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Distinct dynamics of neuronal activity during
concurrent motor planning and execution
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The smooth conduct of movements requires simultaneous motor planning and execution
according to internal goals. So far it remains unknown how such movement plans are
modified without interfering with ongoing movements. Previous studies have isolated plan-
ning and execution-related neuronal activity by separating behavioral planning and move-
ment periods in time by sensory cues. Here, we separate continuous self-paced motor
planning from motor execution statistically, by experimentally minimizing the repetitiveness
of the movements. This approach shows that, in the rat sensorimotor cortex, neuronal motor
planning processes evolve with slower dynamics than movement-related responses. Fast-
evolving neuronal activity precees skilled forelimb movements and is nested within slower
dynamics. We capture this effect via high-pass filtering and confirm the results with opto-
genetic stimulations. The various dynamics combined with adaptation-based high-pass fil-
tering provide a simple principle for separating concurrent motor planning and execution.
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oluntary movements contain planning and execution

components!. Execution refers to the actual movement,

whereas planning is typically assumed to precede the
movement. Thus, the usual way of determining preparatory
neural activity relies on distinct trial phases, as in instructed
movement tasks containing a delay period?. Using precisely timed
perturbations, planning or execution roles have been assigned to
specific task phases and brain areas. In particular, the delay phase
between an instructive cue and an actual go-cue harbor complex
processes at the border between planning and preparation of the
actual motor execution. In rodents, the rostral forelimb area
(RFA) and caudal forelimb area (CFA) are assigned premotor and
motor roles, respectively, due to their connectivity>. These areas
are relevant during the delay phase for subsequent movement
corrections?. In monkeys, perturbations in the premotor cortex
during this task phase delay upcoming movements®. These results
illustrate the slightly intermingled planning and executional
processes in the motor cortex. In line with this, by use of elec-
trophysiological measurements and by contrasting the pre-
paratory and movement activity, a controversial variety of
interpretations of the role of preparatory activity has been sug-
gested. Evidence supports the idea that, at the neuronal popula-
tion level, preparatory activity represents a subthreshold activity,
sharing tuning characteristics with the movement phase, but at a
lower amplitude®~12. At the level of individual neurons, a
switching of tuning has been reported between the task
phases!3-16,

To further complicate the interpretation of preparatory activ-
ity, complex individual neural responses exhibiting a variety of
multiphasic patterns have been exposed during the preparatory
phase!”. A dynamic systems approach offers an option to unify
these diverse findings in a common framework by describing the
neuronal activity at a more abstract level'8. To further investigate
the role of preparatory activity, a differentiated approach invol-
ving various degrees of movement preparation has recently been
suggested!®. By applying three distinct task variants involving
multiple degrees of movement preparation, Zimnik et al.l? ele-
gantly created a gradient of decreasing motor preparation from
self-initiated movements over externally cued movements to
quasi-automatically generated responses. Despite this elaborate
task design, a neuronal planning process (e.g., to stop an ongoing
movement) can coincide and correlate with a neuronal execution
process at the onset of movement, rendering a separation of both
processes difficult.

This separation is particularly difficult for stereotyped move-
ments, as there will be a correlation between the initial part of a
movement and its end point. This correlation can apply to both
self-initiated and instructed movements. To minimize the cor-
relation between planning and execution, we opted for a radically
different approach that does not rely on a specific task design.
Instead, we allowed rats to either move freely (locomotor task) or
to move a joystick in a self-paced manner (joystick task) with the
sole constraint of moving as randomly as possible. With this
randomized approach, the planning and executional processes at
a given time will differ: The planning process will describe a
future behavior that, due to the randomization, will contrast with
the executed behavior. Therefore, this approach maximizes the
separation between planning and executional processes using a
rich repertoire of non-stereotyped movements.

To minimize the influence of a planning component on the
execution activity, we separated planning from execution in terms
of the lag between the neural activity and the movement2021. We
consider neuronal activity with a temporal behavior lag at a
previously suggested range of < 100 ms?223 as being related to
motor execution. Moreover, we refer to neuronal activity with
larger temporal behavior lags as motor planning or sensory

integration, depending on whether the neuronal activity occurs
before or after the movement.

This lag-based interpretation of neuronal processes is ham-
pered by behavioral correlations. If a movement is correlated over
time (e.g., because a certain pattern repeats across time), neuronal
activities related to both planning and execution processes will
appear to be correlated with the behavior even if a causal rela-
tionship only exists for one of the processes. A repetitive move-
ment would cause an autocorrelation with multiple peaks (see
illustration in Fig. 1A), while a prolonged behavioral state, due to
reward delivery or planning, may cause one broader peak (see
illustration in Fig. 1B). Broad peaks are referred to in this work as
temporal bleeding. Our randomized task circumvents these pro-
blems. Based on electrophysiological recordings from rats con-
ducting randomized movements, we characterized the relevant
neuronal frequencies for planning and execution. Our data-
driven approach reveals the particular relevance of a relatively
low-frequency spectrum of neural changes. Note that within this
low-frequency range, high frequencies are meant in a relative
sense. We found a breaking point around 1.1 Hz and used this to
divide the frequencies in a lower range referring to planning, and
in relation to this, in a higher range contributing to the execution
of movements.

Here, we show that employing minimally repetitive movements
is suitable approach for separating planning, execution, and
sensory processes in neuronal activity. On average, neuronal
activity leads movements in a trained joystick task whereas
neuronal activity succeeds movements in a non-trained loco-
motor task. Using this approach of minimally repetitive move-
ments we demonstrate that processes are slower towards
secondary motor areas and that those slower processes also pre-
cede movements by longer latencies. We describe how the
movement onset is preceded by an increase in the frequency of
neuronal activity dynamics and how these preceding dynamics
become temporally coordinated across neurons shortly before
movement onset. These findings propose coordinated high-
frequency changes in neuronal activity as one aspect of executing
movements and slow frequency changes as a way to integrate
information and plan upcoming movements.

Results

Minimally repetitive movement tasks. To reduce the temporal
bleeding between planning and execution, we aimed to minimize
correlations by encouraging animals to conduct movements with
a minimal recurrence of individual movement sequences in two
different settings. One task was based on walking (locomotor
task) and the other was based on joystick movements (joystick
task). In the locomotor task, rats moved unconstrained in a box
while searching for pseudo-randomly placed water drops on a
floor mesh (Fig. 1C). In this task, neither the overall movement
(Supplementary Fig. 1A) nor the directedness of the movement
was changed across sessions (Supplementary Fig. 1B). In the
joystick task, we trained rats to move a joystick with their right
front paw while minimizing the revisiting of previously occupied
positions (Fig. 1D). For the joystick task, the overall movement
range increased across sessions (Supplementary Fig. 1A), and rats
learned to explore the anterior-posterior movement direction in
later sessions (Supplementary Fig. 1B). Therefore, only recordings
after 70h of training in the joystick task were used for data
analysis. In both tasks, movements were not repetitive, as is
indicated by narrow temporal behavioral autocorrelations of the
movement velocities (see data boxes in Fig. 1A, B). To evaluate
the typical movement duration, we calculated the mean and SEM
of the frequency velocity spectrum (locomotor task: 4.7 + 1.05 Hz,
joystick task: 4.3 +£0.12 Hz). These frequencies refer to the time
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To study the neuronal underpinnings of decorrelated move-
ments, we trained six Long-Evans rats in the locomotor task. Five
of these six animals were also trained in the joystick task. To
record neuronal activity, electrodes were placed bilaterally in the
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sensorimotor cortex (42 electrodes per animal, Fig. 1E). We
targeted the output layer V by implanting the electrodes at a
depth of 1.2 mm?42>. In total, we recorded 5691 single units (SU)
and 7325 multi-units (MU) over 107 sessions for the locomotor
task (Supplementary Table 1). For the joystick task, we recorded
4041 SU and 5268 MU over 80 sessions (Supplementary Table 2).
We refer to SU and MU collectively as sorted units.
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Fig. 1 Studying neuronal dynamics with minimally repetitive behavior. A lllustration of the difference between decorrelated and repetitive behavior
regarding behavioral autocorrelation and neuronal cross-correlation for the locomotor task. The behavioral autocorrelation is broader for repetitive
locomotion (bottom panels) than for a decorrelated behavior (top panels). The minimal value (dashed line) of the neuronal cross-correlation is low if there
are lags for which the two neurons do not spike (indicating correlated firing). It is high if the two neurons fire at different lags (indicating decorrelated
firing) (illustration left panel). Autocorrelation for the velocity of the right front paw during the locomotor task is shown in the gray data panel. B Depiction
of the same outline as in A but for the joystick task. A repeating trial structure causes correlations between different trial periods, which may, in turn,
increase the width of the behavioral autocorrelation and the correlation between neurons. € Setup of the locomotor task. D Setup of the joystick task.
E Electrode locations on the sensorimotor cortex for the respective animal. RFA and CFA are lined out by purple and green, respectively. Rostral forelimb
area (RFA), caudal forelimb area (CFA), primary sensory cortex (S1), primary motor cortex (M1), and secondary motor cortex (M2). F Velocity modulation
of the instantaneous firing rate for two example units with action potential waveforms (left inset) and interspike interval histogram (right insets) in the
locomotor task. Neuronal firing rates modulated by future or past paw movement velocities are assigned to negative temporal lags (referring to planning)
or to positive temporal lags (referring to sensory integration), respectively. Lags between O and 100 ms are considered to be related to motor execution.
The dark-blue unit has a broad velocity modulation, whereas the light-blue unit is temporally precise. Both units originate from the same recording session.
G Same outline as in F but for two different units in the joystick task. The dark-red unit has a broad velocity modulation, while the light-red unit is
temporally precise. H The unit with the minimal (bright blue) and maximal (dark blue) duration of the velocity modulation for each locomotor session
(n=107). The error bars denote the standard deviation of bootstrapped durations. The center dot of the error bars denotes the mean of the bootstrapped
durations. I Same outline as in H but for the joystick task (n=80). Light red and dark red correspond to units with minimal and maximal modulation
duration, respectively. J The summed velocity modulation for motor planning-related activity (negative lags from —1.1 to —0.1s) minus the summed
velocity modulation for sensory integration-related activity (positive lags from O to 1s). Two-sided non-paired t-test corrected for dependence. Locomotor
task: p =2.2e-5, n = 5413, Joystick task: p = 2.5e-9, n = 2611. The data for each box-plot is bootstrapped and corrected for dependence across sessions
(see Methods). On each box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles of the
data, respectively. The whiskers extend to the most extreme data points, which are not considered to be outliers. Outliers are plotted individually using the

“4+" symbol. Significances are indicated according to ***

p<0.001. Source data are provided as a Source Data file.

