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E D I T O R I A L

Microglia/macrophage diversities in central nervous system 
physiology and pathology
Since the discovery of microglia 100 years ago, the functions of this 
glial	cell	population	in	the	central	nervous	system	(CNS)	have	been	
widely	investigated.	Microglia	were	initially	recognized	as	the	phago‐
cytic	cells	in	the	CNS	to	clear	abnormal	cells	or	invading	pathogens.1 
The	 later	 advent	 of	 cell‐specific	 transgenic	 mice	 and	 two‐photon	
imaging systems allows real‐time in vivo imaging of microglia, reveal‐
ing highly dynamic behaviors of these cells. The so‐called “resting” 
microglia	in	the	normal	CNS	do	not	remain	stationary.	Instead,	they	
actively	survey	their	extracellular	space	and	cellular	neighborhood	
using	 their	 highly	 mobile	 processes	 and	 thus	 play	 essential	 roles	
in	 host	 perception	of	 internal	 or	 external	 stimulations.2 When ac‐
tivated,	 microglia	 experience	 morphological	 transformation	 and	
launch	defense	responses	 to	clear	damaged	cells	and	 fight	against	
abnormalities.	Microglia	also	release	cytokines,	chemokines,	trophic	
factors,	 and	 other	 immune	modulators	 to	modify	 the	 CNS	micro‐
environment and influence functions of neighboring cells. It is be‐
coming increasingly clear now that microglia actively interact with 
other	CNS	components,	maintain	CNS	integrity,	and	regulate	brain	
functions.2,3

In	addition	to	microglia	within	the	brain	parenchyma,	there	are	
some	other	myeloid	cells	within	the	CNS,	which	are	referred	to	as	
border‐associated	 macrophages	 due	 to	 their	 special	 locations	 at	
the	 CNS	 “borders”	 in	 the	 perivascular	 spaces,	 the	 leptomeningeal	
spaces,	and	the	choroid	plexus.	These	macrophages	actively	interact	
with	the	vasculature,	playing	critical	roles	as	immune	sentinels,	scav‐
engers, and function modulators.2

Despite	the	consensus	view	about	the	 importance	of	microglia	
and	macrophages	 in	 the	CNS	under	physiological	 conditions,	 their	
functions in a diseased or injured brain remain controversial for a 
long time. Some studies documented the destructive role of microg‐
lia/macrophages	 in	 brain	 pathologies	 as	 highly	 activated	microglia	
release	 a	 plethora	 of	 neurotoxic	 factors,	 including	 inflammatory	
cytokines,	 chemokines,	 and	 free	 radicals.	 In	 support	 of	 this	 view,	
microglia	depletion	has	been	reported	to	result	 in	neuroprotection	
in	experimental	models	of	hemorrhagic	stroke,4 chronic cerebral hy‐
poperfusion,5	traumatic	brain	injury	(TBI),6	and	Alzheimer's	disease	
(AD).7 In contrast, quite a few studies documented that the removal 
of microglia enhanced neuroinflammation and thus exacerbated 
the neurological deficits after brain injuries or neurodegenerations, 
suggesting	beneficial	roles	of	microglia	in	the	presence	of	CNS	pa‐
thologies.8‐11	 In	 an	 effort	 to	 elucidate	 the	 apparent	 divergence	 in	

perspectives	 of	 microglia	 functions,	 neuroscientists	 extrapolated	
the	 concept	of	 immune	 cell	 polarization	 in	 the	peripheral	 immune	
system	 and	 investigated	 the	 diversity	 of	 microglia	 phenotypes	 in	
CNS	 disorders.	 Accumulating	 evidence	 supports	 that	microglia	 do	
not	constitute	uniformed	cell	populations	in	the	compromised	CNS.	
Instead,	 they	 polarize	 into	 a	 variety	 of	 phenotypes	 at	 different	
stages	of	injuries	or	diseases.	These	phenotypes	may	have	distinct	
roles.	In	particular,	the	classically	activated	or	proinflammatory	phe‐
notype	 is	 characterized	by	 the	 release	of	proinflammatory	 factors	
and	free	radicals	that	impair	CNS	integrity.	By	contrast,	the	alterna‐
tively	activated	or	antiinflammatory	phenotype	possesses	functions	
or	 expresses	 proteins	 that	 preserve	 brain	 tissue	 or	 improve	 CNS	
repair.12,13	 Such	dichotomic	definition	of	microglia	phenotype	was	
later	superseded	by	a	view	of	a	broad	spectrum	of	interchangeable	
functional states in the lesioned nervous system. More and more 
microglia	subpopulations	with	expressions	of	a	panel	of	unique	sig‐
nature genes have been identified in different disease models. For 
example,	Arginase	1	(Arg1)+	microglia	 in	response	to	prolonged	in‐
terleukin	(IL)‐1β	production	have	been	reported	to	reduce	Aβ	plaque	
deposition	in	an	animal	model	of	AD.14 The tumor necrosis factor‐α 
(TNF‐α)–producing	 microglia	 in	 hippocampal	 impaired	 working	
memory under acute stress.15	 Recent	 development	 in	 single‐cell	
technology	allows	the	discovery	of	more	microglia	subpopulations.	
A	unique	CD11c+	microglia	subtype	has	been	identified	as	disease‐
associated	microglia	 (DAM)	 in	 the	 aged	 brains	 and	AD	brains.16	 A	
cluster	of	Apoe+Ccl5+ microglia has been observed at the onset of 
recovery from nerve injury.17	A	recent	study	showed	that	CNS‐resi‐
dent	macrophages	also	quickly	transformed	into	context‐dependent	
subsets during brain inflammation.18 In addition, bone marrow‐de‐
rived	macrophages	 that	 infiltrate	 into	 the	 brain	 in	 case	 of	 blood‐
brain barrier breach bring in more subsets of myeloid cells.19 The 
functional	 significance	 of	 these	microglia/macrophage	 subpopula‐
tions awaits further elucidation.

