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Abstract

The adoption of whole-genome sequencing within the public health realm for molecular

characterization of bacterial pathogens has been followed by an increased emphasis on

real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large

databases of whole-genome sequence data are being populated. These databases cur-

rently contain tens of thousands of samples and are expected to grow to hundreds of thou-

sands within a few years. For these databases to be of optimal use one must be able to

quickly interrogate them to accurately determine the genetic distances among a set of sam-

ples. Being able to do so is challenging due to both biological (evolutionary diverse samples)

and computational (petabytes of sequence data) issues. We evaluated seven measures of

genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Man-

hattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended

multi-locus sequence typing (MLST) scheme). When analyzing empirical data (whole-

genome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic,

assembly, and contamination) that cause distances inferred from k-mer profiles, which treat

absent data as informative, to fail to accurately capture the distance between samples when

compared to distances inferred from differences in nucleotide sites. Thus, site-based dis-

tances, like NUCmer and extended MLST, are superior in performance, but accessing the

computing resources necessary to perform them may be challenging when analyzing large

databases.

Introduction

Whole-genome sequence (WGS) data provides a powerful means to discriminate among bac-

terial pathogens at a resolution not possible with other methods (e.g., pulse field gel electro-

phoresis) [1]. The utility and decreasing cost of obtaining WGS data has resulted in its quick
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adoption by public health agencies [2] and spurred initiatives for real-time pathogen detection

in order to rapidly resolve outbreaks (e.g., [3]). One such initiative is the GenomeTrakr net-

work, which consists of geographically distributed laboratories that are sequencing bacterial

genomes (predominantly Salmonella and Listeria) and submitting the WGS data to the

Sequence Read Archive (BioProject PRJNA183844), hosted by the National Center for Bio-

technology Information. Since its inception in December 2012, the database has grown to

include greater than 50K isolates.

The rapid growth of pathogen databases and the rate at which they are expected to grow,

presents a unique set of challenges for the rapid detection of emerging outbreaks. In addition

to infrastructure issues related to large amounts (i.e., petabytes) of sequence data, public health

officials face the challenge of how best to analyze sequence data to obtain actionable informa-

tion. Obtaining such information is nontrivial due to the need for determining the proper rela-

tionships of new samples to the existing set of samples. We envision a two-step process, which,

ideally, would yield results in minutes or hours. The first step, which is the primary focus of

the research presented here, is the approximation of the genetic distances among all samples

(or between a focal sample and all others) in order to identify a subset of plausibly relevant

samples. In step two, this subset of individuals would be investigated with a more robust

method such as a reference-based approach to variant detection (e.g., [4]).

Here, we assess the efficacy of seven genetic distances (calculated from either k-mer profiles

or nucleotide site differences) for accurately estimating the similarity among a diverse set of

samples based on WGS data. We have focused on distances that could provide reliable identifi-

cation of closely-related samples with an additional focus on computational efficiency, such

that the method is scalable to datasets involving tens to hundreds of thousands of samples. Our

list of methods evaluated excludes a number of open source site-based methods (e.g., kSNP [5]

and Parsnp [6]) which do not scale even to the current number and evolutionary breadth of

samples that exist in the rapidly growing GenomeTrakr databases.

Materials and Methods

Empirical dataset–Salmonella GenomeTrakr

All sequence data was obtained from the Sequence Read Archive (SRA) at the National Center

for Biotechnology Information (NCBI) database. The reads were filtered for base quality (min-

imum of 80% at Q20), trimmed (first 15 positions), and size selected (> 50 bases) using the

FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/). The remaining reads were filtered

for contamination using Kraken [7]. This was accomplished by generating a custom Kraken

database comprised of all Salmonella sequences present in NCBI’s RefSeq database and retain-

ing only those reads which met a kraken-filter threshold of 0.25. For paired reads, both the for-

ward and reverse reads were required to meet the threshold. We then performed de novo
assemblies with SPAdes v3.6.1 [8], using default settings. We manually curated the metadata

file associated with the database to remove samples with missing or uninformative serovar des-

ignations and to include those with SRA accessions. This reduced the number of samples from

27,631 to 18,997 (see S1 Table for metadata on samples analyzed).