We first examined whether the movement decorrelation
showed up in the statistics of the neuronal activity. For repetitive
behavior, neurons may fire at a specific lag relative to each other,
causing some lags to be less represented than others. This
imbalance causes the firing rate for some lags to be fundamentally
lower than the average firing rate (see dashed lines in Fig. 1A, B).
Neuronal activity was characterized by a decorrelated pair-wise
spiking; that is, pairs of neurons fired independently such that all
lags were equally represented and the firing rate at a certain lag
was close to the average. The firing rates of one neuron relative to
another at the least-represented lag were 94 + 13% and 88 + 12%
of the average firing rate for the locomotor and joystick task,
respectively (Fig. 1A, B, see Methods). These results are indicative
of decorrelated neuronal activity.

Temporal precision. The temporal decorrelation of both the
behavioral and the neuronal activity maximizes the temporal
precision of the estimated functional relationship between
movement and neuronal activity. To quantify the temporal pre-
cision, we calculated the range of temporal lags for which a given
sorted unit was modulated by the paw velocity via a lookup table
(Fig. 1F, G and Supplementary Fig. 2). We refer to this mod-
ulation across lags as velocity modulation. Furthermore, we use
the term modulation duration to refer to the duration at which
the velocity modulation exceeded 80% of the peak modulation.
We observed units with both long modulation durations (loco-
motor task: 1.6 +£0.34s, joystick task: 1.2+0.32s) and short
modulation durations (locomotor task: 0.36 + 0.15 s, joystick task:
0.31 £0.09 s) within the same session (Fig. 1H, I). This observa-
tion demonstrates that our approach minimized behavioral
bleeding to an extent permitting the separation of long processes,
such as motor planning and sensory integration, from shorter
processes such as motor execution.

Finally, this behavioral approach enabled us to quantify the
relative strength of motor planning and sensory integration, by
taking the normalized difference of the velocity modulation for
negative and positive temporal lags. In line with previous lesion
and inactivation approaches26-2%, the relative contribution of the
motor planning-related activity was larger for the joystick task
(9.9 £ 1.7%, mean + SEM, p < 0.0001, two-tailed t-tests), while the

sensory integration-related activity was larger in the locomotor
task (—4.2 + 1%, mean = SEM, p < 0.0001, two-tailed t-tests, Fig. 1]
and Supplementary Fig. 1C). For the joystick task, the motor
planning-related activity increased relative to the sensory
integration-related activity for later training sessions (Supple-
mentary Fig. 1C). Thus, our approach based on minimal
repetitive movements complements previous studies with a
temporally refined neuronal activity-based assay of the gradient
from motor planning and execution to sensory integration for
skilled and locomotor behavior.

Varying neuronal modulation durations. For the example units
in the joystick task, we noted that the velocity modulation
increased earlier for units with longer velocity modulations
compared to units with a short velocity modulation (Fig. 1G).
Motivated by this difference, we examined whether the modula-
tion duration across units was independent of the temporal lag
(Fig. 2A, upper panel) or, alternatively, increased with larger
temporal lags relative to the movement (Fig. 2A, lower panel). We
defined a temporal lag based on the peak of the velocity mod-
ulation (see Methods). In accordance with the second hypothesis,
the modulation duration increased significantly with increasing
temporal lags for both locomotor and joystick tasks (analysis of
variance (ANOVA), locomotor task, p <0.0001, ANOVA joystick
task, p <0.0001, Fig. 2B, C). The longer velocity modulation for
larger lags is not due to a larger temporal scatter, as the variability
of the velocity modulation was not increasing with increasing
temporal lag (Pearson correlation, locomotor task, p > 0.05, joy-
stick task: p > 0.05, Supplementary Fig. 3A). To test whether the
slower dynamics (indicated by longer modulation durations) were
the result of slow balancing head and shoulder movements, we
calculated the neck velocity modulation duration in the loco-
motor task. The average neck velocity modulation duration was
not larger than that of the paw movements (Supplementary
Fig. 1B), and the peak of the neck velocity modulation did not
appear earlier than that of the paw movements (Supplementary
Fig. 1C). These facts rule out neck movements as the main
instigators of slower neuronal dynamics. Instead, the results
suggest that a putative motor execution represented by units with
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Fig. 2 The duration of velocity modulation of individual units depends on the temporal lag to behavior and on the cortical area. A Two hypotheses of
sequential neuronal activity relative to movement. The duration of the neuronal activity can be constant across lags (upper panel) or different across lags
(lower panel). B Units sorted according to the lag of their maximum velocity modulation in the locomotor task (top), and for the joystick task (bottom).
C Relationship between average modulation duration and temporal lag (black line), across the different animals (colored lines) for the locomotor (left) and
joystick task (right). D Top panel: Duration of the velocity modulation for each cortical area for the locomotor task (left) and the joystick task (right). Two-
sided non-paired t-test corrected for dependence (see methods). Locomotor task: S1 (n =1766), M1 (n = 2450), M2 (n =1197), M1-M2: p =1.7e-35, S1-
M2: p=3.7e-53, S1-M1: p =1.3e-9. Joystick task: S1 (n =837), M1 (n =1015), M2 (n=759), M1-M2: p = 3.9e-9, S1-M2: p = 2.1e-31, S1-M1: p = 2.8e-17.
The data for each box-plot is bootstrapped and corrected for dependence across sessions (see methods). Box-plots: central mark indicates the median,
bottom and top edges refer to the 25th and 75th percentiles. Primary sensory cortex (S1), primary motor cortex (M1), and secondary motor cortex (M2).
Bottom panel: Histograms of the modulation duration for each cortical area for the locomotor task (left) and the joystick task (right). A mixed-effect model
was used to calculate significances between the cortical areas. Mixed-effect model (see methods): Locomotor task: M1-M2: p = 2.2e-6, S1-M2: p = 4.0e-5,
S1-M1: p = 0.23. Joystick task: M1-M2: p = 0.0142, S1-M2: p = 6.2e-5, S1-M1: p = 0.016. Significances are indicated according to *p < 0.05, **p < 0.01, and
***p < 0.001. Source data are provided as a Source Data file.

shorter temporal lags occurred with faster neural dynamics than
motor planning and sensory integration.

Integration timing of cortical areas. In rodents, the premotor
and motor cortex have been defined; that is, the secondary motor
cortex (M2) is RFA, and the primary motor cortex (Ml1) is
CFA33031 In contrast to M1, M2 has been assigned both motor
and higher-order functions®2-3¢ and might be related to the
premotor cortex of primates>3>37-39, Similar to studies in non-
human primates, a hierarchical relationship has been observed

during movement control in rats, with M2 leading M14%41, This
hierarchy influences the accuracy of a movement*? and is
involved in the integration of motor information with internal
state information for an adaptation to goal-directed behaviors®3.
If motor planning and sensory integration are associated with
longer modulation durations, it is conceivable that a higher brain
area, such as M2 (which presumably is functionally similar to the
premotor cortex in primates) contains neurons with longer
modulation durations than M1. To test this, we mapped the
electrode locations onto the nonlinear gradient spanning M2, M1,
and the primary somatosensory cortex (S1) (Fig. 1E).
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Indeed, neurons in higher areas (ie., M2) had a significantly
longer modulation durations than neurons in lower areas (ie.,
M1 and S1, Fig. 2D). This observation was true for both the
locomotor and the joystick task (ANOVA, locomotor task:
p <0.0001; linear mixed-effect model: S1 vs. M1, p = 0.23, M1 vs.
M2, p<0.0001, S1 vs. M2, p<0.0001; joystick task: p <0.0001;
linear mixed-effect model: S1 vs. M1, p=0.015, M1 vs. M2,
p =0.014, S1 vs. M2, p <0.0001). On average, neurons in S1, M1,
and M2 had modulation durations of 512+ 14, 557 +13, and
677 £22ms, respectively, during the locomotor task, and
371 £ 16, 456 £ 18, and 526 + 26 ms (mean + SEM), respectively,
during the joystick task. The results in this and the previous
section indicate that slower changes in neuronal activities govern
non-movement-related processes such as planning. Faster chan-
ges in neuronal activities govern primary processes such as motor
execution.

Population activity changes more quickly during movement.
Next, we examined whether the neuronal activity changed at a
higher rate during movement execution than during putative
motor planning and whether this change was particularly fast
during trained behavior, such as the joystick task. As the spiking
activity of individual units contained a large variability, we tested
the rate of change in terms of the population activity (Fig. 3A, B).
To this end, we correlated the population activity (across all
sorted units in one session) between two time points of various
temporal distances ranging between 0 and 10 s with a resolution
of 10 ms. This population correlation will typically decrease with
the increasing temporal distance between the two time points.
The rate of decay is quantified by the time constant of an
exponential fit. This population correlation decay is a measure of
the frequency characteristics of the population dynamics: One
over the time constant defines the frequency at which a low-pass
filter with that time constant attenuates the amplitude to 16% of
the original amplitude.

To compare the time constant during movement and
behavioral quiescence, we defined trials between the time point
of lowest paw velocity, which we refer to as premovement, and
the time point of highest paw velocity, which we refer to as
movement (see Methods, Fig. 3C, D). Although the population
correlation followed a similar motive, with a less-confined
diagonal during premovement and a more-confined diagonal
during movement, robust bands of low correlation during
movement execution occurred in the joystick task but not in
the locomotor task, thus revealing a qualitatively different
correlation structure (Fig. 3E, F). These bands of low correlation
are a sign of a brief time constant, indicating that the population
activity changed rapidly during motor execution.