Adding	 extra	 layers	 of	 complexity,	 there	 are	 a	 variety	 of	 fac‐
tors, including age, sex, and environmental cues that increase the 
diversities	of	microglia/macrophages.	The	lack	of	preclinical	studies	
in	 aged	 animals	 has	 resulted	 in	 failures	 of	 neuroprotective	 strate‐
gies in clinical trials.20,21	Age‐related	changes	in	microglia	have	been	
well‐accepted.22 Increased microglial activation in the aged brain 
could	be	visualized	using	positron	emission	tomography	 (PET).23,24 
Morphologically,	aged	microglia	display	 increment	 in	soma	volume	
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and	shortening	in	processes.	Consequently,	the	survey	territory	of	
individual	microglia	decreases.	To	 compensate	 for	 the	decrease	 in	
process	 coverage,	 aged	microglia	 proliferate	 and	 cluster	 together,	
whereas	 their	 homogeneous	 spatial	 distribution	 is	 disturbed.25 
Functionally,	 the	 clearance	 capacities	 of	 aged	 microglia	 decrease	
due	to	the	overload	of	misfolded	proteins	or	degraded	cellular	com‐
ponents.26	Additionally,	microglia	are	primed	by	elevated	inflamma‐
tory	cues	in	the	aged	brain.	Primed	microglia	are	prone	to	respond	to	
second	inflammatory	stimuli	and	generate	hyperactive	responses.27 
However, some other in vitro and in vivo studies argued that senes‐
cent	microglia	showed	reduced	responses	to	noxious	stimulations.28 
Thorough	 transcriptome	analysis	and	 functional	evaluation	are	 re‐
quired to elucidate alterations in senescent microglia and/or mac‐
rophages,	 and	 their	 contribution	 to	 normal	 aging	 and	 age‐related	
diseases.

Sex	is	another	factor	that	impacts	brain	functions.29 It has long 
been noticed that the female and male microglia show differences in 
brain	colonization	in	an	area	and	time‐specific	manner.	For	example,	
in	 the	preoptic	 area,	males	have	overall	more	microglia,	 especially	
more	amoeboid	microglia	early	in	postnatal	development.	Such	dif‐
ference	 is	 hormone‐dependent	 as	 estradiol	 treatment	 to	 females	
at	P0	and	P1	increases	microglial	counts	and	numbers	of	amoeboid	
microglia	to	the	male	level.	As	in	juveniles	and	adults,	male	and	fe‐
male	microglia	exhibit	differences	in	cell	number	and	morphology.30 
Sexually	dimorphism	in	microglial	functions	has	also	been	reported.	
Male	microglia	exhibit	higher	mobility	in	response	to	chemoattrac‐
tant31	and	have	a	higher	 level	of	antigen‐presenting	capacity	com‐
pared	with	female	microglia.32	Not	only	sex	differences	impact	the	
functions	and	properties	of	microglia,	but	also	microglia,	in	turn,	par‐
ticipate	 in	brain	sexual	differentiation.	 It	was	found	that	microglial	
activation	is	necessary	to	induce	the	masculine	pattern	of	dendritic	
spines	in	the	preoptic	neurons	and	appropriate	sexual	behaviors	in	
adults.33

Some other factors also contribute to microglia diversity. The 
influence	of	stress,	alcohol	consumption,	and	diet	on	microglial	ac‐
tivity	has	been	reported,	 implicating	the	 impact	of	 lifestyle	on	mi‐
croglia.34,35	 In	 addition,	 environmental	 exposure	 impacts	microglia	
phenotypes	in	many	aspects.	It	was	found	that	prenatal	exposure	to	
air	pollution	causes	increased	proinflammatory	cytokine	secretions	
by microglia.36	The	elevated	level	of	ozone	also	promotes	the	proin‐
flammatory	responses	in	microglia.37

There is an increasing recognition of microglia diversity and its 
importance	 in	CNS	homeostasis	 and	pathologies.	With	 the	 bloom	
of	 whole‐genome	 analysis	 in	 couple	with	 transcriptomic	 and	 pro‐
teomic	 approaches,	 the	 heterogeneity	 of	 microglia/macrophage	
subpopulation	 is	 being	 further	 dissected.	Many	 condition‐specific	
or	disease‐specific	microglia/macrophages	have	been	defined	while	
their functions remain elusive.16,17 In addition, more and more ex‐
tracellular	 factors	and	 intracellular	molecules	 that	 regulate	pheno‐
typic	changes	in	phagocytes	are	identified.12	Selective	manipulation	
of	microglia/macrophage	 phenotypes	 has	 been	 shown	 to	 improve	
outcomes	 in	different	preclinical	models	of	neurological	disorders,	
including	TBI,	stroke,	and	Parkinson's	disease38‐43	and	may	provide	

promising	 therapeutic	 strategies	 that	 can	 be	 translated	 into	 clini‐
cal	use.	This	special	 issue	 includes	a	collection	of	original	research	
papers	and	review	articles	that	covers	a	topic	regarding	microglia/
macrophage	diversities,	with	an	intention	to	provide	updated	views	
of	microglia/macrophage	phenotypic	variety	in	response	to	CNS	in‐
juries	and	diseases,	and	the	therapeutic	potential	of	strategies	that	
adjust	microglia	responses.
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