Measures of genetic distance

We inferred genetic distances using either differences in k-mer profiles or nucleotide sites (i.e.,

differences in aligned sequence data) (Table 1). Three of the distance measures estimated from

k-mer profiles began with indexing the de novo assemblies into k-mers with jellyfish v2.0 [9],

using k = 19 and the–C flag to obtain only canonical k-mers. Using these k-mer profiles, we

calculated three pairwise measures of genetic distance: 1—Jaccard index, Manhattan, and
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Euclidean distances. We calculated all genetic distances based on k-mer profiles using custom

python scripts. The two other distances estimated from k-mer profiles were computed with

Mash [10], which took as input the de novo assemblies. These included an estimate of Jaccard

distances (which we call Mash Jaccard) and Mash distances, both of which are based on com-

parisons of sketches (Table 1). We used a sketch size of 400 and k-mer length of 16. A sketch is

a greatly reduced representation of the k-mer content within a genome that is obtained

through a hashing algorithm; and see Ondov et al. 2015 for additional details. Exploratory

analyses showed that increasing the sketch size did not alter the distances among samples. A k-

mer length of 16, which is the default, was chosen as it represents the largest value that can be

used without requiring a significant increase in disk space and memory.

We also evaluated two genetic distance measures that were inferred from nucleotide sites

(i.e., site-based), NUCmer (using the show-snps utility) within the MUMmer v3.0 package

[11] and extended multi-locus sequence typing (MLST) (Table 1). With NUCmer, we calcu-

lated the pairwise SNP differences (i.e., the number of nucleotide sites differences) between

samples by parsing the Variant Call Format (VCF) file and ignoring positions where gaps or

missing data were inferred in one of the genomes.

For the extended MLST distance measure, we generated a set of target loci using methods

described in Pightling, et al. 2015 [12]. Briefly, the core genome of S. enterica was calculated by

downloading protein sequence predictions for 32 high-quality genomes from the NCBI. We

then performed an all versus all pairwise alignment analysis using the Basic Local Alignment

Search Tool (BLAST) [13]. Using BLAST to identify members of the core genome that reliably

“hit” orthologs during both nucleotide and protein sequence bidirectional searches, we identi-

fied a total of 1,152 loci that are amenable to automated analyses. Allele profiles for previously

unannotated genomes were generated by predicting open reading frames with Prokka [14]

and identifying target loci with BLAST. Distances between profiles were determined by count-

ing the total numbers of nucleotide mismatches across all alleles. Profiles were excluded on the

basis of poor sequence assembly, as indicated by the presence of truncated or missing loci [15].

Measure of performance

To evaluate the utility of the distance measures within the context of real-time pathogen detec-

tion, we used a classification approach using serovar as designated in the metadata file associ-

ated with the Salmonella samples in the GenomeTrakr database. We focused on the top 10

Table 1. Summary of genetic distances used to infer the relationships among samples.

Class Distance Description

Site-

based

NUCmer Suffix array method to efficiently perform pairwise whole-genome

alignment

Extended MLST Employs the Basic Local Alignment Search Tool to perform pairwise

comparisons of predicted open reading frames

k-mer

based

Jaccard Distance 1 –Jaccard index (i.e., the intersection divided by the union of all k-mers

found between two samples)

Manhattan

Distance

Sum of the absolute differences between the abundance of each k-mer

present between two samples

Euclidean

Distance

The square root of the sum of square of all pairwise differences in k-mer

abundance

Mash Distance Employs the MinHash [23] technique to reduce genomes to sketches (i.e.,

a reduced representation of the information within the sequence data) and

estimates a novel evolutionary distance metric among them

Mash Jaccard

Distance

The Jaccard Distance (as described above) but based on the sketch size

(e.g., the number of hashes)

doi:10.1371/journal.pone.0166162.t001
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most abundant serovars (Table 2) among the 18,997 Salmonella samples. The classification

was based on a one against-all scenario where a sample from each of the top 10 serovars was

randomly selected and the genetic distance was calculated between that focal sample and all

18,996 other samples. Whether a sample to which the focal sample was being compared came

from the same serovar or a different serovar determined whether the classification was IN or

OUT, respectively. To account for variability in the similarity among members of the same ser-

ovar we performed 10 replicates where a random individual was chosen for each serovar for a

total of 100 analyses under each distance type. We acknowledge that serovar designations do

not always reflect evolutionary groups (e.g., Salmonella Newport is polyphyletic) [16, 17] and,

thus, our use of serovar as the classifier will perform poorly in such instances (low sensitivity

and specificity). However, this should affect all distance methods and, therefore, not introduce

a misleading signal when evaluating the relative performance of the distance methods to one

another (see Discussion for further details).

