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Abstract: MicroRNAs (miRNAs) are a class of short non-coding RNAs involved in the regulation
of gene expression and the control of several cellular processes at physiological and pathological
levels. Furthermore, extracellular vesicles (EV), which are small membrane-bound vesicles secreted
by cells in the extracellular environment, contain functional miRNAs. The remarkable deregulation of
many miRNAs has been demonstrated in respiratory diseases. Among them, miR-206, miR-133a-5p,
and miR-133a-3p are striated muscle-specific miRNAs (myo-miRNA), related to skeletal muscle
dysfunction, one of the commonest systemic manifestations in patients with chronic obstructive
pulmonary disease (COPD). Nevertheless, their circulating expression in COPD patients is not
demonstrated. For these reasons, we performed a pilot study to analyze the expression profiles of
myo-miRNAs in plasma-derived EV from patients with COPD. We analyzed the expression profiles of
selected myo-miRNAs in plasma-derived EV from COPD. Receiver operating characteristic analyses
were carried out to evaluate whether selected plasma miRNAs were able to discriminate between
different groups of COPD patients. We found EV-embedded myo-miRNAs in the bloodstream of
COPD patients. Specifically, miR-206, miR-133a-5p and miR-133a-3p were significantly upregulated
in group B patients. Receiver operating characteristic analyses of the combination of these selected
miRNAs showed their high capacity to discriminate group B from other COPD patients. Our data
provide evidence that myo-miRNA are present in EV in the plasma of COPD patients and their
expression (miR-206, miR-133a-5p, and miR-133a-3p) can discriminate group B from group C patients.
The future analysis of a larger number of patients should allow us to obtain more refined correlations.
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1. Introduction

Chronic obstructive pulmonary disease (COPD) is a heterogeneous and complex disease associated
with significant morbidity and mortality and represents a leading cause of mortality worldwide [1].
Over the last ten years, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) document
has moved beyond a lung function-centered view (only based on Forced Expiratory Volume in the first
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second (FEV1)) towards a more comprehensive approach, also including exacerbation history and
symptoms. Accordingly, since the 2011 version four groups have been identified (named from A to
D) [2], while group A contains the mildest patients and group D, conversely, the most severe ones,
establishing disease severity among groups B and C is still challenging [3]. These groups, however,
are still considered unsatisfactory to fully classify the disease for clinical and research purposes [4–6],
since COPD represents a complex pathological condition with several important extrapulmonary
manifestations (cardiovascular diseases, skeletal muscle dysfunction and subsequent deconditioning,
sarcopenia, metabolic disorders, etc.) [2]. Indeed, current research in the COPD field is focused on the
identification of biomolecules, each accounting for a specific pathobiological pattern of disease (called
the endotype) [7].

Since it is not feasible to obtain lung tissue samples from patients in clinical practice, it is not
easy to obtain pathological information on the pulmonary state. Hence, biofluids such as blood,
bronchoalveolar lavage fluid, and sputum represent important sources of circulating biomolecules
able to give information about lung conditions.

In this context, circulating microRNAs (miRNAs) and, particularly, miRNA embedded
in extracellular vesicles (EV) are gaining a growing interest in the area of respiratory medicine [8].

EV are submicron (100–1000 nm) vesicles shed by cells during activation and early apoptosis [9].
EV are found in different types of biofluids where they likely play a role in intercellular communication
in a variety of pathophysiological conditions, such as inflammation and blood coagulation, and are
involved in numerous lung diseases [10]. They have been shown to carry and transfer a wide
variety of molecules, such as proteins and nucleic acids, including miRNAs, as mediators of
intracellular communication.

MiRNAs are short non-coding RNAs able to induce a pleiotropic modulation of gene expression
and a wide spectrum of biological processes. Currently, more than two thousand miRNAs have
been discovered in humans, and their information is reported in miRBase, a public and free database
available at [5–7].

Many miRNAs are ubiquitously expressed in every cell type, but some are tissue specific when
the miRNA expression is 20-fold higher than the mean expression in other tissues [11]. MiR-206,
miR-133a-3p, miR-133a-5p and others represent a sub-group of striated muscle-specific miRNAs named
myo-miRNAs. Myo-miRNAs are involved in skeletal muscle myogenesis, differentiation and the
specification of fiber type, skeletal muscle stem cells and muscle regeneration [12].