During periods of movement, population correlations decayed
significantly faster than the median time constant in the joystick
task (—176 + 59 ms, mean + SEM, n =5, p =0.043, two-tailed ¢-
tests) but not in the locomotor task (—18 +£27 ms, mean + SEM,
n=6, p=0.54, two-tailed t-tests, Fig. 3G, H). In line with the
strong decrease in time constant in the joystick task during
movements (Fig. 3I), the time constant during joystick movements
was lowest (203 + 88 ms, mean + SEM, n =5, Fig. 3]) indicating a
faster-changing population activity. In contrast, the time constant
was largest (i.e., the population activity was stable) during joystick
premovement periods, which presumably involves motor planning
(761 £ 375 ms, mean + SEM, n =15, Fig. 3]). The difference in the
time constants cannot be explained by behavioral differences across
the two tasks (summarized in Supplementary Note 1 and
Supplementary Fig. 4). Across areas, the time constant only fell
below the baseline level for S1 for the locomotor task (although this

drop was not significant), and across all areas, S1, M1, and M2 for
the joystick task (Supplementary Fig. 5).

Finally, to rule out the possibility that the observed frequency
gating was only valid for fast-movement changes, we tested how
the time constant depended on the instantaneous frequency of
the movements (see Methods, Supplementary Fig. 6). The
decrease in correlation followed an exponential decay for both
the locomotor task and the joystick task, indicating that the time
constant is a good proxy for the frequency content of the neural
dynamics. For the joystick task, apart from a slight increase in the
lowest movement frequency, the neural time constant was short
and independent of the movement frequency (r=0.32 to 0.4s).
In contrast, the neural time constant for the locomotor task was
longer (7=0.66 to 0.69s) and only decreased for the highest
movement frequency (7= 0.365s).

The faster decay in the joystick task compared to the locomotor
task corroborates the idea that fast processes are mainly involved
in movement execution. Referring to the finding that the joystick
task involves a trained component (see Supplementary Fig. 1),
behaviors relying on training typically require the participation of
the motor cortex2%. This point is in concert with the notion that
short velocity modulations are associated with faster changes for
processes that start immediately before the movement and are
therefore related to the movement’s execution. In contrast, the
slowly changing activity in the locomotor task, which relies less
on the participation of the motor cortex*4, may be related to a
mix of planning, execution, and sensory signals. This suggestion
aligns with the observation that longer velocity modulations are
associated with slower changes for processes that start well before
movement, such as planning.

Fast changes in neuronal activity precede movement. Next, we
examined whether fast-changing neuronal activity preceded
movement execution (Fig. 4A). Paw velocities provide a general
measure of movement magnitude independent of specific types of
movements. To allow a comparison of the discretized and typi-
cally low-frequency spike trains of the sensorimotor cortex with
continuous paw movements, we reconstructed the continuous
subthreshold activity with a resolution of 10 ms from the spiking
activity%® (Fig. 4B). This allows the detection of neuronal activity
changes that are faster than those signaled by low-frequency
spiking events while simultaneously minimizing the high-
frequency transients constituted by each spike. Fast-changing
activities typically precede large paw velocities (Fig. 4C). To
quantify the relationship between neuronal frequencies and paw
velocities, we calculated the Pearson correlation coefficient
between the paw velocity and the rectified band-pass-filtered
neuronal activity (averaged across neurons), with center fre-
quencies ranging from 0.1 to 11 Hz (Fig. 4D). The correlation was
highest at 2.3 Hz for the joystick task and highest at 1.1 Hz for the
locomotor task (Fig. 4E). For the joystick task, the correlation
reached its maximum at a small negative lag for high frequencies
(Fig. 4F), whereas the peak for the locomotor task did not sig-
nificantly precede the movement for any frequency band. A
similar result was achieved without reconstruction for non-sorted
neuronal data, for which the thresholded spikes were pooled
(Supplementary Fig. 7A-C). Therefore, the peak correlation and
lag were consistent with a movement execution function only for
high frequencies.

Frequency-specific decoding of paw movements. We subse-
quently investigated how slowly or quickly changing neural
activity could be used to decode paw movements (Fig. 5A, B).
For a meaningful comparison, we first had to equalize conditions
for slow and fast neural activities. Low-pass filtering, which is
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level in low-pass-filtered signals compared to high-pass-filtered
signals.

To minimize frequency-specific bias, we conducted decoding
on de-noised neuronal activity. We derived the de-noised
neuronal activity by predicting the neural activity based on the
paw velocity. This inevitably resulted in robust firing rates
independent of the frequency. For the de-noising approach, we
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Fig. 3 The population activity changes faster during motor execution in the joystick task than in the locomotor task. A lllustration of how slowly
changing population activity leads to temporally broader population correlations. B Same as in A, but for faster-changing population activity. C Average
paw velocity across behavioral trials for the locomotor task (see Methods for the trial definition). Blue lines denote data from individual animals and the
black line denotes the average across all animals. D Depiction of the same outline as in A but for the joystick task. E Average pair-wise correlations of
population vectors across all animals for the locomotor task. F Outline as in € but for the joystick task. G The time constant of the decay in the population
correlation across the trial in the locomotor task (blue) and the joystick task (red). The median relative time constants are included as dotted lines. H The
decrease in time constant during movement in relation to the median time constant across the trial for locomotor and joystick task. Two-sided non-paired
t-test p = 0.04 (Joystick task: n =5 and Locomotor task: n = 6). Box-plots: central mark indicates the median, bottom and top edges refer to the 25th and
75th percentiles. Points denote individual animals. I Decay in population correlation at the premovement time point (at —1s during lowest paw velocities)
and at the movement time point (at 1s during highest paw velocities). J Time constants for the locomotor and joystick task for the premovement and
movement time points based on the curves in G. Joystick task premove - Joystick task move two-sided non-paired t-test p = 0.0348 (n=5). Locomotor
task premove - Joystick task move two-sided non-paired t-test p = 0.0108 (n = 6, and 5). Bonferroni corrected for multiple comparisons: premove versus
move (4 different possibilities). Box-plots: central mark indicates the median, bottom, and top edges refer to the 25th and 75th percentiles. Points denote
individual animals. Significances are indicated according to *p < 0.05. Source data are provided as a Source Data file.

used the firing rate of each neuron individually and the paw
velocity (x and y direction) across the entire session. We collapsed
the firing rates and paw velocities by applying a temporal kernel
(see Encoding and decoding in Methods). The decoder only had
access to two weight parameters for each velocity direction, x and
y, to avoid the decoder predicting the correct paw velocity by
simply inverting the encoded velocity. The two weight parameters
were located at lag 0 and an additional lag defined by the
reciprocal of the band-pass frequency. The decoding performance
was highest for a frequency of approximately 2.3 Hz (Fig. 5C, D
and Supplementary Fig. 8A). By adding Gaussian white noise to
the de-noised neuronal activity, we could reproduce the lower
optimal decoding band-pass frequency for the raw neuronal data.
In sum, this process suggests that (1) de-noised neural activity
can be used to investigate the frequency contribution to decoding,
and that (2) a frequency of around 2.3 Hz is optimal for decoding
paw velocities.

To investigate which neuronal frequency features the decoder
used to predict the paw velocity, we applied a wavelet analysis of
the unit-specific decoding kernel for the raw spiking neural
activity (Fig. 5E, F). The neuronal frequency ramped up from
0.7 Hz (black outline in Fig. 5E, F) 1s before the movement to
12-24 Hz around 100 ms before the onset of movement. Around
100 ms before the movement, frequencies above 3Hz had a
significantly higher amplitude for the joystick than for the
locomotor task (Fig. 5G and Supplementary Fig. 8B-D). As the
unit-specific decoding kernel was the result of an average across
multiple trials or time points, it is conceivable that the slow
component could be the result of the average of multiple
temporarily jittered high-frequency components. If this were the
case, the variability of the kernel weights would be increased
during the low-frequency periods (Supplementary Fig. 9). How-
ever, the variability of the kernel weights was not larger during
the low-frequency period than during the high-frequency period
(see inset Fig. 5E, F). This finding indicates that the low-
frequency component was not a result of averaging multiple high-
frequency trials but rather was a low-frequency component at the
single-trial/time-point level.

As a frequency increase corresponds to an increase in the
temporal derivative, we examined the time at which the rectified
temporal derivative was the largest for each kernel in each sorted
unit (Fig. 5H). In the locomotor task, the time points were less
aligned than in the joystick task, resulting in a temporally jittered
appearance of the normalized kernel weights (Fig. 5I). To
quantify the rise times of the kernel weights, we calculated the
time point at which the kernel weights reached 50% of the
maxima (or minima, in the case of a negative deflection) (Fig. 5]).
The temporal focusing and the higher neuronal frequency in the
joystick task may conserve the speed of change of the neural

signal when signals from multiple neurons converge on
subcortical structures (Fig. 5K-L). Such temporal focusing may
ensure that the high-frequency change in the cortical neural
activity will be reliably propagated toward the spinal cord.

Frequency content predicts population state. Previous work has
separated planning and motor execution by population codeS;
therefore, we asked whether the frequency code could predict this
population coding. The tuning of the paw velocity (Supplemen-
tary Fig. 10A, B) was correlated to the change in population code
when traversing from motor planning toward motor execution
(Supplementary Fig. 10C). As the correlation between the
population velocity tuning at planning lags (—1000 to —200 ms)
and at execution lags (—40 ms) was minimal, we regarded the
population velocity tuning at —40 ms to represent the output-
potent space. The space orthogonal to this was regarded as the
output-null space. Indeed, the part of the trajectory that corre-
sponded to high-frequency coding was typically associated with
high paw velocities and represented the output-potent space. In
contrast, the part of the trajectory that corresponded to low-
frequency coding was typically characterized by low paw velo-
cities and was located in the output-null space on a single sessions
level (Fig. 6A and Supplementary Fig. 10D), as well as in an
across-session average (high-frequency coding: p=0.033,
n = 944, low-frequency coding: p = 0.04, n = 584, Fig. 6B). Thus,
the frequency coding can predict the population code, indicating
that frequency coding may be an integral part of movement
control, which in turn may represent the underlying biological
explanation of the population code theory.

As it is conceivable that slow frequencies related to planning
could be governed by the (long-range) input to the population
rather than the local activity, we calculated the coherence between
the local field potential and the spiking activity for different
frequencies during putative planning and execution periods
(Supplementary Fig. 11A, B). A planning period was defined as
the 2-s-before-trial onset, and an executional period was defined
as the 2-s-after-trial onset (see Fig. 3C). The data suggest a
decrease in the coherence for low frequencies. The coherence for
lower frequency is stronger for the planning period than for the
executional period, a relationship that is inverted for the higher
frequencies (Supplementary Fig. 11C, D). This supports the
hypothesis that the execution is a fast signal that has a local origin
and that planning is a slower signal with a more distributed origin.