Based on the above classification scheme and genetic distances between focal samples and

all others, we measured performance using receiver operator curves (ROCs) that plot the true-

positive rate vs. false-positive rate. We also estimated the area under the curve (AUC) for each

ROC, which ranges from 0 to 1 and represents the probability that a randomly selected sample

from the same serovar is correctly ranked above another sample from a different serovar [18].

Analyses were performed using the python module scikit-learn. Results are based on a cross-

validation procedure where the logistic model (describing the classification of samples under

which pairwise distance was the predictor variable and IN/OUT was the binary response vari-

able) was trained on 75% of the data and the remaining 25% of the data was used to evaluate

model performance.

Given the fact that the extended MLST method excluded some comparisons, we also evalu-

ated the performance of the other measures on only those samples found in the extended

MLST analyses. The results changed in the expected direction as there was an improvement in

performance on the reduced dataset but only by an average of 1.6%. As a result, we present fig-

ures based on all samples that could be analyzed under each distance method.

Estimates of computational demands

As a means of further evaluating the utility of the distance measures, we also captured the

computational time necessary to estimate them. The fact that databases will grow to hundreds

Table 2. Mean and variance of AUC values for each of the different distance methods for each serovar.

Distance

k-mer based Site-based

Serovar (N) Euclidean Jaccard Manhattan Mash Mash Jaccard Extended MLST NUCmer Average

Agona (282) 0.767 (0.014) 0.849 (0.011) 0.822 (0.023) 0.935 (0.006) 0.944 (0.005) 0.985 (0) 0.959 (0.006) 0.894

Enteritidis (4455) 0.868 (0.002) 0.876 (0.003) 0.88 (0.003) 0.959 (0) 0.959 (0) 0.987 (0) 0.983 (0) 0.930

Heidelberg (580) 0.919 (0.001) 0.889 (0.002) 0.925 (0.001) 0.939 (0) 0.943 (0) 0.994 (0) 0.984 (0) 0.942

Infantis (341) 0.897 (0.002) 0.919 (0.001) 0.906 (0.001) 0.979 (0) 0.982 (0) 0.988 (0) 0.986 (0) 0.951

Kentucky (627) 0.709 (0.013) 0.749 (0.009) 0.756 (0.011) 0.875 (0.001) 0.872 (0.002) 0.968 (0) 0.936 (0) 0.838

Montevideo (287) 0.823 (0.002) 0.832 (0.003) 0.837 (0.004) 0.921 (0.005) 0.916 (0.007) 0.980 (0.001) 0.968 (0.001) 0.897

Newport (827) 0.680 (0.007) 0.677 (0.006) 0.680 (0.008) 0.819 (0.006) 0.813 (0.003) 0.976 (0) 0.948 (0) 0.799

Senftenberg (232) 0.793 (0.006) 0.821 (0.003) 0.814 (0.007) 0.925 (0.001) 0.933 (0.001) 0.974 (0) 0.958 (0) 0.888

Typhimurium (3475) 0.822 (0.003) 0.846 (0.003) 0.846 (0.003) 0.949 (0) 0.948 (0) 0.966 (0) 0.969 (0) 0.907

Weltevreden (268) 0.914 (0.002) 0.915 (0.001) 0.934 (0.001) 0.931 (0.001) 0.907 (0.001) 0.983 (0) 0.982 (0) 0.938

Average 0.819 0.837 0.84 0.923 0.922 0.980 0.967

doi:10.1371/journal.pone.0166162.t002
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of thousands of samples makes runtime a very important factor to consider when choosing a

method. The Jaccard, Manhattan, and Euclidean distance measures were coded in custom

python scripts; extended MLST was coded in custom Perl scripts; the remaining distance mea-

sures were calculated using software developed outside our group. Estimates of runtime were

acquired using the python timeit function. We acknowledge that these estimates of runtime

are approximate as they do not account for other processes running and, with respect to the

distance measures we coded, there are likely faster implementations of them that could be

written.

Results and Discussion

Empirical data

Based on the analysis of the WGS data for Salmonella, we found that certain distance measures

performed much better than others and this pattern was consistent across serovars (Fig 1). The

mean and variance of the AUC values are presented in Table 2. The best performing distance

measure was calculated from the site-based extended MLST method, which had a mean AUC

value across all replicates and serovars of 0.980. The next best method was NUCmer, which is

also site-based and had an average AUC value of 0.967. Mash and Mash Jaccard had an average

AUC of 0.923 and 0.922, respectively, and were the next best performing. The other three k-

mer based methods (Euclidean, Manhattan, and Jaccard) all had mean AUC values < 0.85.