Interestingly, circulating miRNAs are stable in biofluids and, after extraction [13], they can be
profiled by relatively simple methods, i.e., quantitative real-time PCR (qRT-PCR), microarray or
sequencing technology [14]. Therefore, miRNAs carried in EV have the potential to become clinical
biomarkers [9].

Among miRNAs, myo-miR caught our attention because their expression in EV isolated from
COPD patients is unexplored, despite the evidence that they play a crucial role in the control of skeletal
muscle function [6,15,16] and that skeletal muscle dysfunction is one of the commonest systemic
manifestations in many COPD patients [17–19].

For these reasons, we conducted a pilot study to analyze the expression profiles of EV-derived
myo-miRNAs (specifically miR-206, miR-133a-5p, and miR-133a-3p) in plasma samples collected
from patients with COPD; in particular, we tried to understand if these myo-miRNAs could help
discriminate between patients arbitrary classified according to the GOLD 2011 document, while also
considering the biological processes known to be associated to these myo-miRNAs through gene
ontology analysis. Furthermore, we also analyzed EV counts in the four COPD groups.
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2. Materials and Methods

2.1. Study Cohort Characteristics

We enrolled consecutive patients with COPD, diagnosed according to the GOLD document,
with post-bronchodilator Forced Expiratory Volume in the 1st second (FEV1)/Forced Vital Capacity
<0.7 and FEV1 between 30 and 70% of the predicted value. The main exclusion criteria were:
history of asthma; COPD exacerbation(s) in the 6 weeks preceding enrolment; acute or chronic
respiratory failure; severe heart failure; recent (≤3 months before the study) acute coronary syndrome,
pulmonary embolism or major surgery; active cancer. All patients were recruited among those
regularly attending the outpatient service of the Respiratory Pathophysiology and Rehabilitation Unit
of Pisa University Hospital. For all patients, we collected clinical history and symptoms score (both
according to the modified Medical Research Council (mMRC) scale and COPD Assessment Test (CAT2))
and obtained pulmonary function tests, with a bronchodilator test performed after a 24-h inhaled
treatment withdrawal.

Patients were grouped by GOLD 2011 classification into 4 groups (from A to D) according to FEV1
values, symptoms (baseline mMRC and CAT), and exacerbation history [2].

The current study was approved by the local Ethics Committee (approval code n. 1088, 15/06/2016)),
in compliance with the Declaration of Helsinki, and all participants signed written informed
consent forms.

2.2. Isolation and Characterization of Extracellular Vesicles

Circulating EVs were obtained from 4 mL of peripheral blood as previously described [20]. For the
analysis of miRNAs contained in EV, we isolated the EVs from platelet-poor plasma. Briefly, blood was
drawn into sodium citrate. Platelet-poor plasma (PPP) was obtained by two subsequent centrifugations:
1500× g for 15 min and 13,000× g for 2 min at room temperature. PPP was then centrifuged at 16,000× g
for 45 min to obtain EV pellets. EV pellets were stored at −80 ◦C and subsequently used for EV analysis.
Multiparametric flow cytometry analysis was performed on a Beckton Dickinson FACS-CANTO flow
cytometer. The following gating strategy was used: events were first analyzed for their physical
parameters (forward (F) vs. side (S) scatter (Sc)); a blend of fluorescent beads of three diameters
(0.5, 0.9 and 3 µm) was used to identify them and to standardize the protocol. Annexin-V labeled with
peridinin chlorophyll protein complex was used as a general marker for phosphatidylserine-exposing
EV. Values are reported as events with the same forward scatter (FSC) /side scatter (SSC) parameters
of the 0.5–0.9 µm beads and annexin-V recorded in a total observation time of 5 min in low flow
conditions [21]. Repeated measurements were obtained on different samples, randomly selected within
both patients and control subjects, and good repeatability was observed.

2.3. Evaluation of EV-Derived miRNA Expression

The miRNeasy Micro Kit (Qiagen, Hilden, Germany) was used for the purification and extraction
of miRNAs from EV isolated from the plasma of COPD patients. The retro-transcription and qPCR
experiments of extracted miRNAs were performed as previously reported [22]. MiScript Primer Assays
specific for hsa-miR-206 (MIMAT0000462), hsa-miR-133a-5p (MIMAT0026478) and hsa-miR-133a-3p.2
(MIMAT0000427) were used. MiRNA expression was calculated using the Delta threshold cycle (Ct)
method and normalized to Caenorhabditis elegans miR-39 (Cel-miR-39). The value reported on the y-axis
in relative figure is the fold change, determined by the comparative Ct method, using Cel-miR-39 as
internal control.

