syndrome as described in literature.

5. The Role of C/EBP-𝛽 in
Metabolic Regulation

Numerous studies suggest a role for C/EBP-𝛽 in pathways
related to the metabolic syndrome. Current insights regard-
ing the involvement of C/EBP-𝛽 in adipose tissue differ-
entiation, glucose and insulin metabolism, triacylglycerol
metabolism, hepatic steatosis, endoplasmic reticulum stress,
inflammation, and HDL production will be described in the
following sections (Figure 3). When discussing the influence
of C/EBP-𝛽 on metabolic aberrations, it is important to
consider the effects of C/EBP-𝛽 on weight or adipose tissue
loss, as weight loss might consequently induce positive effects
on the features of the metabolic syndrome [76, 77].

5.1.The Role of C/EBP-𝛽 in Adipose TissueMass and Adipocyte
Differentiation. C/EBP-𝛽, as well as other members of the
C/EBP family, plays a role in adipocyte differentiation and
maturation, suggesting involvement in the etiology of over-
weight and obesity. When wild type and C/EBP-𝛽 deficient
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Table 1: Regulatory factors for C/EBP-𝛽 production, C/EBP-𝛽 target genes, and C/EBP-𝛽 protein interactions (please note that this list is not
exhaustive, for a more extensive list also visit the GenCards website [41]).

Regulatory factors in C/EBP-𝛽 transcription C/EBP-𝛽 target genes C/EBP-𝛽 protein interactions
Sp1 [42] IL-6 [43] CREB1 [44]
CREB/ATF [42] TNF-𝛼 [21] CRSP3 [45]
SREBP1c [46] IL1-𝛽 [21] DDIT3/CHOP [47]
RARa [48] IL-8 [49] EP300 [50]
Myb [51] IL-12 [21] HMG-I/HMG-Y [52]
Fra-2 [53] G-CSF or CSF3 [21] HSF-1 [54]
EGR2 or KROX20 [55] Receptors for G-CSF, GM-CSF, M-CSF [21] SWI/SNF complex [56]
STAT-3 [57] MIP1-𝛼 [43] Sp1 [52]
NFkB [58] Osteopontin [43] TRIM28/KAP1 [59]
C/EBP-𝛽 [40] CD14 [43] EGR-1/zif268/NGFI-A [60]

MIP1-𝛽 [15] Smad-3 and Smad-4 [61]
CRP [21] ATF2 [62]
Hemopexin [21] ATF4 [63]
Haptoglobin [15] C/EBP-𝛼, 𝛽, 𝛾, 𝛿, 𝜁 [9]
AGP-a1 [21] FKHR [64]
NFkB, P50 subunit [58]
NR3C1 [65]
C-FOS [66]
PPAR-𝛾 [67, 68]
C/EBP-𝛼, 𝛽, 𝛾, 𝛿, 𝜁 [9]
cAMP [69]
Albumin [70]
MDR1 [71]

mice were fed a high-fat diet (60 en%) for 12 weeks, the wild
type mice gained weight, while the knockouts did not and
even lost body fat. Also on a low-fat diet, the C/EBP-𝛽
knockouts had less total body fat [13]. Similar findings were
reported by Staiger et al. [78]. Although we can certainly
not rule out that weight loss itself contributed considerably
to the observed healthier metabolic profile, the C/EBP-𝛽
deletion resulted in decreased expression of hepatic lipogenic
genes and lowered expression of acetyl-CoA carboxylase and
reduced fatty acid synthase, suggestive for a reduced hepatic
fatty acid production and increased lipolysis [13]. In addi-
tion, after the high-fat diet, energy expenditure, which was
measured by CO

2
production, was increased in the C/EBP-

𝛽 knockouts, while the amount of brown adipose tissue
was not increased. However, although brown adipose tissue
was not elevated, the explanation for the increased energy
expenditure in the C/EBP-𝛽 knockout mice was explained by
elevated gene expression in brown adipose tissue 𝛽-oxidation
(LCAD and AOX). Although UCP1 and UCP3 in the muscle
were clearly increased, the change in UCP expression in BAT
did not reach statistical significance [13].