Interestingly, the additional information content (e.g., abundance not just presence/absence of

k-mers) entailed in calculating the Manhattan and Euclidean distance metrics did not result in

a difference in performance compared with the Jaccard distance.

The ability to correctly differentiate IN samples from OUT samples varied across the differ-

ent serovars. For example, serovars Heidelberg, Enteritidis, Infantis, Typhimurium, and Wel-

tevreden had an average AUC value > 0.9 across the different distance methods. This in

contrast to the serovar Newport, which had an average AUC value of 0.761. This is not surpris-

ing given that Newport is polyphyletic with two distinctly divergent clades. Within certain ser-

ovars (e.g., Agona and Montevideo; Fig 1) there also appear to be ‘outlier’ samples that result

in poor performance of the different distance methods. Potential explanations for this are that

the serovar of the randomly chosen focal sample was incorrectly assigned, the sample is heavily

contaminated (albeit with congeneric material as we filtered sequences not belonging to the

Salmonella genus with Kraken), or that there are certain samples with the correct serovar des-

ignation but that designation does not accurately reflect phylogeny [16, 17]. However, all dis-

tances should be affected equally by these artifacts; there will be both a larger number of k-

mers or nucleotide sites that differ between genomes that are incorrectly classified as the same

serovar than what is expected based on other pairs that are correctly classified.

k-mer methods: treating missing data as informative data

The primary explanation for the difference in performance between distances calculated based

on nucleotide site differences and k-mer-profiles is likely how the latter treats missing data (or

absent k-mers) as informative; the distances based on sites, as we implemented them, ignore

such artifacts. A longer k-mer length would further exacerbate this problem whereas decreas-

ing the k-mer length would ameliorate it but at the expense of decreasing the ability to detect

differences that exist among samples. To explain this, consider two identical genomes that

only differ in that one has a number of bases deleted relative to the other. Their dissimilarity

will be nonzero when a k-mer-based method is applied but zero when a site-based method is

applied because ‘gaps’ are treated as missing (i.e., uninformative) data. As a result, poorly fil-

tered, contaminated, erroneously assembled contigs, and/or mobile elements that are not part

K-mer and Site-Based Methods in Real-Time Pathogen Detection
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of the bacterial genome will all carry discriminatory information under k-mer-based methods.

This phenomenon is well illustrated in the difference between the Jaccard distance we esti-

mated and the Mash Jaccard distance. Within our estimate we did not filter k-mers based on

their presence across samples within the dataset, thus, there are likely to be many singletons

(k-mers found in only a single individual) that will drive up distance measures. In contrast,

Mash Jaccard distance (and Mash distance) probabilistically filters k-mers found only once in

a dataset using a Bloom filter.

The issue of treating missing data, due to erroneous assembly artifacts or contamination, as

informative raises the possibility that the distance measures may perform quite similarly when

working with high quality, closed genomes or heavily curated draft assemblies. Preliminary

Fig 1. Receiver operator curves for each distance (columns) by serovar (rows) combination. Lines within each panel represent the 100 replicate

analyses performed.

doi:10.1371/journal.pone.0166162.g001
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results of simulated data suggest this is likely to be the case. Those simulations under the coa-

lescent using the ms [19] program, seq-gen to simulate sequences of 3 Mbp under the HKY

[20] model of sequence evolution, and ART [21] as a means to introduce more realism into

the analyses, showed that methods performed nearly identically with an AUC value of 1 or at

least 0.99. However, even more robust draft or closed genomes will likely differ in gene content

and mobile elements and, thus, k-mer and site-based methods will differ. Different organisms

are also known to vary greatly in the number of genes shared or differing among individuals

and those taxa that have open or unbounded pan genomes (e.g., Streptococcus pneumoniae

and Escherichia coli; [22]) This raises a larger issue beyond the scope of the work presented

here, which is whether missing data that can be confidently assigned to represent differences

in evolutionary history should be coded as informative (e.g., a fifth state).

Computational issues

The non-Mash distance measures were calculated on a heterogeneous high performance com-

puting (HPC) cluster, where often hundreds of pairwise distance measures were being calcu-

lated simultaneously. For the Jaccard, Manhattan, and Euclidean distances estimated from k-

mer profiles, there is little need to consider the computational resources necessary to efficiently

calculate them (which are the greatest among the methods investigated; Table 3) as those dis-

tance measures perform poorly (Figs 1 & 2). Furthermore, they require the indexing of the

genome into k-mers, which takes a nontrivial amount of time for tens of thousands of samples

(Table 3).

