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Rapid identification and antimicrobial susceptibility testing (AST) of bacteria 

are key interventions to curb the spread and emergence of antimicrobial 

resistance. The current gold standard identification and AST methods provide 

comprehensive diagnostic information but often take 3 to 5 days. Here, a 

compound Raman microscopy (CRM), which integrates Raman spectroscopy 

and stimulated Raman scattering microscopy in one system, is presented 

and demonstrated for rapid identification and AST of pathogens in urine. 

We  generated an extensive bacterial Raman spectral dataset and applied 

deep learning to identify common clinical bacterial pathogens. In addition, 

we employed stimulated Raman scattering microscopy to quantify bacterial 

metabolic activity to determine their antimicrobial susceptibility. For proof-

of-concept, we demonstrated an integrated assay to diagnose urinary tract 

infection pathogens, S. aureus and E. coli. Notably, the CRM system has 

the unique ability to provide Gram-staining classification and AST results 

within ~3 h directly from urine samples and shows great potential for clinical 

applications.
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Introduction

Antimicrobial resistance (AMR) can cause severe or even life-threatening 
complications, such as sepsis and urinary tract infection (UTI; Davenport et al., 2017; Syal 
et  al., 2017; Florio et  al., 2018). Traditional bacterial identification and antimicrobial 
susceptibility testing (AST) methods are usually based on culture, typically taking several 
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days (Dietvorst et al., 2020; van Belkum et al., 2020). This slow 
process delays the appropriate medical decision and prompts 
clinicians to use antibiotics based on their experience or broad-
spectrum antibiotics, leading to an abuse of antibiotics. Therefore, 
accurate and timely identification and AST of microorganisms is 
essential to help clinicians initiate the most effective therapy.

Many emerging techniques have been developed to achieve 
faster identification or AST (Syal et  al., 2016; Li et  al., 2017; 
Schoepp Nathan et  al., 2017; Hilton et  al., 2020; Klein and 
Hultgren, 2020; Pragadeeshwara Rao et al., 2020; Chen and Hong, 
2021). For example, molecular diagnostic methods based on the 
detection of specific genes, such as polymerase chain reaction 
(PCR; Dietvorst et al., 2020), clustered regularly interspaced short 
palindromic repeats (CRISPR; Chen et al., 2020), whole-genome 
sequencing (Flenker et al., 2017), and DNA microarray (Schoepp 
Nathan et al., 2017), provide faster identification results. However, 
molecular methods are not generally applicable to all bacterial 
species or mechanisms. Moreover, they lack sensitivity when 
detecting all organisms present in various microbial cultures.

Many companies are developing integrated systems for 
bacterial identification and AST (Neely Lori et al., 2013; Li et al., 
2017; Gite et  al., 2018; Pancholi et  al., 2018). For example, 
MALDI-TOF mass spectrometry (MALDI-TOF MS) and Vitek-2 
or BD Phoenix have been commonly used in the clinic for 
identification and AST, respectively (Yang et al., 2018; van Belkum 
et al., 2019; Weis et al., 2020). However, these systems require 
isolated bacteria and are based on measuring bacterial growth and 
turbidity changes, which are slow and generally take 2–3 days. 
Accelerated diagnosis developed an automatic digital microscope 
system, which integrates fluorescence in situ hybridization (FISH) 
and morphokinetic cellular analysis for identification and AST 
(90 min for identification, ~7 h for AST from positive blood 
culture bottle; Pancholi et al., 2018). However, FISH requires one 
or several specific probes and cannot reach 100% hybridization, 
therefore is easy to lose signals, resulting in false-negative results 
(Schimak et al., 2016). T2 Biosystems and First Light Biosciences 
are also developing rapid bacterial identification and AST using 
magnetic nanoparticles and antibodies (Neely Lori et al., 2013; 
Gite et al., 2018). However, they have not been widely implemented 
because they have not been extended to different pathogens. An 
ideal identification and AST system should be universal to all 
bacteria, use less or no additional markers, and obtain 
identification and AST of bacteria in one system to reduce manual 
operation, turnover processes, and contamination.