High-frequency optogenetic stimulation evokes movements.
Next, we optogenetically induced brain activity in the primary
motor cortex at different frequencies to examine whether certain
frequencies were more likely to evoke paw movements. We tested

8 | (2021)12:5390 | https://doi.org/10.1038/541467-021-25558-8 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

A D Locomotor task Joystick task

Movement execution Planning and sensory integration H
4

“'*/VM V\/V\'\// \\/\-"\ Motor planning Motor planning
Motor execution’ Motor execution
/ Sensory integration Sensory integration
Total cortical activity z ] AN
in sensorimotor cortex
| High-pass filter (adaptation) |

hd

wj\/‘“ \A/V"\//
Paw Vek)cL/-\/—

Cross correlation between
paw velocity and neuronal activity (arb. units)

Spikes
| I I | 1118
56 Subthreshold reconstruclon using
the SubLab algorithm
Temporal lag between paw velocity
and neuronal activity (s)
C .5 E 2
MW’MVMW”WW c
§ = AP I MNNSANNANASAAANIN o i PPt NN =
T3 A AN g AN e PSP\ et p e o]
g 2 B i P i E 0.2
wn ©
= B e P SEWVRAR v )
5 2 AN A AN VNN N At g i PPN 5
gs PN oM M AN AN i NP &
L5 >
Sw AN A Y A oo s o b AN S 01
Q3 AR N NN NN AN NN SN per POt S
£ T v
=5 WWWWM 2
% E e i st NP NN ; 0
) A AN AN VAN BN g Pt AP <
N MmN P gt g g PN F &
Average 1
rectified ] \/\/\_/\___/-\ 7
high pass 0
1 1s

Temporal lag of peak of
cross correlation (s)
o

Paw
velocity
(arb. units)

-17 *% * *% *% *¥% %

0.11 0.23 0.45 1.1 2.3 45 1
Bandpass frequency (Hz)

o

Fig. 4 High-pass-filtered neural activity is correlated to paw velocities. A Schematic illustration of how a high-frequency neuronal activity can be
superimposed on a low-frequency neuronal activity and yet be separable. B Reconstruction of the subthreshold activity of the sorted units to enable the
study of how fast neuronal activities change. € Reconstruction of neuronal activities from 14 randomly selected units during the joystick task (top). An
increase in the average rectified high-pass-filtered neuronal activity (black trace, middle row) typically precedes higher paw velocity (red trace). D The
Pearson correlation coefficient for different lags between the rectified band-pass (11 Hz)-filtered neuronal activity and the paw velocity during the
locomotor task (upper-left, two-sided t-test, p = 0.7, n = 6), and the joystick task (upper right, two-sided t-test, p = 0.0115, n = 5), and for recitified band-
pass (0.11 Hz)-filtered neuronal activity and the behavior during the locomotor task (lower left, two-sided t-test, p = 0.0013, n = 6), and the joystick task
(lower right, two-sided t-test, p = 0.0051, n =5). The comparison between cross-correlation values at time point zero and the time point of maximal cross-
correlation reveals significant changes with different temporal lags. E The peak correlation between the paw velocity and the rectified band-pass-filtered
neuronal activity for seven frequencies for the joystick task (red), and the locomotor task (blue). Two-sided paired t-test against the peak at 1.1 Hz for the
locomotor task: n=6. p=0.016 (0.11 Hz), 0.0029 (0.23 Hz), and 0.019 (0.45 Hz), and against the peak at 2.3 Hz for the joystick task: n=15. p=0.036
(0.11Hz), 0.012 (0.23 Hz), 0.0085 (0.45Hz), and 0.021 (1.1Hz). No correction for multiple comparisons. Lines connecting the data points (denoting
individual animals) across the frequencies denote the mean for the locomotor task (blue), and for the joystick task (red). Error bars denote the standard
deviation of the mean. F Temporal lags of the peak Pearson correlation coefficient (across temporal lags) for rectified band-pass-filtered neuronal activity.
Two-sided paired t-test against the O s lag for the locomotor task: n=6. p = 0.0013 (0.11Hz), and 0.045 (0.23 Hz), and for the joystick task: n="5.
p=0.0051 (0.1 Hz), 0.025 (0.23 Hz), 0.0056 (1.1Hz), 0.005 (2.3 Hz), 0.0072 (4.5 Hz), and 0.012 (11 Hz). No correction for multiple comparisons. Lines
connecting the data points (denoting individual animals) across the frequencies denote the mean for the locomotor task (blue), and for the joystick task
(red). Error bars denote the standard deviation of the mean. Significances are indicated according to *p < 0.05, **p < 0.01. Source data are provided as a
Source Data file.
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five different frequencies 0.1, 0.3, 1, 3, and 10 Hz. To minimize
the effect of harmonics, the light was varied according to a
sinusoidal function. To test whether slow oscillations induced a
depolarization block, we measured extracellular activity in close
proximity to the optical fiber (Fig. 7A, B). All stimulation fre-
quencies resulted in strong increases in neuronal firing. However,
in line with our high-frequency hypothesis, only 3 and 10 Hz
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resulted in an overt cyclic paw movement (see Fig. 7C, D, Sup-
plementary Movie 1; the average number of behavioral cyclic paw
movements for 3 Hz stimulation was 2.3 + 0.5 Hz, and for 10 Hz
stimulation was 3.4 + 1.4 Hz.) This movement threshold between
1 and 3 Hz aligns with the following: (1) The movement gen-
eration was associated with a time constant of 400 ms (Fig. 3])
(corresponding to 2.5Hz), and (2) the peak in the correlation
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Fig. 5 Optimal frequency for decoding behavior. A Higher neural frequencies predict paw velocities better than lower frequencies. Original paw velocity in
the locomotor task (1). Decoded paw velocity using low (2) and high (3) neural frequencies. The gray curves depict movements in the lateral-medial (LM)
direction, black curves refer to movements in the anterior-posterior direction (AP). B Indicates the same as panel A, but for the joystick task. C, D Decoding
performance is dependent on the neural frequencies for the locomotor task (C) and joystick task (D) and peaks at 2.3 Hz. To minimize a noise-dependent
bias for low frequencies, we decoded the de-noised (encoded) neuronal activity (light-blue line). When we added White Gaussian noise to the de-noised
neuronal activity (orange line) this accurately resembled the original neuronal data (yellow line). E, F Neuronal frequency increases before movement
onset. Average wavelet analysis across decoding kernels for all sorted units for the locomotor (E) and joystick task (F). The amplitude of higher frequencies
increases (black line) when approaching the time of movement at lag O. Top inset: The averaged variability of the decoded kernel across all sorted units
measured by bootstrapping across 10-s segments. G The amplitude for high frequencies is significantly higher for the joystick task than for the locomotor
task. The ratio between the wavelet amplitude of the joystick and the locomotor task is plotted against neuronal frequency. Individual lines are
bootstrapped data to show the statistics of the mean. Significances are indicated according to the frequency region for which p < 0.05 (*). Corrected for
multiple comparisons. H The fastest changes in the unit-specific decoding kernel are more focused in time for the joystick task than for the locomotor task.
The time point of the largest rectified temporal derivative of the decoding kernels of all sorted units for the locomotor task (blue) and for the joystick task
(red). I Decoding kernels with a signal-to-noise ratio larger than five. The decoding kernels were normalized to have standard deviations equal to 1.

J Population activity is more synchronized during the joystick task than during the locomotor task. Latency variability of the full-width half maximum (or
minimum) of the unit-specific decoding kernels for the locomotor task (blue) and for the joystick task (red). Two-sided bootstrap corrected for the
dependency across sessions (see methods) of the difference of the standard deviation: p = 0.011 (Locomotor task: n = 57, Joystick task: n =110). The data
for each box-plot is bootstrapped and corrected for dependence across sessions (see methods). Box-plots: central mark indicates the median, bottom, and
top edges refer to the 25th and 75th percentiles. Significances are indicated according to *p < 0.05. K-L lIllustration of how low temporal jitter across
individual neurons may conserve high frequency while a high jitter leads to a low frequency. Source data are provided as a Source Data file.
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Fig. 6 Ratio of high- to low-frequency changes of neuronal data predicts state spaces. A Example sessions of dimension-reduced population coding for
animal 222. The trajectory is divided into paths for which the high frequency (>1.1Hz) had a larger amplitude than the low frequency (<1.1Hz) (red), and
into segments for which the high frequency had a smaller amplitude than the low frequency (blue). Output-null (blue) and output-potent spaces (red) are
indicated by dashed lines. The thickness of the trajectory indicates the averaged paw velocity. Thicker lines refer to higher velocities. B Quantification of the
results in panel A for all animals. The average state coding was calculated for preferentially high- and low-frequency coding. A negative- or positive-state
coding value refers to a dominant null space or output-potent space, respectively. The frequency coding is defined by either a dominance of high or low
frequencies of neuronal changes. Dominant high-frequency changes are associated with the output-potent space, whereas dominant low-frequency
changes were correlated with the null space. Two-sided paired t-test. Data sample dependence correction for the temporal smoothing of 10 samples. High
frequency: p = 0.033 (n = 9439 low-frequency time points), Low frequency: p = 0.04 (n = 5837 high-frequency time points). The data for each box-plot is
bootstrapped and corrected for dependence across sessions (see methods). Box-plots: central mark indicates the median, bottom, and top edges refer to
the 25th and 75th percentiles. Source data are provided as a Source Data file.

peak of the 0.1 Hz oscillation, indicating a clear cross-frequency
coupling between 0.1 and 3Hz and suggesting a nesting of
higher-frequencies in lower-frequencies.

between paw velocity and neuronal activity occurred above 1.1 Hz
(Fig. 4E).