C/EBP-𝛽 and C/EBP-𝛼 are postulated as transcriptional
activators for the mouse UCP gene, as two binding places for
C/EBP were detected in the UCP gene promoter. Cotrans-
fection of the UCP-CAT vector with C/EBP-𝛽 resulted in
increased transactivation of the UCP promoter in primary
brown adipocytes of rats [79]. Furthermore, when exposed
to cold, which is a stimulus for development of brown fat

andUCP expression, specificallyC/EBP-𝛽 expression showed
a time dependent increase in brown adipose tissue of adult
rats. Here, LIP protein production increased rapidly after 12
to 24 hours of cold exposure. Additionally, C/EBP-𝛽 mRNA
expression and LIP protein production was higher during
fetal development of brown adipose tissue compared to adult
brown adipose tissue and during BAT development in the
fetus the amount of LIP decreased gradually [80]. These data
suggest a role for C/EBP-𝛽 and particularly its isoform LIP in
the (fetal to adult) development of brown adipose tissue BAT
and in increasing brown adipose tissue activity.

As described in Table 1, C/EBP-𝛽 can induce both PPAR-
𝛾 and C/EBP-𝛼 gene expression, since both genes contain
C/EBP binding sites in their proximal promoters [67, 68].
Particularly, during the first two days of white adipocyte
differentiation, C/EBP-𝛽 and C/EBP-𝛿 levels are increased,
after which levels decrease sharply before C/EBP-𝛼 levels
increase [16]. During the early stage of adipogenesis, C/EBP-
𝛽 and C/EBP-𝛿mRNA activate transcription of PPAR-𝛾 [81].
Mice deprived of the C/EBP-𝛽 gene did showwhite adipocyte
development; for example, they could not store lipids inside
the adipocytes, regardless of the presence of C/EBP-𝛼 and
PPAR-𝛾 [81]. In addition, Chung et al., 2012 [82], suggested
that activation of Wnt-𝛽 inhibits activations of PPAR-𝛾 and
C/EBP-𝛼 that are controlled by C/EBP-𝛽. When adipogenic
inducers (such as insulin) were added, knockdown of C/EBP-
𝛽 inhibited adipogenesis, while activated signaling of Wnt-𝛽
wasmaintained.When the C/EBP-𝛽 gene was overexpressed,
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signaling of Wnt-𝛽 was inhibited.These findings suggest that
C/EBP-𝛽 can inhibit Wnt-𝛽 signaling and that C/EBP-𝛽 is
necessary to stimulate the expression of genes responsible
for adipogenesis [82]. Zuo et al. have also evaluated the role
of C/EBP-𝛽 in the activation of C/EBP-𝛼 [67]. In an earlier
study it was shown that after inhibition of C/EBP-𝛽 activity
by ectopic expression of the protein LIP, the expressions of
C/EBP-𝛼 and PPAR-𝛾 were blocked [83]. This suggests that
C/EBP-𝛽 isoform LIP modulates the expression of C/EBP-
𝛼. In the past, the role of C/EBP-𝛽 in inducing adipogenesis
via PPAR-𝛾 was already extensively investigated [84, 85].
For example, the truncated isoform LIP inhibited adipocyte
differentiation in 3T3-L1 cells [84]. However, these studies
could not examine effects on C/EBP-𝛼 induction, since NIH-
3T3 fibroblasts were used, which do not produce C/EBP-
𝛼 [67, 86]. Zuo et al. now suggested that C/EBP-𝛽 is able
to activate adipogenesis through the stimulation of PPAR-𝛾,
which activates C/EBP-𝛼 expression [67].