Raman-based technology is an emerging approach for bacterial 
identification by measuring the spectral differences in bacteria and 
AST by monitoring bacteria’s spectral response to antibiotic 
treatment (Dina et al., 2017; Ivleva et al., 2017; Fang et al., 2019; Ho 
et  al., 2019; Thrift et  al., 2020; Bashir et  al., 2021). Especially, 
Raman-based technology using bacterial metabolism as a marker 
has proven to be a promising alternative for rapid AST (Tao et al., 
2017; Hong et al., 2018; Yang et al., 2019; Bauer et al., 2020; Yi et al., 
2021). In this approach, bacterial metabolism was selectively 
probed via monitoring the conversion of D2O or deuterated 

glucose into biomolecules (Hong et al., 2018; Wang et al., 2020). 
However, drug susceptibility detection using spontaneous Raman 
requires a large amount of spectral data and a long integration 
time, limiting its application in rapid AST. To increase the speed 
and throughput of AST, stimulated Raman scattering (SRS) 
microscopy has been used to measure the de novo synthesis of 
C−D bonds within single bacteria for rapid AST (Hong et al., 2018; 
Zhang et  al., 2020, 2021). It is demonstrated that single-cell 
metabolism inactivation concentration (SC-MIC) can be obtained 
within 2 h using SRS microscopy (Zhang et al., 2020). In addition, 
Raman spectroscopy, with its non-destructive and chemical 
selectivity characteristics, has also been applied in microbial 
identification (Ho et al., 2019; Liu et al., 2020; Wang et al., 2021; 
Yan et al., 2021). Because of the heterogeneity of microorganisms, 
it is crucial to collect many phenotypes of different individual 
bacteria in the same population (Heyse et al., 2019). As a result, 
convolutional neural networks (CNN) that can efficiently process 
large amounts of data demonstrate extraordinary advantages in 
bacterial identification. Nevertheless, rapid identification and AST 
with Raman technology have not been demonstrated in one system.

Here, we demonstrate a compound Raman microscopy (CRM) 
system, which integrates Raman spectroscopy and SRS microscopy 
in one system, for rapid bacterial identification and AST. The CRM 
takes advantage of chemical selectivity in Raman spectroscopy for 
bacterial identification while utilizing the high-throughput nature 
of SRS imaging for AST. We first generated an extensive bacterial 
Raman spectral dataset and applied deep learning to identify six 
common bacterial pathogens. Then, bacterial metabolic activity 
was quantitated by SRS to determine the SC-MIC for AST. Using 
S. aureus and E. coli as models, we demonstrated the ability of this 
CRM system to achieve bacterial Gram-staining classification 
within 0.5 h and AST within 2.5 h directly from urine samples.

Materials and methods

Bacteria and antibiotics

Bacterial strains used in this study (Supplementary Table S1) 
were purchased from the Beijing Microbiological Culture Collection 
Center or provided by the Institute of Clinical Pharmacology, 
Peking University. All bacterial strains were mixed with 2.5% 
glycerol and frozen in a cryopreserved tube (Jinzhang, Tianjin, 
China) at −80°C for storage. For experiments, the frozen strain was 
thawed and cultured on agar plates with Luria broth (LB) medium 
(Sigma Aldrich) at 35°C for 24 h before use. Antibiotic solution 
(gentamicin) was filtered through a 0.22-μm sterile syringe filter 
(Millipore Millex, Burlington, MA) and stored at −80°C before use.

Preparation of bacterial samples

A D2O medium was prepared by adding LB powder to a D2O 
solution at a final concentration of 2.5% in weight. The 
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preparation of bacteria samples is similar to our previous study 
(Zhang et al., 2021). In brief, bacteria were diluted in LB media 
to a 0.5 McFarland standard. Then, the bacterial solution was 
further diluted in D2O media to ~6 × 105 CFU mL−1. After 
incubation for a period of time, about 500 μl sample was 
centrifuged and fixed with 10% formalin solution. Next, about 
3 μl bacterial solution was deposited on a polylysine-coated 
coverglass; then, another non-coated coverglass was placed on 
top of the polylysine-coated coverglass for SRS imaging. For the 
urine samples, we first filtered the samples with a 5 μm filter to 
remove large debris in the urine and then followed the same 
procedure as above.