Nesting of low and high neuronal frequencies. The evidence of

a particular function of different frequencies raises the question of ~Discussion

whether those frequencies are related. Recently, hierarchically
nested neuronal dynamics revealed by phase relationships of slow
and fast local field potentials have been proposed to implement
such  multi-timescale  behavioral  organization  during
locomotion®”. Inspired by these findings, we calculated the cross-
frequency coupling of slow 0.1 Hz neural changes with the rela-
tively faster 3 Hz changes (Supplementary Fig. 12). The 3 Hz
amplitude was strongest around phase 0, corresponding to the

We introduced an alternative approach for investigating the
separation of planning and execution of movements. Our
approach was inspired by previous work which demonstrated
how difficult this separation can be even with tailored task
designs. Zimnik et al.1 found that the effect of microstimulation
in the supplementary motor area (SMA) on the timing of
movement initiation, measured as reaction times, depended on
the degree of motor preparation. However, a simple model was
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Fig. 7 Optogenetic induction of movement. A Simultaneous extracellular recordings and optogenetic stimulation at five different frequencies averaged
across two animals. The instantaneous firing rate was estimated by threshold crossings in 10-ms-bins for the stimulation period of 10 s. B Average firing
rate before (black) and during stimulation (blue) for different trials (dots) from two animals. The bars indicate the average firing rate. C Optogenetic
stimulation in a Plexiglas arena surrounded by seven cameras for behavioral tracking’’. The behavior was quantified as the amplitude of the velocity for
respective stimulation frequencies (black lines). Rat drawing originates from doi.org/10.5281/zen0do0.3926015. D Behavioral quantification for different
stimulation frequencies. Each line corresponds to the duration of repetitive up/down paw movements in a stimulation trial. Optogenetic stimulation did not
evoke any cyclic movements in the trials for frequencies 0.1 (16 trials), 0.3 (17 trials), and 1Hz (17 trials). Only optogenetic stimulation applied with >3 Hz
induced overt cyclic movements. Source data are provided as a Source Data file.

able to assign a common impact on the probability of movement
initiation across all contexts. The SMA has previously been
credited with the cognitive processing of motor preparation.
However, Zimnik et al.!? found that the SMA seems to also be
involved in direct initiation in movements. This finding suggests
that the classical approach of a go-cued task combined with
classical statistical analyses might mask overlapping planning and
execution-related neural activity.

Of particular interest for our study is the intermingling of
factors, which hampers a clear definition of the contribution of an
area. We observed this intermingling of preparatory activity and
motor execution between M1 and M2. Previously, a hierarchical
relationship between M2 and M1 had been proposed?9-42, On the
one hand, M2 neural activity precedes local M1 activity on a
single-trial level?0, can predict the activity of M1, shows earlier
changes during learning?!, and provides crucial information to
M1 for movement accuracy*2. On the other hand, both M1 (CFA)
and M2 (RFA) have been shown to be relevant to planning
upcoming movements*. We also found indications for planning
and execution in both areas but with longer modulation durations
in M2 than in M. These longer modulation durations of
M2 support the planning role of this brain area, as planning

typically develops over longer time periods. At the same time,
some neurons in M2 also showed short modulation durations,
suggesting a role in movement execution along the lines of
Zimnik et al.1°.

Our approach offers a way out of this intermingling issue, as
the randomized behavior minimizes any behavioral bias. Of
course, our approach comes with limitations. The lack of a clear
task structure complicated the analyses. Direct comparisons with
the existing literature are not always straightforward, as classical
statistical tests or more recent advanced approaches typically rely
on task phases with multiple identical repetitions. We value these
classical approaches because they are typically quite intuitive and
have resulted in seminal findings. Thus, we see our randomized
movement approach as a complementary method that can pro-
vide insights from a different angle but should not replace the
existing approaches.

Our study relies on randomized movements, which could be
considered as sub-movements. Sub-movements are a long-known
phenomenon*3, typically occurring during the conduct of longer
movements that are often investigated in forearm tasks of non-
human primates**1. In these experiments, a small sub-
movement with a velocity peak occurs every ~ 300 ms. An open
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debate exists on whether sub-movements rely on extrinsic factors,
such as feedback loop delays between the visual system and
internal corrections*®°2, or intrinsic neuronal oscillators working
as engine[s] of (sub)-movements>3.

As we did not train our rats to conduct long movements, the rats
were completely free to generate movements according to their
inner clock. The feedback from muscles and joints as well as the
skin might also be interpreted as external factors, but their impact
would be rather on the sensory side and thus should be considered
a consequence of the movement. The self-paced movements
resulted in an average peak-to-peak velocity time of 210 ms in the
locomotor task and 230 ms for the joystick task. We consider this to
be sufficiently close to the range of reported sub-movement dura-
tions of 1-4 per second to assume that we are dealing with the same
mechanism. The slightly shorter sub-movement durations might be
related to species differences, as our study was conducted on rats
whereas the majority of previous studies were on humans and non-
human primates. We found a correlation to the sub-movement
duration on a neuronal level: The shortest neuronal modulation
durations were in the 300-ms range (locomotor task: 0.36 + 0.09s,
joystick task: 0.27 £ 0.06s; see Fig. 1). However, most of the mod-
ulation durations were longer (longest durations in the locomotor
task: 1.6 +0.37s, joystick task: 1.2 +0.37s).

A question remains as to how those longer modulation dura-
tions relate to the short sub-movement durations. Here, our
optogenetic results provided direct evidence for a low-pass fil-
tering effect: Both 3 and 10 Hz stimulation resulted in 2.3-3.4-Hz
movements. This filtering effect explains our findings as well as
previously described time scales of movement generation in the
3-Hz range. Reversing the argument, fast-changing population
activity can be extracted by a classic high-pass filter. Fast changes
refer to, for instance, changes from a high firing rate to a low
firing rate or vice versa. Adaptation mechanisms>4->8 at any stage
between the cortex and the muscles could serve as the biological
equivalent of such a high-pass filter (see Supplementary Note 2).
In this study, we focused on a relatively low-frequency spectrum
of neural changes. We found a breaking point around 1.1 Hz and
used this to divide the frequencies in a lower range referring to
planning, and in relation to this, in a higher range contributing to
the execution of movements.

Planning or preparatory activity can refer to individual
movements as well as movement sequences. As we performed the
analysis over the entire session, there might have been a bias
toward preparatory activity for individual chunks of movements
(or sub-movements), as only occasionally occurring sequences
might be averaged out. The break point at 1.1 Hz lies within the
range of 0.3-6 Hz oscillations of local field potentials (LFPs),
which have been considered to be low frequency>!>*0. In line
with our study, these lower frequencies have been hypothesized to
be relevant for movement conduction. In particular, LFPs in the
range of 3-6 Hz have been reported to be time-locked to sub-
movements®), and at 3 Hz in particular after a skill had been
learned®!. As LFPs have a clear relationship with the neuronal
population as well as individual unit activity, and because of the
similarities to previously reported sub-movement durations of
300 ms, it is conceivable that our findings are related to these
previous results. In contrast to Hall et al.’!, we also observed a
low-frequency effect in a task that did not require learning (i.e.,
the locomotor task). Thus, the slow oscillations seem to be an
intrinsically omnipresent phenomenon during limb movements
and even during sleep and anesthesia®l; it also seems that they
can grow stronger with training®.

Going even lower in the frequency spectrum, LFPs as low as
0.3-2 Hz contain relevant information for decoding®. Theoreti-
cally, the higher decoding power in lower frequencies could be

explained by trivial statistics (see “Frequency-specific decoding of
paw movements” in Results). Owing to the lower noise level,
low frequencies could be particularly meaningful for conveying
reliable information, which would also be reflected in a higher
decoding accuracy. Using low frequencies would thus be a
productive approach to biology. However, our results provide
evidence that neuronal changes of around 2.3 Hz were best suited
for decoding purposes after our de-noising strategy, which
removes this bias. This finding indicates that part of the strong
decoding power of the very low frequencies (<2.3) was due to
statistics, while the previously reported link between sub-
movements and 3 Hz>1%0 might explain the good performance
in this slightly higher frequency range. Our results confirm the
significance of the frequency range around 3 Hz, emphasizing
that their relevance is not simply explained by statistics.
Bansal et al.>® also argued that the low-frequency signal is an
event-related potential and not an oscillation intrinsic to these
cortical areas. The authors assumed that the oscillatory nature of
the signal observed in classical behavioral tasks arises from the
repeated nature of the movements®!. By design, our task only
contains minimally repetitive elements and yet shows a strong
correlation with the low-frequency spectrum of neuronal changes.
Thus, our results argue against an explanation of slow frequency
changes solely based on repetitive movements.

The concept of different time scales for controlling behavior is
widely applied across species including Caenorhabditis elegans?’,
Drosophila®!, zebrafish®2, zebra finch®3, and mice®. Recently,
hierarchically nested neuronal dynamics revealed by phase rela-
tionships of slow and fast local field potentials, have been
reported to implement such multi-timescale behavioral organi-
zations during locomotion?’. Inspired by this approach, we
showed that 3-Hz changes have a slightly larger amplitude
around the maximal activation during 0.1 Hz oscillation. This
coupling is a sign of nesting, demonstrating the embedding of
faster oscillations into slower ones. This result provided further
evidence for the assumption that such hierarchically nested
activity patterns may be a common mechanism for organizing
and regulating neuronal dynamics across time scales?’.

The frequency-based separation of motor planning and
execution proposed here can be integrated into conceptual fra-
meworks of motor control. According to the concept of dynamic
systems, for example, the null-space theory*®, a frequency-based
separation of motor planning and execution would allow both
processes to work in parallel. Thus far, the null-space theory has
been tested with trial structures with temporally separated plan-
ning and execution periods®® or with sensory-driven motor
execution®. For intrinsically planned continuous movements,
our results suggest that two independent population state spaces
can be generated in the frequency domain, one based on high and
one on low frequencies. The concept of separate neuronal
populations for motor execution and motor planning (e.g., by
projection- or genetically defined neurons®”:%8) assumes a com-
plete separation of the signals. However, genetically defined
spinal-cord projecting neurons have been shown to encode not
only motor execution but also motor planning®-%%, Our proposed
high-pass filtering mechanism could be a way to expose the
motor-execution component by decreasing the planning com-
ponent. This could explain why the fastest change of the spinal-
cord-projecting neurons occurred after the go cue, and why this
change was faster than that of the thalamic-projecting neurons®.
Therefore, the separation of the processes by means of slow and
fast dynamics could facilitate simultaneous parallel motor plan-
ning and execution within the same neuron, be it in the con-
ceptual framework of dynamical systems or based on identified
neuronal subtypes.
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The separation of motor planning and execution by means of
different frequencies of neuronal activity requires a relatively
slowly evolving motor planning. This prerequisite makes intuitive
sense, as planning and decision-making rely on accumulating
internal or external evidence’%-72, Thus, motor planning-related
neuronal activity changes slowly and hence can be stopped from
percolating to the muscles by a high-pass filtering mechanism
based on neuronal adaptation. Thus, our proposed mechanisms
are able to simply explain the simultaneous implementation of
intrinsic motor planning and execution.