2.4. miRNA Target Prediction and Pathway Analysis

The top predicted targets from TargetScan (Human version 7.2) were subjected to computational
analysis with the database for annotation, visualization, and integrated discovery (DAVID) tool
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(version 6.8) [23] to identify biological pathways associated with the miRNAs modulated in patients
with COPD.

2.5. Statistical Analysis

The statistical significance of miRNA levels was analyzed by a Kruskal–Wallis test followed by
Dunn’s multiple comparisons (GraphPad Prism 8). Linear regression followed by receiver operating
characteristics (ROC) analyses were carried out to evaluate whether the selected miRNAs were able to
discriminate between different COPD groups. The statistical significance of single-miRNA ROC curves
was tested by fitting a univariate logistic regression model. The panels were built and tested by fitting
a multivariable binomial generalized linear model, with a logit link function. All statistical analyses
were performed using R, the R Project for Statistical Computing software package, version 3.6.0,
with a significance level of 0.05.

3. Results

3.1. Patient Characteristics and Enumeration of EV According to GOLD Groups

Blood samples were collected and EV isolated from 35 COPD patients with different disease
severities, classified according to GOLD 2011 guidelines [2] into four groups (from A to D). All patients
were current or former smokers, with moderate to severe airflow obstruction (mean FEV1 53.9%
predicted). Group A was poorly represented (only four subjects, as expected, since these less
symptomatic patients are known to rarely seek specialist consultation), while group D patients
represented about 40% of the whole sample. The main anthropometric and functional data of the
study population are reported in Table 1. Furthermore, we subsequently divided the whole population
sample into four groups (from A to D) according to the 2011 GOLD guidelines [2]. as expected,
we found significant differences only among FEV1 values and symptom scores (evaluated both with
the modified Medical Research Council scale and COPD Assessment Test) (see Table 1).

Table 1. Main anthropometric and clinical characteristics of the four 2011 Global Initiative for Chronic
Obstructive Lung Disease (GOLD) groups.

Group A
(n = 4)

Group B
(n = 9)

Group C
(n = 8)

Group D
(n = 14) p-Value

Male/Female 4/0 6/3 8/0 8/6 n.s.
Age (yrs) 74.5 (10.0) 70.0 (12.0) 68 (12.0) 71.5 (3.0) n.s.

Smoking status (current/former) 1/3 5/4 0/8 3/11 n.s.
Pack-years 39.0 (60.0) 52.0 (18.5) 50.0 (60.5) 48.5 (33.0) n.s.

Dyspnea, mMRC 1.0 (1.0) 1.0 (1.0) 1.0 (1.0) 2.0 (1.0) 0.002 *
CAT 7.5 (2.5) 11.0 (6.0) 8.0 (9.3) 14.0 (9.5) 0.003 *

BMI, Kg/m2 26.7 (10.3) 31.7 (11.4) 29.2 (7.5) 27.4 (7.3) n.s.
FEV1, L
% pred.

1.52 (0.59)
62.5 (30.0)

1.65 (0.53)
62.0 (9.5)

1.37 (0.46)
47.0 (17.3)

0.99 (0.45)
50.0 (16.5)

0.001 ◦

0.004 ◦

FEV1/FVC % 52.0 (17.5) 53.0 (15.5) 42.5 (18.0) 45.1 (16.0) n.s.
DLCO,

mL/min * mmHg
% pred.

16.9 (9.7)
84.0 (59.5)

14.0 (8.7)
55.0 (29.5)

24.5 (7.3)
96.5 (33.3)

14.6 (8.6)
59.5 (17.0)

n.s.
n.s.

Therapy

n.a.
LAMA 1

LABA-LAMA 2 4 3 6
LABA-ICS 1 1 1

TRIPLE TH. 2 4 2 7
LABA 1

* group A vs group D and group C vs group D; ◦ group B versus group D. n.s.: not significant; n.a.: not applicable.

We analyzed total EV in the four groups of COPD patients, and found a significant increase in total
EV in group D vs. group A and an increasing trend in group C vs. group A, as shown in Figure 1.
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Figure 1. Flow cytometry analysis of total extracellular vesicles (EV) in plasma of chronic obstructive
pulmonary disease (COPD) patients. Ordinary one-way ANOVA followed by Kruskal–Wallis multiple
comparisons test (* p < 0.05).