The role of the adipokine leptin as a mediator of energy
balance is well known in humans [87, 88]. ChIP analysis
suggested that leptin levels are decreased by C/EBP-𝛽 via
association with the promoter of leptin. This finding is con-
firmed with observations showing that the leptin promoter
contains a C/EBP motif binding site [20], to which C/EBP-
𝛼 can bind [89]. In C/EBP-𝛽 knockout mice a reduction in
leptin but also a decrease in fat mass was observed [78]. How-
ever, as leptin is produced by white adipose tissue, it is also
possible that the observed decrease in leptin simply results
from the decrease in the amount of body fat.

In summary, in vitro and animal studies suggest that
C/EBP-𝛽 plays an important role in promoting the develop-
ment and differentiation of both white and brown adipose
tissue. In addition, C/EBP-𝛽 plays a role in increasing brown
adipose tissue activity, via elevated UCP expression in brown
adipose tissue. Furthermore, the C/EBP family might be
involved in the production of leptin.

5.2. The Role of C/EBP-𝛽 in Glucose and Insulin Metabolism.
Besides a potential indirect effect of C/EBP-𝛽 on metabolism
via a reduced adipocyte mass, there are indications that
C/EBP-𝛽 directly affects glucose and insulin metabolism
(Figure 4). A decreased hepatic C/EBP-𝛽 expression coin-
cides with increased insulin production [20, 90, 91]. Rats
andmice fed a high-carbohydrate diet (81% sucrose), thereby
increasing insulin secretion 5-fold, showed an 80% decreased
hepatic C/EBP-𝛽 mRNA production compared to animals
fed a standard diet (41% starch) [90]. Matsuda et al. found
that pancreatic 𝛽-cell specific C/EBP-𝛽 knockout mice were
characterized by increased insulin secretion, while they did
not differ in body weight compared to controls [92]. Further-
more, C/EBP-𝛽 expression was increased in hepatocytes of
(streptozotocin-treated) type I diabetic rats [90]. However,
when these animals were treated with insulin or with the
insulin mimetic vanadate, C/EBP-𝛽 expression decreased
again [90]. Altogether, these findings not only indicate that
C/EBP-𝛽 plays a role in regulating pancreatic insulin secre-
tion, but also that insulin relates to lower hepatic express-
ion of C/EBP-𝛽 [90]. These effects may also translate into

differences in glucosemetabolism. Fifty percent of all C/EBP-
𝛽 knockout mice die early due to disturbances in glycogen
mobilization and consequent hypoglycemia [93]. After an 18
hour fast, surviving mice clearly suffered from severe hypo-
glycemia, decreased hepatic glucose production (40% reduc-
tion) and low plasma free fatty acid (FFA) concentrations
compared to wild type mice. However, plasma insulin levels
were comparable between the knockout and wild type mice.
After correction for the amount of DNA per gram of adipose
tissue the overnight fasted knockouts showed reduced lipid
content per cell. The authors state that the decrease in fat
mass might have accounted for the decreased FFA con-
centrations in C/EBP-𝛽 knockout mice. Moreover, hepatic
cyclic adenosine monophosphate (cAMP) was reduced in
C/EBP-𝛽 knockout mice during basal and glucagon stimu-
lated conditions [93], and administration of cAMP increased
glycogen mobilization, resulting in normal blood glucose
concentrations [93, 94]. cAMP is an important contributor
to whole-body glucose homeostasis, as it is involved in the
insulin-signaling cascade by activating PKA [95]. In relation
to this, it has been shown that C/EBP-𝛽 is required in
maintaining appropriate cAMP concentrations in liver and
adipose tissue [94].