Methods

Animals. All animal procedures were in accordance with the guideline RL 2010 63
EU and were approved by the Regierungsprasidium Freiburg. In this study, we used
six male Long-Evans rats (400 g, Janvier), which were implanted at the age of

8 weeks and recorded up to 4 months after the implantation. Three to four animals
were pair-housed in type 4 cages (1500U, IVC typ4, Tecniplast, Hohenpeifienberg,
Germany) before implantation and the animals were singly housed after the
implantation in type 3 cages (1291H, IVC typ4, Tecniplast, Hohenpeifienberg,
Germany) under a 12 h light-dark cycle (dark period from 8 a.m. to 8 p.m., time
span of training and experiments). Prior to the initial behavioral training, no
behavioral tests were conducted, no drugs were applied, and food (standard lab
chow) and water were provided ad libitum. During the course of the experiment,
the animals were maintained with free access to food, but the water supply was
restricted. Rats were kept at >80% body weight as measured prior to water
restriction. For two days per week, free access to water was ensured.

Animal surgery. Animals were initially anesthetized with isoflurane inhalation
followed by intraperitoneal injection of 75 mg/kg Ketamine (MEDISTAR, Holz-
wickede, Germany) and 50 pg/kg Medetomidine (Orion Pharma, Espoo, Finland).
The animals were then put into a transportation container covered with an opaque
cloth to facilitate the anesthesia. Once the animals were anesthetized, they were
positioned in a stereotaxic frame (David Kopf Instruments, Tujunga, CA, USA)
and their body temperature was kept at 36 °C using a rectal thermometer and a
heated blanket (FHC, Bowdoin, USA). The anesthesia of the animals was main-
tained with approximately 2% isoflurane and 0.51/min O,. For pre-surgery
analgesia, we subcutaneously (s.c.) administered 0.05 mg/kg Buprenorphine
(Selectavet Dr. Otto Fischer GmbH, Weyarn/Holzolling, Germany). Every other
hour, the animals received an s.c. injection of 5 ml isotonic saline. Moisturizing
ointment was applied to the eyes to prevent them from drying out (Bepanthen,
Bayer HealthCare, Leverkusen, Germany). The skin was disinfected with Braunol
(B. Braun Melsungen AG, Melsungen, Germany) and Kodan (Schiilke, Norder-
stedt, Germany). To perform the craniotomy, the skin on the head was opened
along a 2 cm long incision using a scalpel. The exposed bone was cleaned using a
3% peroxide solution. Self-tapping skull screws (J.I. Morris Company, Southbridge,
MA, USA) for reference for extracellular recordings were placed over the cere-
bellum. Craniotomies were drilled bilaterally extending from —2 to + 5 mm in the
anterior-posterior direction and from + 1 to 4+ 4 mm in the lateral-medial direction
relative to Bregma. 22 tungsten electrodes (200 to 600 kQ impedance, polyimide
insulation, WHS Sondermetalle, Griinsfeld, Germany) were implanted at a depth of
1.2 mm in each hemisphere. Electrodes were implanted according to the area
borders given by the online brain atlas from Matt Gaidica’? and CFA and RFA
were delineated according to Neafsay and Sievert’” and Rouiller et al.3 (Fig. 1E).
Three rows of six electrodes each, oriented in the medial-lateral direction, were
implanted in the anterior-posterior direction. The fourth and last row consisted of
four electrodes, oriented in the medial-lateral direction (see Fig. 1E). Occasionally,
we had to cut some electrode wires, in order to not destroy blood vessels at the
implantation site (e.g., rat 221, left hemisphere, last electrode row). Kwik-Cast
(WPI, Sarasota, FL, USA) was used to protect the brain from the dental cement
applied in the final step. Prior to this, Mill-Max connectors (Mill-Max, Oyster Bay,
USA) from each hemisphere were glued together to form a 4 x 13 pin connection
matrix. The last and first four pins were connected to the two skull screws over the
cerebellum to serve as reference and ground. Finally, the assembly was fixed using
dental cement (Paladur, Kulzer GmbH, Hanau, Germany).

Behavioral tasks. Animals were encouraged to move with as little repetition as
possible. In the locomotor task, two servo motors positioned a waterspout at
various locations within an arena of 30 x 40 cm. Every 10 to 30, a valve ejected a
drop of water that remained in the mesh until the rats consumed it. To prevent the
rats from following the movements of the waterspout, we introduced dummy
moves: First the waterspout performed a dummy move without giving water. One
second later, it moved to a new position where it let out a water drop. The third
and last move was again a dummy move. Even for an experienced animal, this
procedure resulted in multiple water drops distributed across the mesh at any given
time point. The fact that the rats did not collect all water drops indicates that the
animals could not predict where the water was let out and had to actively search for
it. This task required minimal training, as indicated by the stable paw velocities

over all of the sessions. Thus, we used all sessions for data analysis (Supplementary
Fig. 1A).

In the joystick task, the animals had to learn to grab a joystick-like manipulator
as a first step. The manipulator was based on a manipulandum for rodents’4.
Instead of having to reach out for the joystick, it was placed right below the right
front paw. The naive rats typically explored the arena in which the joystick was
placed. As the animals placed the paw by chance on the joystick, the joystick
vibrated and a liquid reward was given as long as three requirements were met: (1)
The rats had to keep holding the joystick with the right front paw, which we
controlled for via force sensors on the joystick. (2) The left front paw had to be
placed on a force sensor plate, which was placed to the left of the joystick. (3) The
rats’ heads had to cross an infrared sensor. This ensured that the animals had to
learn to use their right front paw to manipulate the joystick rather than the left paw
or the mouth.

The vibration of the joystick was implemented by clamping the current of the
two motors according to two independent Gaussian processes and served two
purposes: (1) It made the animals aware of the joystick. (2) The vibration of the
joystick increased in amplitude during the course of 10 s (the maximum vibration
amplitude resulted in an average acceleration of 1.5 m/s?) such that, unless an
animal held the joystick firmly, it would lose the grip and thus not receive a reward.
Altogether, these measures resulted in automatic training by which the rats learned
to hold the joystick during the maximum vibration amplitude within 10 sessions.
Once the rats had developed a firm grip on the joystick, the motors were turned off
and the rats received a reward when they actively moved the joystick. Moreover,
the rats only received rewards when they moved in a direction or to a position that
had not been visited recently (see below). The joystick could be moved within an
arena of 40 x 40 mm.

The arena was divided into 5 x 5 bins and the direction of movement was
divided into eight bins. For each bin, we stored the amount of remaining reward.
Whenever the rats visited one bin, the amount of remaining reward, r, in that bin
was decreased to r —Ar. The amount of reward that was decreased, Ar, was
distributed among all other bins. Thus, if the rats preferred one bin, the reward
within that bin disappeared completely after 20 s. It took up to 15 sessions for the
animals to start to move the joystick non-repetitively (Supplementary Fig. 1B).
Before the rats started to move randomly, they typically tried to pull the joystick
only in one direction (typically towards the rat). This resulted in minimal overall
movements since the joystick was stopped by the edges of the arena (the
40 x 40 mm arena). Only once they realized that they could move in all different
directions did the amount of total movement increase. For data analyses, we used
data from sessions 15 to 35.

Quantifying behavior. We could relate the joystick position and movement to the
egocentric coordinates of the rats because they had to take a defined pose in the
joystick task. To enable a comparison of the locomotor task and the joystick task, it
was necessary to quantify the behavioral variables in a similar way. To achieve
egocentric tracking for the locomotor task, we tracked the paws, head, chest,

and belly of the animals. Using those coordinates, we aligned the movements of the
right front paw to egocentric coordinates. The neck velocity was calculated

from the head, chest, and belly coordinates. Those body parts were tracked by
painting them in distinct colors. The head of the rat did not have to be painted
because of the black hood of Long-Evans rats. To ensure that all body parts could
be tracked, the cameras were placed below the arena. Two to four cameras (Stin-
gray, F033C IRF CSM, Allied Vision Technologies) were used in the locomotor
task. The noise of the tracking was estimated to be 0.79 cm/s (estimated when the
paw was standing still on the mesh) and was subtracted from the paw velocity
estimates.

Data acquisition and preprocessing of extracellular recordings. Extracellular
signals were band-pass-filtered, amplified, and digitized using the INTAN (Intan
Technologies, Los Angeles, California) head stage attached to the Mill-Max matrix
connector at the animals’ heads. To maximize comfort for the animals, we stripped
the ultrathin INTAN cable and suspended it with a 1.5-m long ultralight spring
with a 1.5 mm diameter. The long recording cable allowed the rats to move
between the locomotor task and the joystick task without having to be disconnected
and reconnected. The rats either were in the joystick arena for the entire session or
began with 30 min on the locomotor task, after which a door was opened allowing
them to walk into the joystick arena for 40 to 90 min. In the case of a dual-task
session, we always began with the locomotor task because the color markers used
for the locomotor tracking faded over time.

The extracellular recordings were sampled at 30 kHz and were de-noised offline.
First, 50 Hz and the corresponding harmonics were removed using a 20-ms
template estimation. The activity across all channels was demeaned using a median
filter. Spike sorting was conducted on high-pass-filtered data with a cutoff
frequency of 300 Hz. Spike snippets were extracted from peak aligned events that
crossed a threshold of four times the standard deviation. Only spikes with a
negative peak were considered. The spike window was —0.5 to 2 ms around the
peak amplitude (resulting in 76 values for each spike). To minimize the risk of a
sorted unit being a combination of multiple neurons, we applied a conservative
threshold for the cluster size. To this end, we used a cluster size that was dictated by
the noise level 0.5 ms before the minimum of the spike. Given the typical refractory
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period of neurons, this noise estimate excluded variability caused by this unit and
was therefore a direct measure of the cluster size of this particular unit. Since our
electrodes typically had spacing between 300 and 1000 pum, we sorted each
electrode separately.