3.2. Muscle-Specific miRNAs Expression in Plasma-Derived EV

To study muscle-specific miRNA expression in the EV components of plasma from patients
with COPD, we analyzed and detected the expression of three myo-miRNAs (miR-206, miR-133a-5p,
and miR-133a-3p).

The three myo-miRNAs analyzed were modulated in relation to COPD groups, highlighting an
interesting trend, especially the group B COPD patients. Indeed, EV-derived miR-206, miR-133a-5p
and miR-133a-3p (which we called “triple signature”) were significantly (p < 0.05) upregulated in group
B compared to A, C and D (Figure 2).

No significant myo-miRNA deregulation due to sex, age, EV numbers or any clinical-pathological
factors (including current inhaled therapy at enrolment) was observed (data not shown).

Figure 2. Cont.
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Figure 2. Total microRNAs were extracted from extracellular vesicles plasma-derived of chronic
obstructive pulmonary disease (COPD) patients, and miR-206 (A), miR-133a-5p (B), and miR-133a-3p.2
(C) levels were measured by qPCR, analysis using the Ct method, and normalized to Cel-miR-39.
Kruskal–Wallis followed by Dunn’s multiple comparisons test (* p < 0.05, ** p < 0.01, *** p < 0.001).

3.3. Classification Value of Triple Signature of EV-Derived myo-miRNAs

The statistical significance of the EV-derived myo-miRNA measurements was evaluated by
receiver operating characteristics (ROC) analysis, obtained by plotting the rate of true positives
(sensitivity) versus false positives (1-specificity) (Table 2 and Figure S1).

The results show that the triple signature can discriminate GOLD group B from C with high
specificity (area under the curve (AUC) of 89.74%), but displays an acceptable score even versus A and
D (AUC of 83.9% and 69.4%, respectively). Notably, the triple signature showed a very high statistical
significance in terms of its capability to distinguish GOLD group B from the others.
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Table 2. Statistical analysis of detectable striated muscle-specific microRNAs from plasma-derived
extracellular vesicles and for triple signature in patients with chronic obstructive pulmonary disease
(COPD).

EV-Derived Myo-miRna AUC 95% CI p Value

GOLD Group B vs C
miR-206 78.89% 63.4–93.7% <0.0813

miR-133a-5p 75.33% 55.2–88.4% 0.0063
miR-133a-3p.2 73.96% 54.1–89.5% 0.3533

Triple signature 89.74% 70.8–92% <0.0008
GOLD Group B vs A

miR-206 78.74% 51.5–90.6% 0.0044
miR-133a-5p 83.82% 52–92.5% 0.0001

miR-133a-3p.2 87.5% 62.5–87.5% 0.1709
Triple signature 83.9% 58.5–91.6% <0.0001

GOLD Group B vs D
miR-206 67.09% 49.5–80.2% 0.0134

miR-133a-5p 73.41% 55.7–86.9% 0.0005
miR-133a-3p.2 61.46% 45.2–77% 0.6595

Triple signature 69.4% 53.8–83.4% <0.0042

3.4. Biological Processes Associated with myo-miRNAs Modulation

By using the database for annotation, visualization and integrated discovery (DAVID) tool, we
performed an analysis of the biological processes associated with the genes potentially altered in patients
in group B of COPD: 3970 mRNA genes were associated with the three upregulated myo-miRNAs.

Gene ontology (GO) analysis revealed that these three myo-miRNAs are involved in 456
biological processes (BP). Among those, myo-miRNAs were significantly associated with 274 BP,
such as ‘muscle contraction’ (33 genes, p = 0.012), ‘cellular response to hypoxia’ (32 genes, p = 0.05),
‘response to interleukin-1’ (13 genes, p = 0.029) and ‘vesicle-mediated transport’ (47 genes, p = 0.038),
strictly connected with COPD features (Figure 3).