Besides an effect on glucose homeostasis via affecting
insulin and glucagondirectly, theC/EBP gene familymay also
affect the uptake of glucose, as the promoter of the GLUT-4
gene contains a C/EBP binding site [96]. This might explain
partly why adipocytes of C/EBP-𝛽 and C/EBP-𝛿 deficient
mouse embryonic fibroblasts (MEFs) have reduced GLUT-
4 mRNA expression [97]. In addition, the insulin receptor
substrate-2 (IRS-2) was decreased in these mice compared to
their control littermates, which could be another explanation
for reduced GLUT-4 expression. Furthermore, in HepG2
cells, transcription of the human insulin receptor (IR) is con-
trolled by a transcriptionally active multi-protein-DNA com-
plex. This complex is composed of nuclear protein HMGI-
Y, transcription factors Sp1, and C/EBP-𝛽 [52]. Although
IR expression was not changed in adipocytes of C/EBP-𝛽/𝛿
deficient mouse MEFs [97], the findings of Foti et al. suggest
that C/EBP-𝛽 is involved in a transcriptional network needed
for the transcription of human insulin receptors [52]. In
contrast, deleting C/EBP-𝛽 in mice increased IRS-1 levels
as well as skeletal muscle insulin sensitivity [98]. Moreover,
despite the decreased amount of adipose tissue, which could
explain (part of) the favourable metabolic effects, mice with a
C/EBP-𝛽 gene deletion showed reduced plasma free fatty acid
concentrations and increased insulin-signal transduction in
skeletal muscle, indicating improved whole-body insulin
sensitivity [98]. This was supported by findings that C/EBP-
𝛽 suppression in palmitate-treated 3T3L1 cells improved Akt
phosphorylation in response to insulin [99]. Furthermore, in
mice, the accumulation of C/EBP-𝛽 leads to failure of pancre-
atic 𝛽-cells, due to increased vulnerability to ER stress. These
findings suggest that C/EBP-𝛽 is also involved in the onset of
insulin resistance and type II diabetes [92].

In conclusion, animal and cell studies suggest that C/EBP-
𝛽 influences insulin and glucose metabolism. However, in
most cases the effect of C/EBP-𝛽 knockout resulted in decr-
eased body weight or adipose tissue loss, which might have
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Figure 4: C/EBP-𝛽 in metabolic processes related to the metabolic syndrome.

caused the reduction of blood glucose and free fatty acids.
Since the accumulation of C/EBP-𝛽 in the pancreatic 𝛽-cells
may increase the risk for type II diabetes in animals, it might
be interesting to investigate the contribution of C/EBP-𝛽 in
the onset of type II diabetes in humans.

5.3. The Role of C/EBP-𝛽 in Triacylglycerol Metabolism and
Hepatic Steatosis. Although we cannot rule out the beneficial
metabolic effects of subsequent weight loss, C/EBP-𝛽 knock-
out mice showed lower serum and triacylglycerol concentra-
tions and a decreased hepatic triacylglycerol content, when
compared to their wild type littermates on the same high-fat
diet (Figure 4) [13]. In addition, in Lepr(db/db) mice, where
no weight loss could be detected, the deletion of C/EBP-𝛽
reduced hepatic fat content and thereby the risk to develop
diabetes and obesity [100]. Moreover, hepatic triacylglycerol
content as well as lipogenic enzyme activity of C/EBP-
𝛽(−/−) × Lepr(db/db) mice was dramatically decreased in
comparison to wild type mice. However, in the same study,
overexpression of C/EBP-𝛽 isoform LIP in wild type mice
resulted in a 50% reduction of hepatic triacylglycerol con-
centrations. This might be explained by the fact that LIP is a
dominant negative protein, whichmight inhibit otherC/EBP-
𝛽 isoforms that seem to cause steatosis [100].

Nonalcoholic steatohepatitis (NASH) is strongly associ-
ated with obesity, type II diabetes, and the metabolic syn-
drome [101]. The first step in development of NASH is the
increased accumulation of triacylglycerol in the liver caused
by lipid overflow. Next, inflammation is induced which can
eventually result in development of fibrosis and ultimately
liver cell death. Rahman et al. have shown that C/EBP-𝛽