The spikes were sorted in the raw 76-dimensional space without dimensional
reduction. For each sorted unit, the spike sorting algorithm had two phases. First,
the algorithm estimated a suitable seed spike. Second, the corresponding waveform
was optimized iteratively until the spike assignments of that unit remained
constant. The clustering algorithm selected a seed spike by calculating the average
noise level across all units. Afterward, the algorithm randomly chose one spike and
counted the number of neighboring spikes within this average noise level. Those
spikes were called the spike-neighborhood. This procedure was repeated for 500
randomly chosen spikes to maximize the chance of finding a globally optimal seed
spike. The spike that had the most neighbors was selected as the seed for a unit.
To optimize this spike seed, the noise level for the neighboring spikes was
recalculated, the new neighborhood was calculated given this new noise level, and
the new average waveform was calculated. This procedure was repeated until
the neighborhood remained constant. The spikes within the noise-defined
neighborhood were considered to belong to one sorted unit. For this unit, the
spike sorting was finished at this point, and it was not considered for further
spike sorting. For the remaining spikes, the algorithm restarted phases one and two
to search for the next sorted unit. This procedure was stopped when it resulted in
sorted units with spike rates lower than 0.1 Hz.

We regarded a unit as a single unit when the number of spikes within an
interspike interval of <2 ms corresponded to a smaller firing rate than the average
firing rate of the unit. To define the degree of decorrelation across neurons, we used
the p-rate*>, which is the minimum spike rate in the spike-triggered spike average
between two neurons (cross correlogram). The cross correlogram was calculated
over a period of —10 to 10 s with a 10 ms binning. We did not calculate the y-rate
from a neuron to itself since that would reflect intra-neuronal processing
(adaptation and refractory period) rather than the decorrelation of the population.
The p-rate corresponds to the average spike rate if the spikes of the two neurons
occur independently of each other; the p-rate would be 0 in the case of a lag with
no corresponding spike pairs. The p-rate percentage was calculated by dividing the
p-rate by the average firing rate.

Single and multiunit velocity modulation. As a general way to relate behavior to
neural activity on a single unit or multiunit level, we used a generalized form of a
spike-triggered average of the paw velocity, which we denote as activity-weighted
distribution (AWD). First, instead of taking discrete spikes, we weighted the
behavioral variable (paw velocity or position) with continuous neuronal activity.
This continuous activity was the instantaneous firing rate smoothed with a
Gaussian kernel with a standard deviation of 50 ms. Second, instead of averaging
the behavioral variable, we calculated the distribution for the behavioral variable. A
distribution was formed by binning the complete velocity range into 10 equally
sized bins. Each bin quantified the average activity across the velocity range of the
corresponding bin (see Supplementary Fig. 2). In contrast to the linear average in
the classical spike-triggered average, the distribution of the behavioral variable
allowed us to consider nonlinearities, e.g., exponentially increasing firing rates with
linearly increasing velocity.

According to a traditional spike-triggered average, the relationship between
neuronal activity and behavior was calculated at different temporal lags between
neural activity and behavior. In this work, we used lags between —4 and 4 s with a
temporal resolution of 10 ms. For large delays beyond 3 s, the neuron was typically
no longer modulated by behavior. We used the average activity between 3 and 4's
to calculate a baseline activity. This baseline activity was subtracted from the AWD.
The average velocity modulation at each lag was calculated by taking the mean of
the absolute value of the subtracted AWD (Fig. 1F, G). The duration and the lag of
the modulation were calculated by first extracting the peak modulation. We then
traced this modulation backward and forward in time until the modulation was
<80% of the peak modulation. The temporal difference between those two time
points was defined as the duration of the modulation (Figs. 1H, I, 2B, C, and D).
The average between those time points was denoted as the temporal lag of the
modulation. We took the average time of the 80% start and stop time, since this
resulted in a more accurate estimation than the peak time. This was due to the
frequent occurrence of plateaus in the velocity modulation. During these plateaus, a
small fluctuation of the neuronal signal within the noise level can make the peak
appear at any time point along the plateau.

To determine whether a unit was modulated by velocity, we calculated the mean
and standard deviation of the velocity modulation at the two extreme lags of the
normalized velocity modulation (—4 to —3 s and 3 to 4s). This mean was
subtracted from the velocity modulation and the result was divided by the standard
deviation to calculate the normalized velocity modulation. A unit was regarded as
modulated if this velocity modulation was larger than 10 (arbitrary units). The
variability of the velocity modulation was calculated by dividing the firing rate
variance by the average firing rate in each bin of the lookup table that is used to
calculate the velocity modulation (see Supplementary Fig. 2). The normalized
variability for each sorted unit was calculated by dividing the variability of the
velocity modulation by the variability at the baseline interval (—4 to —3s and 3
to 4s).

Bootstrapping velocity modulation. To estimate the variability of the modulation
duration, we conducted a bootstrap analysis (Fig. 1H, I). It would be computa-
tionally inefficient to sample all 10 ms bins with replacement. Moreover, two
neighboring 10 ms bins were not independent; therefore, we chose to divide each
session into 100 segments of equal size and calculate the AWD for each such
segment. This resulted in segments that were at least 10 s long, allowing compu-
tationally effective bootstrap sampling. We sampled the corresponding 100 AWDs
with replacement and calculated the resulting velocity modulation. This procedure
was repeated 100 times. For each repetition, we calculated the modulation dura-
tion. After this, we calculated the standard deviation across those repetitions.

Population correlation analysis and trial definition. A population correlation
analysis was performed on normalized neural activity. For each unit, we divided the
spike trains into 10 ms bins, subtracted the average firing rate, and divided each bin
by the standard deviation of the binned activity. This normalized data was orga-
nized into a matrix with as many rows as there were units and as many columns as
there were time bins. To prepare the data for the correlation, we normalized each
column to have an average of 0 and a Cartesian norm of 1 (unit length). Finally, we
removed a global population activity that could otherwise bias the correlation
analysis.

During short periods (between 500 ms to 10 s), the animals sometimes suddenly
froze (both in the joystick and the locomotor task), which resulted in a correlated
population activity across the joystick and the locomotor task (average R = 0.5). As
the activity was correlated across two fundamentally different tasks, it was more
likely to reflect a global state change rather than a planning process, which in turn
could bias the population correlation. We therefore minimized the contribution of
this freezing-related population activity, p, by correlating the population activity at
each time bin, a,, with the population activity, and subtracting the population
activity according to this correlation: a, - p(a,*p), where * is the scalar product.

With this normalized activity, we calculated the scalar product (Pearson
correlation coefficient) between two population vectors at two different time points
(Fig. 3C, D). We only correlated population vectors within a trial. As our
behavioral data were not separated into defined trials, we constructed trials using
the paw velocity. First, we filtered the paw velocity with a Gaussian kernel of 2 s
full-width half maximum (FWHM). To find trials for which a period of low
behavioral activity was followed by a period of high behavioral activity, we divided
each time point in the filtered velocity by each time point in the filtered velocity 2 s
earlier. If this ratio was larger than 2 and a local maximum across time, we
regarded it as the central time point of a trial. A trial was then defined as 8 s before
and 8 s after this maximum. This classification resulted in 1601 bins of 10 ms in
one trial. The correlation was calculated between all 1601 x 1601 pairs of time
points within a trial. Finally, as the population vector at one reference time point
was correlated with the population vector at all other time points, the correlation
would decay with increasing distances from the reference time point. This decay
was fitted by an exponential function using nonlinear optimization with a Gaussian
cost function (Fig. 3E, F, G, and H). The population correlation decay is a measure
of the frequency characteristics of the population dynamics: The reciprocal of this
time constant defines the frequency at which a low-pass filter with that time
constant attenuates the amplitude to 16% of the original amplitude.

To estimate the behavioral frequency at each time point, we calculated the
maximum behavioral frequency (within a window inversely proportional to the
frequency) that was required for describing the behavior within the error bounds of
the tracking.

Behavioral impact on population correlation. To test how well the neurons
encoded for position (Supplementary Fig. 2B), we divided the egocentric x and y
movement coordinates of the right paw into five equally sized bins between the
minimum and maximum position value. This resulted in a 5 5 element matrix.
For each element in the matrix, we calculated the average firing rate of the neuron
when the paw was in the corresponding position within + 50 ms. We used this
matrix as a lookup table to estimate the instantaneous firing rate at each 100-ms
time bin, given the position at the corresponding time bin. The resulting time
course of the firing rate was correlated to the time course of the true instantaneous
firing rate binned in 100-ms bins. The same analysis sequence was conducted for x
and y velocities.

Subthreshold reconstruction. We employed the subthreshold reconstruction
algorithm SubLab#. To summarize, the algorithm uses the spikes of one unit
(target unit) to reconstruct its subthreshold activity by means of the spiking activity
of the remaining units (input units). The algorithm differs from recent auto-
encoders and dimension reduction techniques in three aspects: (1) It does not
assume an even distribution of spikes in time (Poissonian or Gaussian models); (2)
(subthreshold) activity is not modified, as long as it does not cross the threshold;
(3) the algorithm reconstructs the subthreshold activity individually per neuron
and, therefore, does not impose any relationship between units. Here we used 10
training epochs and we ran the reconstruction on complete sessions.

We also tested the latent factor analysis via dynamical systems (LFADS) auto-
encoder algorithm because it does not require a trial structure and can fit
complex dynamics to spiking data’”. For our data, LFADS smoothed the spike
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trains in a piecewise continuous way. We observed gaps in the smoothed spike
trains. We suspect that these gaps were due to the spontaneous and complex
behaviors, which in turn caused the internal states to be reset frequently.

The reconstructed activity was filtered in the following way (Fig. 4C, D, E, and
F). High-pass filtering: First, the reconstructed signal was smoothed with a
Gaussian kernel with a standard deviation (o) of 0.14 s. Using the cutoff frequency
formula for Gaussian filtering (2m0)~1, this corresponds to a cutoff frequency of
1.1 Hz. Second, we subtracted this smoothed signal from the original reconstructed
signal. Band-pass filtering: First, the reconstructed signal was smoothed with a
Gaussian kernel with standard deviations of 0.057, 0.14, 0.28, 0.57, 1.4, 2.8, and
5.7s (2.8, 1.1, 0.57, 0.28, 0.057, and 0.028 Hz), respectively. Second, we subtracted
this smoothed signal from the original reconstructed signal. Third, the resulting
signal was smoothed with a Gaussian kernel with standard deviations of 0.014,
0.035, 0.071, 0.14, 0.35, 0.71, and 1.4 s (11, 4.5, 2.2, 1.1, 0.45, 0.22, and 0.11 Hz),
respectively. Low-pass filtering: The band-pass-filtered signal that was filtered with
a low-pass kernel of 0.71 s (0.22 Hz) and high-pass kernel of 2.8 s (0.057 Hz) was
referred to as the low-pass-filtered signal. The additional high-pass filtering
minimizes the influence from strong low-frequency components. Finally, to get the
energy of the filtered signal, we calculated the absolute value of the high-pass-
filtered signal.