CRM system and data processing

The CRM system is based on a picosecond laser system 
(picoEMERALD, Applied Physics & Electronics), which outputs 
synchronized pump and Stokes beams. The wavelength of the 
pump beam is tunable from 700 to 990 nm, with a pulse width of 
2 ps and a repetition rate of 80 MHz. The wavelength of the Stokes 
beam is fixed at 1,031 nm, with a pulse width of 2 ps and a 
repetition rate of 80 MHz. The Stokes beam was modulated at 
20 MHz by an electro-optical modulator. For SRS imaging at C–D 
vibrations, the pump beam was tuned to 842 nm. Each image 
contains 200 × 200 pixels with a pixel dwell time of 50 μs. When 
performing Raman spectroscopy measurement, the pump beam, 
used as the excitation laser, was tuned to 707 nm. Raman signal 
from the sample was detected by a spectrometer (KYMERA-
328I-A, Andor). A CCD camera was used to determine the 
location of bacteria. The laser power at the sample was ~10 mW 
after a 60× water objective (Olympus MPLAN), the acquisition 
time was 1 s, and the grating was set at 300 L/mm.

The original Raman spectra contain noise and background, 
and therefore, the spectra need to be  processed before deep 
learning. The pre-processing takes four steps: (1) wavenumber 
selection; (2) background subtraction; (3) smoothing; (4) 
normalization. In brief, the wavenumber between 400 and 
1,800 cm−1 was selected as the region of interest. An asymmetric 
least-squares method was applied to subtract the background 
signal. Then a Savitzky–Golay filter smoothed the data to reduce 
the noise. All the processing mentioned above was done by Python 
3.7 scipy 1.2.1.

CNN architecture

A CNN based on AlexNet was used to classify bacteria (Erzina 
et al., 2020). As the input of the CNN model, the pre-processed 
spectra were first connected to two convolutional layers, which 
contained 8 and 16 kernels, respectively. Each layer was followed 
by a batch normalization layer and a max-pooling layer with a 
pool size set at 2. The data were then concatenated to 1 dimension 
and input into a fully connected layer with 3 layers of neurons, 

containing 64, 32, and 6 neurons. The 6 neurons represented the 
output probability corresponding to 6 different types of bacteria.

After two fully connected layers, the output layer of the 
network was connected, corresponding to the final classification 
results. The number of neurons in the output layer was the number 
of data categories. For the six-classification network in bacterial 
identification, the number of neurons in the output layer was 6. The 
SoftMax function was used to achieve multi-classification. The total 
output value is 1, and the corresponding predicted probabilities of 
A. baumannii, E. coli, E. faecium, K. pneumoniae, P. aeruginosa, and 
S. aureus were the output of the trained networks. This CNN model 
was based on Python 3.7 tensorflow 1.14.0 and keras 2.2.4.

Training and evaluation

The dataset was split into a training set and a test set in a ratio 
of 7:3. The CNN model was first trained using the data from the 
training set, during which the validation size, batch size, dropout 
rate, and epoch were set as 30%, 60, 0.6, and 100, respectively. For 
each epoch, the training set contained 354 spectra, while the 
validation set contained 150 spectra.

Since the dataset was not large enough to create a test set that 
could provide convincing results, data augmentation was applied 
during the testing process. By shuffling the spectra, we created a 
lot more data with a slight difference that significantly increased 
the size of the test set while making the testing outcomes more 
convincing. In this study, the augmentation was set to be 100 times 
and rehabilitated during the testing process.

Broth microdilution (BMD) test

The BMD test was used as a reference recommended by the 
Clinical and Laboratory Standards Institute (CLSI; Clinical and 
Laboratory Standards Institute (CLSI). Methods for Dilution 
Antimicrobial Susceptibility Tests for Bacteria That Grow 
Aerobically. 11th ed. CLSI standard M07. Wayne, PA: CLSI; 2018). 
In brief, bacteria were cultured in Mueller Hinton Broth (MHB) 
media (Sigma Aldrich) in 96-well plates. Antibiotic solution, using 
triplicate samples, was added to the plate with two-fold serial 
dilution. A bacterial stock solution was pipetted into the 96-well 
plates at a final concentration of 5 × 105 CFU mL−1. The MIC values 
were determined after incubation at 35°C for 16–20 h.