knockout mice, in which NASH was induced using a meth-
ionine-choline deficient diet (MCDD), were partly protected
from the development of steatosis, although the results on
weight loss in MCDD fed C/EBP-𝛽 knockout mice were
not shown [102]. The authors also mention the possibility of
C/EBP-𝛽 deletion leading to reduced accumulation of lipids
in the liver.They ascribe the decreased steatosis development
to decreased lipogenesis, resulting in decreased hepatic tri-
acylglycerol content and a decreased activation of inflam-
mation [102]. Similar to the phenotypic response in MCDD
fed mice, C/EBP-𝛽 overexpression in hepatocytes of wild-
type mice increased PPAR-𝛾 activation, NF𝜅B, hepatic tria-
cylglycerol level, steatosis, and ER stress. These data suggest
that high C/EBP-𝛽 levels contribute to the development of
NASH and that C/EBP-𝛽 inhibition is potentially beneficial
in preventing hepatic steatosis.

5.4. The Role of C/EBP-𝛽 in Endoplasmic Reticulum Stress.
The endoplasmic reticulum (ER) plays a role in folding newly
synthesized proteins [103]. In conditions of ER stress, poorly
folded proteins accumulate in the ER, which is detected by
the three main ER stress sensors IRE1𝛼/𝛽, PERK, and ATF6
[104–106]. The master regulator of ER stress is GRP78 or
BiP protein. When GRP78 detects ER stress, it dissociates
from the ER stress sensors to activate the unfolded protein
response (UPR) [104]. Initially, the UPR copes with ER stress
by introducing chaperones and by attenuation of protein
translation. However, persistent ER stress will eventually
trigger cell death or apoptosis [105].

In cultured HepG2 cells, C6 cells, and mouse insulinoma
cells, C/EBP-𝛽 (especially the C/EBP-𝛽 isoform LAP) was
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activated during ER stress (Figure 4) [55, 75, 107].This increa-
sed LAPproductionwas followed in time by an increase of the
isoform LIP. Meir et al. have shown that LAP overexpression
decreased, whereas LIP overexpression increased ER stress
triggered cell death [75]. These findings were confirmed by
Li et al. who furthermore showed that C/EBP-𝛽 binds to
ATF4 and CHOP (also named C/EBP-𝜁), which are both
induced during the UPR [107]. LIP lowered the expression
of prosurvival ATF-4 target genes, and C/EBP-𝛽 was found
to increase the production of CHOP and its downstream cell
death related proteins [107]. Besides hepatocytes, also other
tissues such as adipocytes, macrophages, and 𝛽-cells are tar-
geted by C/EBP-𝛽 induced ER stress. For example, Matsuda
et al. showed that accumulation of C/EBP-𝛽 in the 𝛽-cells
of the pancreas of diabetic mice induced loss of 𝛽-cell mass
and insulin production [92]. The explanation for this finding
was the accumulation of C/EBP-𝛽 blocking ATF6-mediated
GRP78 transcription, which makes cells more vulnerable for
ER stress and ultimately to the onset of type II diabetes [92].

Together, these results show a link between C/EBP-𝛽 and
ER stress. C/EBP-𝛽 isoform LIP appears important in the
switch from a protective to an apoptotic pathway in cells that
are exposed to ER stress related UPR. This makes C/EBP-𝛽
and its isoforms interesting for further research in the pre-
vention of ER stress in humans, inwhich reduction of isoform
LIP seems beneficial to reduce ER stress triggered cell death.

5.5. The Role of C/EBP-𝛽 in the Inflammatory Cascade. Evi-
dence for a role of the different members of the C/EBP family
in the inflammatory response rapidly increases [99, 108].
Many studies have shown that C/EBP-𝛽 is transcriptionally
activated by inflammatory stimuli such as turpentine oil,
cytokines such as IL-6, IL-1, and TNF-𝛼, and bacterial LPS
[108].When the transactivation domain of C/EBP-𝛽 becomes
phosphorylated due to the presence of inflammatory stimuli,
transcription of the C/EBP-𝛽 gene increases [109]. C/EBP-𝛽
on its turn elevates expression of various proinflammatory
genes. It is generally accepted that C/EBP-𝛽 is a key regu-
lator of IL-6 signaling and is important in transcriptional
regulation of the IL-6 gene [31, 110]. IL-6 is a key player in
various characteristics of the metabolic syndrome, since it is
an important contributor to the low-grade proinflammatory
state [111]. IL-6 on the other hand suppresses the production
of insulin in subjects with type II diabetes, which indicates
increased insulin sensitivity [112]. One question is whether
all C/EBP-𝛽 isoforms are equally important in its effects on
inflammation. After treatment of BALB/c mice with LPS,
particularly the expression of the LIP isoform was strongly
increased whereas the expression of isoform LAP did not
change [113]. This could indicate that particularly an increase
in isoform LIP is important in regulating the inflammatory
state.