Relating population and frequency coding. Output-null and output-potent
coding has traditionally been studied during the planning and execution phase of
instructed delay tasks. Our behavioral setting does not include a typical trial
structure; thus, we defined the planning and execution phase in terms of the lag
between the paw velocity and the neuronal activity. To this end, the anterior-
posterior paw velocity was multiplied with the neuronal activity for a sorted unit in
a bin-wise manner for a given lag and averaged across all bins. Thus, for a given lag,
this approach will quantify how each neuron codes for the movement in a linear
manner. We used temporal lags from —1s to 1's with 10-ms bins. The result is an
N x 201-dimensional matrix for each session, where N is the number of sorted
units. Dimension reduction to a 2 x 201 matrix was achieved by taking the largest
two principal components. We defined the output-potent space as a one-
dimensional space covered by the vector between the origin (0, 0) and the point in
the two-dimensional space (spanned by the first two principal components) at a lag
of —40 ms. This lag was defined by the notion that executional activity should have
a small correlation to the planning activity, which, in turn, translates to the lag at
which the correlation to the average activity between —1000 and —200 ms (putative
planning activity) was smallest. We choose the upper limit to be —200 ms to
minimize the bleeding into executional activity?>?>. This definition of the lag for
the output-potent space maximizes the separation of planning and executional
activity, thereby maximizing the chance that the null and potent spaces will be
found. Such a biased definition is justified here, since the aim is not to verify the
null-space theory but rather to see if it is related to the ratio of high and low
frequencies of neuronal changes. The output-null space was orthogonal to this
output-potent space. For each lag, we estimated which state the neuronal activity
was closest to by means of the difference in magnitude: abs(output-potent) —
abs(output-null). If this state tuning was positive, we regarded the neuronal activity
to be in the output-potent state. If state tuning was negative, we regarded the
neuronal activity to be in the null space.

To test whether the frequency coding could predict whether the neuronal
activity is in the output-potent or output null space, we assigned a frequency
preference for each lag of a certain session. This was done by calculating the
difference in magnitude: abs(amplitude of high frequency) - abs(amplitude of low
frequency). A positive frequency tuning meant that the neuronal activity had a
greater high-frequency component, and if it was negative, the neuronal activity had
a larger low-frequency component. Across all sessions, we pooled all lags that had a
positive or negative frequency tuning and calculated the resulting average state
tuning.

Behavioral quantification during optogenetic stimulation. For optogenetic sti-
mulation, we used a 200-pum fiber implanted at 1 mm depth in the primary motor
cortex of two rats (511 and 512) (AP = 0.5, LM = 2, and DV = 1). The viral vector
AAVS5 carrying the construct hSyn-hChR2(H134R)-eYFP-WPREpA (UNC vector
core, Chapel Hill, NC, USA), was injected at a depth of 1.5 mm with a volume of
1 ul. Each stimulation trial lasted 10 s and the light intensity was sinusoidally
modulated according to one of five frequencies: 0.1, 0.3, 1, 3, and 10 Hz with a peak
power of 4-12mW at the fiber tip. As the current that ChR2 can give rise to is
smaller for low frequencies than for high frequencies, we compensated with a
stronger light intensity for the lower frequencies’®. Each trial was randomly
interleaved with 120 to 240s.

To quantify the subtle paw movements that result from sinusoidal optogenetic
stimulation (Fig. 6C), we first calculated the paw position using FreiPose’”. For a
given trial, we manually selected the camera with the clearest view of the right foot
(the optogenetic stimulation was in the left hemisphere). The paw position for each
frame was then projected to this camera and a 100 x 100-pixels window was cut out
around this projected position. The optical flow was calculated for each pair of
neighboring frames (opticalFlowHS object in MATLAB). The paw position for
both frames in this pair was taken according to the first frame. The vertical
component of the optical flow was extracted because it is the major movement axis

during stimulation. Finally, the optical flow was only sampled at pixels with a
saturation above 20% (0.2 for saturation of the rgb2hsv function in MATLAB).
This saturation threshold was chosen to sample paw movements rather than more
unspecific fur movements. Trials in which the rat was grooming, eating, or walking
were eliminated from further analysis. The amount of movement for each
stimulation frequency was then calculated by averaging the energy in the 0.1, 0.3, 1,
3, and 10 Hz bands (using the spectrogram function in MATLAB with a window
size of 100 and overlap of 99).

In addition to the automatic behavioral quantification described in the previous
paragraph, in Fig. 6D, we manually quantified how the animal responded to the
optogenetic stimulation. To this end, we measured the duration for which the rat
performed an abnormal behavior. Abnormal behavior was defined as a paw
movement for which the rat was lifting and lowering the right paw towards the
original location at least two times. We excluded movements that could be ascribed
to walking or grooming, as well as movements that showed coordination between
the left and right paw. Although the criteria seemed robust, there was one trial in
which rat 512 stretched out the paw abnormally for the 10 Hz stimulation and this
was therefore not counted as a cyclic movement.

Encoding and decoding. We de-noised the neuronal activity data by exchanging
the raw neuronal activity with a predicted neuronal activity having a reduced
number of parameters. The prediction was based on the paw velocity data. We
called this step encoding. The encoded neuronal activity contained considerably
less noise because the predicted neuronal activity was the result of a temporal
kernel with several orders of magnitude fewer parameters than the original data
samples.

To encode the paw velocity, we convolved a temporal kernel with the paw
velocity. The temporal kernel had a range of —2 to 2 s with a temporal resolution of
10 ms (sliding window), resulting in a temporal width of T'=400. As we used the
paw velocity in the X and the Y direction to predict the neuronal activity for each
sorted unit, the temporal kernel was a matrix with T'x 2 weights (2 x 400 samples).
We optimized the weights of the temporal kernel by minimizing the least square
error between encoded neuronal activity and the raw neuronal activity. The de-
noising eliminated the noise bias that otherwise occurs for lower frequencies. This
de-noised—and thereby unbiased—data enabled us to test how different
frequencies in the neuronal activity contributed to the decoding of the paw velocity.

Following the encoding, we decoded the paw velocity based on the de-noised
neuronal activity. For testing the frequency dependency of the decoding
performance, we applied a double sample kernel with the two weights at two
different time points relative to behavior: —1/frequency and 0 seconds, respectively.
The frequency corresponded to the center frequency of the band-pass-filtered
neuronal activity. Thus, the kernel consisted of a matrix with 2 x U weights, where
U corresponds to the number of units. We optimized the weights of the decoding
kernel by minimizing the least square error between the decoded paw velocity and
the measured paw velocity.

For extracting the unit-specific decoding kernel, we used one temporal kernel
(400 samples, as for the encoding) for the X and Y paw direction. Thus, for the
unit-specific decoding kernel, each kernel was a matrix with T'x 1 weights, where T
corresponded to the number of weights in the temporal kernel (i.e., 400). The
temporal kernel of each unit was optimized independently of the temporal kernel
of the other units. We optimized the weights of the temporal kernel by minimizing
the least square error between the decoded paw velocity and the measured paw
velocity. To investigate which neuronal frequency featured the decoding best, we
applied the wavelet analysis of MATLAB (command cwt) with a symmetry
parameter of 1.5 and a time-bandwidth product of 2.

Calculating the phase-dependent amplitude modulation. The neuronal firing
rate was band-pass-filtered with 0.1 Hz and 3 Hz, respectively. The instantaneous
phase of the 0.1-Hz band-pass-filtered activity was calculated using the Hilbert
transform. The phase for all time points was then binned into 16 evenly divided
bins. The amplitude of the 3 Hz signal was averaged for those time points that were
binned into the same phase bin. To calculate the amplitude of the 3 Hz band-pass-
filtered activity, the signal was first rectified and smoothed at 1.5 Hz.

Statistical procedures. All statistics and graphical illustrations of spiking unit data
were corrected for the possibility that the same unit has been recorded during
multiple consecutive days (Supplementary Table 3). In the motor cortex, evidence
has been provided that tungsten electrodes are able to record the same unit for an
average of 3 days, and a considerable amount (11%) of neurons could be recorded
for up to 7 days’8. As we had a recording session almost every day, we con-
servatively regarded every seventh unit to be an independent data sample. To this
end, the degrees of freedom were calculated on the basis of the unit count divided
by seven. We made this correction for the t-test, the Pearson correlation coefficient,
and the ANOVA. For box-plots (using MATLAB’s box-plot function), we plotted
the bootstrapped data (using MATLAB’s bootstrap function with 1000 iterations)
and adjusted the standard deviation of the bootstrapped data such that it was \7
times that of the original data. In addition, this correction for independent data
samples was also applied to a mixed-effect model. The modulation duration dif-
ference between cortical areas was also tested using a linear mixed-effect model for
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which the areas were modeled with an additive random effect and the cortical
location was modeled with a fixed effect. All responses from a given electrode
were averaged across sessions for a given animal.

For statistical testing, we assumed that the data were normally distributed. The
test statistics for the Pearson correlation coefficient, the ANOVA, and unpaired
statistics approached a normal distribution for large data samples. For the paired ¢-
test, we assumed a normal distribution, as the test distribution was symmetric
around zero. Unless otherwise stated, samples were described in terms of mean and
standard deviation of the mean.

As we had one less animal in the joystick task (animal 220 lost the implant
before it learned the joystick task), all paired tests were done without animal 220 in
both the joystick and locomotor task. The non-paired tests were done using all six
animals in the locomotor task and all five animals in the joystick task.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

For a proper evaluation of all presented results, the entire data is required. As the dataset
is quite large with 0.5 Gb per session with more than 100 sessions in total, the data that
support the findings of this study are available from the corresponding authors upon
reasonable request. Source data are provided with this paper.

Code availability
The code for analyzing the data of this study is available from the corresponding authors
upon reasonable request. Source data are provided with this paper.
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