In contrast, Mash, extended MLST, and NUCmer do not require a prior indexing of the

genome into k-mers. NUCmer, which was the second best performing measure, is a pairwise

comparison and, thus, takes substantially more time than the Mash analyses. The latter is

extremely fast where there is no need for substantial computing resources as the sketching and

distance calculation of a focal sample against all other samples takes a second or two (Table 3)

(that estimate does not include the sketching of the 18,779 samples, which takes a few hours)

on a single workstation with 124 GB of RAM and 1.2 GHz processor. Our results suggest that

with NUCmer one could obtain the estimates of distance between a focal sample and ~20,000

other de novo assemblies in under an hour if running 100 pairwise comparisons simulta-

neously (albeit on an HPC or powerful desktop machine).

Similar to the Jaccard, Manhattan, and Euclidean distance methods, extended MLST

requires significant preparation of sequence data by performing open reading frame annota-

tion prior to analyses. However, as extended MLST was shown here to provide the best

Table 3. Median runtime estimates in seconds.

Class Distance Median

k-mer based Euclidean* 53.123

Jaccard* 2.781

JellyFish¶ 118.472

Manhattan* 53.454

Mash and Mash Jaccard§ 1.226

Site-based Extended MLST* 46.950

NUCmer* 9.425

* For a single pairwise comparison
¶ To count and dump a text file of k-mers per sample
§ Includes the sketching of the focal sample and estimating the distance between it and all other samples

doi:10.1371/journal.pone.0166162.t003
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estimates of distance between focal samples, the extra computational investment may be

worthwhile as that method also provides additional information amenable to typing and func-

tional genomic differentiation.

Pathogen detection in practice and the consequences of different

distances

In practice, real-time pathogen surveillance entails both the rapid population of databases and

subsequent rapid bioinformatics analyses to detect epidemiologically relevant events. One sce-

nario is that a practitioner will want to know all samples in a given database that are sufficiently

close enough to a focal individual to warrant further investigation (e.g., with a more robust ref-

erence-based method for identifying genomic differences like the CFSAN SNP Pipeline [4].

Mash certainly seems to be a feasible method as it is extremely fast, requires little computa-

tional overhead, and easily accommodates new samples. However, the Mash method suffers

from relying on k-mers where missing data is treated as informative and, thus, will result in

biased distance estimates if de novo assemblies are incomplete, contain mobile elements, or are

contaminated; these artifacts will result in an increase in false negatives (samples will appear

more distant to one another than they really are). The MinHash method also decreases the

specificity [10], which in practice, will hamper analyses with potentially irrelevant samples,

which may be less of a concern than false negatives. NUCmer avoids many of the issues with

k-mers, but being site-based where missing data is ignored, can lead to high false positive rates

if additional information is not incorporated (e.g., proportion of the genome aligned). Also,

unlike Mash, NUCmer does not scale well to obtaining an all-against-all measure of genetic

distance, as the analyses here were based on the scenario in which a new sample is investigated

by comparing to all others.

Focusing on the AUC values, the differences in performance among the distance measures

may have important consequences in an outbreak investigation. For example, under the poor

performing Manhattan distance there is only an approximately 84% chance that a randomly

selected sample from the same serovar will be correctly ranked higher than a sample from a

Fig 2. Boxplots illustrating the variation in area under the curve (AUC) values across the distance by serovar combinations. Note the

minimum on the y-axis if 0.4.

doi:10.1371/journal.pone.0166162.g002
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different serovar and this probability is only 92% for the best performing k-mer based method

(MASH; Table 2). In practice, these results suggest that identification of samples close to a

focal clinical sample (for example) will be incorrect perhaps 10% or more of the time. In con-

trast, extended MLST and NUCmer had 98% and 97% probabilities, respectively, of correctly

assigning a randomly chosen sample from the same serovar as one randomly chosen from a

different serovar.

Conclusions

To achieve effective, real-time pathogen surveillance, it is paramount to be able to accurately

determine the relationships among a diverse and large whole-genome sequence database of

bacterial pathogens and to identify those samples that are genetically similar to newly

sequenced samples. We have evaluated a suite of different genetic distances and the results

indicate that there is a real benefit to the use of those inferred from nucleotide site differences

(e.g., NUCmer or extended MLST) over those inferred from k-mer profiles. Therefore, though

distances inferred from k-mer profiles do provide results faster, in order to reduce the poten-

tial for false negatives caution should be taken when relying on such distances.

Supporting Information

S1 Table. Supplemental Table.tsv. Metadata, including SRA accessions for the sample ana-

lyzed.
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