In macrophages, C/EBP-𝛽 is involved in coordinating the
expression of IL-1, IL-6, IL-8, TNF-𝛼, granulocyte colony-
stimulating factor (G-CSF), nitric oxide synthase, neutrophil
elastase, myeloperoxidase, and lysozyme and themacrophage
granulocyte and granulocyte-macrophage receptor genes
[114]. C/EBP-𝛽 is also able to increase the gene expression of

macrophage inflammatory protein 1 (MIP-1𝛼), osteopontin,
andCD14 in amonocytic cell line (M1 cells) [114]. In addition,
C/EBP-𝛽 knockout mice showed an impaired ability to
activate macrophages, pointing towards a distorted immune
response [94]. Moreover, C/EBP-𝛽 knockout mice suffered
from defects in their innate, humoral, and cellular immunity,
which is due to a deficiency in the activation of splenicmacro-
phages, an impaired IL-12 production (involved in activation
of natural killer cells and T-cells), and an altered T-helper
function. These data reveal that C/EBP-𝛽 is crucial for the
accurate functioning of the immune response, in particular
of haemopoietic and lymphoid compartments. Further, Yan
et al. showed in macrophages that C/EBP-𝛽 and C/EBP-𝛿
activated the inflammatory response even more when over-
expressed together, suggesting that C/EBP-𝛽-C/EBP-𝛿 het-
erodimers are more potent activators [115].

There is also a link between C/EBP-𝛽 expression and infl-
ammation in high-fat treated RAW 264.7 macrophage cells,
3T3-L1 adipocytes [99]. C/EBP-𝛽deletion completely blunted
the high-fat diet-induced development of inflammation [99].
Moreover, IL-10 and LXR𝛼 gene expression as well as its tar-
gets (SCD1 and DGAT2) was largely increased in peritoneal
C/EBP-𝛽 knockout macrophages. Even more, they showed
suppressed expression of the NLRP3 gene, which is necessary
for the activation of the inflammasome [99]. In the macro-
phage cell line RAW 264.7 or in 3T3-L1 adipocytes, knock-
down of C/EBP-𝛽 also blocked the onset of inflammation
after palmitate addition, probably via a decreased activation
of p65-NF𝜅B [99]. The latter finding was confirmed by per-
forming a C/EBP-𝛽 overexpression experiment in which
NF𝜅B binding, proinflammatory cytokine gene expression,
and JNK activation were indeed increased [99]. Finally,
Screpanti et al. showed diminished NO production after C.
albicans infection by macrophages from C/EBP-𝛽 knockout
mice, while wild type macrophages were perfectly capable of
producing the vasodilator NO [31].

These results suggest that C/EBP-𝛽 is an important con-
tributor in the onset of the inflammatory response. It would
be interesting to evaluate the effects of C/EBP-𝛽 inhibition
in the prevention of obesity induced systemic inflammation.
Evaluation of the most important isoformwithin this context
also deserves attention.