Results

Performance of the CRM

We used polystyrene (PS) beads of known diameters to 
evaluate the performance of our CRM setup (Figure 1A). Using 
the forward-detected SRS, single PS beads with diameters of 
1 μm and 10 μm distributed on a coverglass were observed 
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(Figure  1B). Meanwhile, Raman spectra of the beads were 
obtained (Figure 1C). The ring breathing band at 1,005 cm−1 
indicates the correct measurement of the PS beads. These results 
demonstrate the ability of our CRM to obtain both SRS images 
and Raman spectra of a point of interest.

Workflow of rapid identification and AST 
of bacteria with the CRM

Rapid identification and AST of pathogenic bacteria with the 
CRM have two steps (Figure 2A). In the first step, we concentrated 
urine samples by filtration and centrifugation. Then, Raman 

spectra of the samples were obtained and compared with Raman 
databases we established to obtain bacterial identification results. 
This step, including sample processing and Raman spectra 
measurement, takes ~0.5 h (Figure 2B).

In the second step, we first treated bacteria with a selected 
antibiotic-containing medium for 1 h. Then, D2O mediums 
containing different concentrations of antibiotics were added to 
the bacteria solution for an additional 1 h. Notably, the antibiotic 
concentration was kept the same as the initial concentration 
used in each sample, meanwhile reaching a final D2O concentration 
of 70%. This D2O concentration was previously demonstrated to 
cause negligible toxicity to most bacteria species (Zhang et al., 
2020). With SRS imaging and automatic data processing 

A

B C

FIGURE 1

Schematic setup and performance of the CRM system. (A) Schematic setup and diagrams of spontaneous Raman and SRS microscopy. ωp, pump 
beam; ωs, Stokes beam; Ω, Raman-active molecular vibration; L, lens; M, mirror; Obj, objective; Con, condenser; PD, photodiode. (B) SRS image of 
a mixture of PS beads with 1 μm and 10 μm diameters. (C) Raman spectra obtained from 1 μm and 10 μm beads in (B), respectively.
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(Supplementary Figure S1), the SC-MIC was next determined to 
obtain the AST results. In total, bacterial identification and AST 
with our CRM system take ~3 h from a urine sample. Compared 
with the current UTI diagnostic gold standard, which takes 
approximately 36 h, our CRM significantly improved the speed of 
bacterial identification and AST (Figure 2B).

Establishment of a deep learning model 
for bacterial identification

To identify bacteria with Raman spectroscopy, we developed 
an Alexnet-based deep learning model (Figure 3A). Instead of 

the traditional rule, our model uses the linear activation 
function when building the convolutional network, which 
is used to save all the convolutional information, including 
positive and negative correlations. The Leaky Relu layer and 
the Dropout layer were used in the network to avoid over-fitting.

In neural networks, over-fitting corresponding to specific 
data is one of the main problems. To avoid over-fitting, we split 
the data into a training set, which was used to train the model, 
and test sets in a ratio of 7:3 to verify the model. Through 
learning iterations, there is no significant difference between 
the loss and accuracy of the test and training sets, indicating 
that the optimized model did not have the over-fitting problems 
(Figures 3B,C).

A

B

FIGURE 2

Workflow of the CRM for rapid identification and AST in urine. (A) The flow chart of bacterial identification and AST for urine samples. 
(B) Turnaround time required for the conventional and CRM-based bacterial identification and AST for urine samples. The time estimation was 
based on optimal conditions. ID, identification.
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Performance of the deep learning model 
in bacterial identification

We next trained a neural network on a 6-class isolate 
recognition task. CNN outputs a probability distribution across 6 
reference isolates and uses the maximum value as the predicted 
class. The model was trained on a reference data set and then 
tested on an independent test data set. To minimize the deviation 
caused by cell heterogeneity and physiological status of the same 
strains, we  obtained 120 Raman spectra from each bacteria 
species to avoid potential differentiation caused by cellular 
frameworks. Our spectral data ranged from 400 to 1,800 cm−1 and 
consisted of 2,000 one-dimensional float data. Raman spectra of 
different bacterial media, D2O, D2O LB, and water, showed that 
bacterial Raman spectra were not affected by these media 
(Supplementary Figure S2). Figure 4A shows the average Raman 
spectrum (color line) of the pathogens tested, where the 

intraspecies variation of each strain appears as a gray area around 
each spectrum. The Raman spectra show high similarity between 
different species, probably due to their similar biochemical 
components. Nevertheless, it is difficult to differentiate the species 
with naked eyes only.