Figure 3. Biological processes, obtained by database for annotation, visualization, and integrated
discovery (DAVID) analysis, associated with target genes of striated muscle-specific microRNAs from
plasma-derived extracellular vesicles characterizing patients with chronic obstructive pulmonary
disease (COPD), group B.
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4. Discussion

We investigated the expression profile of muscle-specific miRNA in EV isolated from the
bloodstream of COPD patients to identify possible differences according to disease severity. We first
analyzed total EV content in the plasma of COPD patients and found a significant EV increase in group
D patients and a trend towards a positive increase in group B patients, suggesting a correlation between
symptom severity and EV [24]. Concerning the primary objective, the results of this pilot study provide
three novel pieces of evidence. First, three specific myo-miRNAs, i.e., miR-206, miR-133a-5p and
miR-133a-3p.2, were released within EV into the bloodstream of COPD patients; second, EV-derived
miR-206, miR-133a-5p and miR-133a-3p were found to be significantly upregulated in GOLD group B
compared to groups C, A, and D; third, the triple signature composed of miR-206, miR-133a-5p and
miR-133a-3p could help characterize GOLD group B from others.

MiRNAs, and particularly EV-derived miRNAs, have recently emerged in several clinical research
areas as a promising novel class of biomarkers able to describe a subset of patients [16,25]. MiR-206,
miR-133a-3p and miR-133a-5p, miRNA subgroups in the miR-1 family, are striated muscle-specific
miRNA since their expression level is 20-fold higher than their mean expression in other tissues, and they
have a significant role during skeletal muscle proliferation, differentiation and regeneration [16,26].
Notably, muscle dysfunction is one of the most relevant systemic manifestations of patients with
COPD who experience muscle mass loss or atrophy, especially in the lower limbs [15]. To the best of
our knowledge, this is the first report of myo-miRNAs carried in EV in the bloodstream of patients
with COPD.

Regarding miR-206, our data are in line with previous evidence from other laboratories showing
the upregulation of miR-206 in lung tissues [27], limb muscles [28] and vastus lateralis muscle [29] of
patients with COPD compared to healthy subjects, its increased level in the plasma of COPD patients [30]
and its inverse association with daily physical activity in the same patients [31]. Further suggestive
reports from the literature reveal miR-206 to be upregulated during skeletal muscle regeneration
and able to promote differentiation of skeletal muscle satellite cells in vitro [32–34]. Accordingly,
genetic deletion of miR-206 induced inefficient skeletal muscle regeneration with muscular dysfunction
in a mouse model of Duchenne muscular dystrophy [35].

We also show, for the first time, the expression of the two arms of miR-133a (-3p and -5p) in EV
isolated from the bloodstream of patients with COPD and also their high expression levels in group
B patients. The expression of miR-133a-3p and -5p in circulating EV correlated with their reported
expression in plasma [30] and exhaled breath condensates of patients with COPD [36]. Moreover,
Donaldson and collaborators reported that plasma-derived miR-133 was higher in patients with the
best-preserved lung function [30].

To gain more insight into the potential biological roles played by myo-miRNAs in this particular
population, represented by group B COPD patients, in the present study, we conducted a gene ontology
analysis, showing a significant association between the biological processes of great interest in COPD,
including ‘response to hypoxia’ and ‘muscle contraction’.

A key original finding is that the panel composed of miR-206, miR-133a-3p and miR-133-5p could
help to better characterize GOLD group B patients in relation to others. Indeed, group B represents
a challenge: patients belonging to this group, for instance, despite a better lung function, show a worse
prognosis over time than group C, probably because they are affected by significant comorbidities [3].
In a post-hoc analysis of a large trial, a group of authors [37] found that group B patients showed
a persistent systemic inflammation in their blood over time, and this feature was associated with
a worse prognosis during follow-up [38]. Thus, it may be relevant for clinicians to identify biomarkers
to distinguish this group from others. In this light, our results, helping differentiate groups B and
C, could represent an interesting starting point for further research in this field, even though we are
aware that they cannot allow firm conclusions to be drawn, because of the small study sample size
and its observational and cross-sectional design; however, our preliminary data suggest that the triple
signature of miR-206, miR-133a-3p, and miR-133a-5p could be evaluated in further studies on larger
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populations as a possible candidate biomarker for identifying group B COPD and differentiating it
from other groups. If so, in the future, this panel might hopefully become a tool for monitoring disease
progression and perhaps identifying outcomes for therapeutic interventions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/10/7/502/
s1. Figure S1: ROC curve analysis of the three striated muscle-specific microRNAs (miR-206, miR-133a-5p,
and miR-133a-3p.2), which were significantly up—regulated in plasma-derived extracellular vesicles from group
B of chronic obstructive pulmonary disease (COPD) patients in comparison with group A, C, and D. ROC, receiver
operating characteristic.
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