5.6. The Role of C/EBP-𝛽 in HDL Metabolism. Large-scale
epidemiological studies suggest that increased high-densi-
ty lipoprotein cholesterol (HDL-C) concentrations protect
against the development of cardiovascular diseases [116, 117].
However, recent studies failed to show that an increase in
serum HDL-C levels translates into a lower CVD risk [118].
Nowadays, the emphasis is on increasing HDL functionality
[119] and there is growing evidence that the protective effects
of HDL-C depend on apoA-I, the main protein constituent of
an HDL particle [120, 121].The apoA-I promoter has a C/EBP
binding site, which suggests C/EBP-𝛽 could be involved in
the production of apoA-I. However, available data for a
possible role of C/EBP-𝛽 in regulating apoA-I production is
not conclusive. AlthoughKan and colleagues [122] concluded
thatC/EBP-𝛽was not involved in apoA-I production, thiswas
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not explored during inflammatory conditions. Testing this
hypothesis during inflammatory conditions might be inter-
esting since inflammation is a prominent feature of the meta-
bolic syndrome, and apoA-I is a negative acute phase protein.
Moreover, effects of different isoforms were not explored by
Kan. Given the potential differences in regulatory effects, it
is possible that specific C/EBP-𝛽 isoforms influence apoA-I
production differently.

6. Conclusions

We have evaluated a possible role for C/EBP-𝛽 and its
isoforms in the etiology and progression of the metabolic
syndrome (Table 2 and Figure 4). Currently, all data available
regarding the role of C/EBP-𝛽 arise from animal and in vitro
experiments whereas data from human studies is lacking.
There is evidence that C/EBP-𝛽, in particular its isoform LIP,
plays a role in the development of white and brown adipose
tissue and in increase activity of brown adipose tissue.
Furthermore, animal studies showed that C/EBP-𝛽 knock-
out results in weight loss, lower plasma free fatty acids,
and decreased plasma glucose concentrations. However, one
should be aware that C/EBP-𝛽 deletion coincides with a
strong reduction in body weight and fat mass.This decline in
fat mass can be ascribed to the prominent role of C/EBP-𝛽
in adipogenesis. Therefore, it is questionable whether the
metabolic effects described are due to C/EBP-𝛽 itself or
are actually indirect effects due to an inability to increase
in body weight and in fat mass. Besides these metabolic
effects there is a vast amount of evidence showing a role of
C/EBP-𝛽 in increased inflammatory response and ER stress.
In conclusion, in light of these results, it is also important to
examine the potential role of C/EBP-𝛽 in humans with and
without the metabolic syndrome.
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potentiation of CCAAT enhancer binding protein 𝛽-mediated
transcriptional activation by glucocorticoid receptor,” Molecu-
lar Endocrinology, vol. 12, no. 11, pp. 1749–1763, 1998.

[66] R. Metz and E. Ziff, “cAMP stimulates the C/EBP-related
transcription factor rNFIL-6 to trans-locate to the nucleus and
induce c-fos transcription,” Genes and Development, vol. 5, no.
10, pp. 1754–1766, 1991.

[67] Y. Zuo, L. Qiang, and S. R. Farmer, “Activation of CCAAT/enh-
ancer-binding protein (C/EBP) 𝛼 expression by C/EBP𝛽 dur-
ing adipogenesis requires a peroxisome proliferator-activated
receptor-𝛾-associated repression of HDAC1 at the C/ebp𝛼 gene
promoter,” Journal of Biological Chemistry, vol. 281, no. 12, pp.
7960–7967, 2006.

[68] Z. Wu, Y. Xie, N. L. R. Bucher, and S. R. Farmer, “Conditional
ectopic expression of C/EBP𝛽 in NIH-3T3 cells induces PPAR𝛾
and stimulates adipogenesis,” Genes & Development, vol. 9, no.
19, pp. 2350–2363, 1995.

[69] E. A. Park, A. L. Gurney, S. E. Nizielski et al., “Relative roles
of CCAAT/enhancer-binding protein 𝛽 and cAMP regulatory
element-binding protein in controlling transcription of the gene
for phosphoenolpyruvate carboxykinase (GTP),”The Journal of
Biological Chemistry, vol. 268, no. 1, pp. 613–619, 1993.

[70] C. Trautwein, T. Rakemann, A. Pietrangelo, J. Plümpe, G.
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