We next used the CNN model to classify bacteria based on the 
differences in Raman spectra. As shown in the confusion matrix, 
the six-class model achieved an average classification accuracy of 
96.0% (Figure 4B). Only P. aeruginosa has a recognition sensitivity 
below 90%, while the other bacterial species all have a recognition 
sensitivity of over 90%. The classification specificities are between 
97% and 100% (Supplementary Table S1). Furthermore, we also 
compared our deep learning model with a principal component 
analysis (PCA) model, an unsupervised multivariate analysis tool 
for spectral data management (Dina et al., 2017; Yan et al., 2021) 
for identification. Due to the minor inter-class differences in the 
bacterial Raman spectrum data set and the relatively significant 

A

B C

FIGURE 3

Deep learning-based bacterial classification. (A) The architecture of the Alexnet-based deep learning model. (B) Training loss and (C) accuracy. 
The displayed loss and accuracy were the values obtained with the dropout layer deactivated after training at each epoch.
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intra-class differences, traditional machine learning algorithms, 
such as linear discriminant analysis (LDA), support vector 
machines (SVM), and logical regression, are often difficult to 
achieve an ideal classification effect (Ho et al., 2019; Yan et al., 
2021). We used PCA-LDA and a cross-validation method to test 
the classification performance (Supplementary Figures S3A,B). 
The PCA-LDA results show that the sensitivity, specificity, and 
accuracy after averaging are 56.5, 91.3, and 85.5%, respectively 
(Supplementary Table S2), and therefore demonstrate that the 
classification effect of PCA-LDA is not ideal. Collectively, these 
results show that the deep learning model has significantly better 
indicators than the PCA-LDA model for bacterial identification.

Rapid identification and AST in urine with 
the CRM

To validate the effectiveness of CRM in clinically relevant 
scenarios, we next tested bacteria in urine samples. We used spiked 
samples to mimic the clinical UTI samples by adding bacteria to 
urine at a final concentration of ~106 CFU mL−1. We first tested 
S. aureus and obtained 120 Raman spectra from different sample 
locations (Figure 5A). By comparing the spectra with the established 
data set, we correctly identified S. aureus with a multiple spectral 
probability of 92.5% and an average spectral probability of 99.9% 
(Figure 5B). Here, to calculate the multiple spectral probability, 
we compared each spectrum to the established data set to predict an 
output label. Then the multiple spectral probability was defined as 
the probability corresponding to each label, i.e., the proportion of 
the number of data predicted in this category to the total amount of 
data. To calculate the average spectral probability, we first averaged 
all the spectra obtained. Then the average spectral probability was 
defined as the output probability of each label predicted from this 

A

B

FIGURE 4

Performance of the Alexnet-based deep learning model in 
bacterial identification. (A) Average Raman spectra of six 
common bacteria in UTI. The gray area represents the standard 
deviation of the spectra. (B) Confusion matrix of bacterial 
classification (values are listed as percentages).

A B

FIGURE 5

Rapid identification of S. aureus in urine by CRM. (A) Raman spectra of S. aureus. (B) Identification results by the deep learning model. A. baumannii 
(A. b), E. coli (E. c), E. faecium (E. f), K. pneumoniae (K. p), P. aeruginosa (P. a), and S. aureus (S. a).
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A

B C

FIGURE 6

Rapid AST of S. aureus in urine by CRM. (A) SRS at C–D and corresponding transmission images of S. aureus (MICBMD = 1 μg mL−1) after culture in a 
D2O-containing medium with serially diluted gentamicin. (B) Statistical analysis of the C–D intensity in S. aureus in (A). (C) Comparison of the MIC 
and susceptibility category determined by the BMD and SRS imaging-based methods. S, sensitive. Error bars represent the standard error of the 
mean (SEM).

averaged spectrum. Once the identification result was obtained, 
we  next performed AST with SRS. We  tested S. aureus toward 
gentamicin (Figure 6A). Using the same threshold established in our 
previous work (Zhang et al., 2020), the statistical analysis of bacterial 
C–D signals determined the SC-MIC to be 2 μg mL−1 (Figure 6B). 
This result has the same essential and category agreement as the 
MIC result obtained from the BMD method (Figure 6C).

Following the same procedure as S. aureus, we further tested 
E. coli, which is also commonly encountered in UTI. Although the 
identification of E. coli is not ideal at the species level, the Gram-
staining classification achieved an accuracy of 100% by analyzing 
the Raman spectral multiple values (Supplementary Figure S4A). 
Meanwhile, SRS imaging (Supplementary Figure S4B) and 
statistical analysis (Supplementary Figure S4C) determined the 
SC-MIC to be  1 μg mL−1, which has the same essential and 
category agreement as the BMD result (Supplementary Figure S4D).

Furthermore, to assess the feasibility of CRM for UTI in a 
clinical setting, we  tested six clinical strains, including three 

E. faecium and three E. coli. Our results showed that all the clinical 
E. faecium strains were successfully identified, with an average 
spectral probability of 97.2% (Supplementary Tables S3A–C). 
Meanwhile, the Gram-stain classification for the clinical 
E. coli strains achieved an average accuracy of 94.2% 
(Supplementary Tables S4A–C). In addition, we  conducted a 
direct blind test of five clinical urine samples by the 
CRM. Although the identification results were not ideal, the 
average accuracy of the Gram-staining classification exceeded 
96% (Supplementary Tables S5A–E). Considering that two strains 
in the samples were not even in the six species in which the 
model was built, our Gram-staining classification results were 
satisfactory. Since the selection of antibiotics tested in AST is 
dependent on the Gram-staining feature, pre-identifying the 
Gram-staining characteristics of pathogens could also 
significantly accelerate the turnaround time of AST (Yi et al., 
2021). These results collectively proved that our CRM is suitable 
for clinical application to urinary pathogens.
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Discussion and conclusion

For bacterial identification, current culture-free methods 
include fluorescence (Park et al., 2019; Yi et al., 2020), FISH (Phung 
et al., 2017), and magnetic nanoparticles (Neely Lori et al., 2013). 
Compared with these techniques, Raman spectroscopy does not 
require specially designed markers that are needed in these 
methods. In addition, an integrated system based on droplet 
microfluidic-driven single-cell diagnostics offers great promise in 
rapid microbial identification and susceptibility detection (Hsieh 
et al., 2022). Although this system reduces the diagnostic time of 
UTIs, additional markers are still needed.

Cheng et al. used a compound Raman to perform high-speed 
vibration imaging and spectral analysis of liposomes (Slipchenko 
et al., 2009). In their setup, Raman spectroscopy was integrated 
with coherent anti-Stokes Raman scattering (CARS) microscopy, 
another imaging modality of coherent Raman scattering 
microscopy. Compared with CARS, SRS does not suffer from the 
non-resonant background that dramatically reduces imaging 
contrast (Cheng and Xie, 2015). In the future, to cope with the 
complicated clinical needs, the design of cardboard to minimize 
manual sample preparation, autofocusing, and auto measurement 
of the sample are essential for the standardization of the CRM.

In summary, we demonstrated an integrated CRM, which 
includes Raman spectroscopy and SRS imaging, for rapid 
identification and AST of bacteria in urine. To achieve this, 
we  generated a Raman spectral dataset and developed a deep 
learning model to identify six common bacterial pathogens in 
UTI. In addition, we applied SRS to quantify bacterial metabolism 
to determine their antimicrobial susceptibility. Importantly, our 
CRM system can achieve Gram-staining classification and provide 
phenotypic AST results within 3 h directly from urine samples, a 
significant time-saving compared to the conventional methods.
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