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Abstract: Taraxerol is a pentacyclic triterpenoid that is actively produced by some higher plants as
part of a defense mechanism. The biosynthesis of taraxerol in plants occurs through the mevalonate
pathway in the cytosol, in which dimethylallyl diphosphate (DMAPP) and isopentyl pyrophosphate
(IPP) are first produced, followed by squalene. Squalene is the primary precursor for the synthesis of
triterpenoids, including taraxerol, β-amyrin, and lupeol, which are catalyzed by taraxerol synthase.
Taraxerol has been extensively investigated for its medicinal and pharmacological properties, and
various biotechnological approaches have been established to produce this compound using in vitro
techniques. This review provides an in-depth summary of the hypothesized taraxerol biosynthetic
pathway, the medicinal properties of taraxerol, and recent developments on tissue culture for the
in vitro production of taraxerol.

Keywords: taraxerol; in vitro; medicinal properties; biosynthesis; triterpenoids

1. Introduction

Despite recent advances in combinatorial chemistry, and other means of synthesis
methods towards the production of essential drugs in healthcare, naturally derived com-
pounds are still an invaluable source of medicine [1]. This is due to the minimal side
effects and relatively higher biological activity of natural drugs compared to synthetic
drugs [2]. Although the process of discovering effective drugs from natural raw materi-
als is time consuming, costly, and less sustainable, advances in biotechnology could be
helpful for such efforts [3]. In fact, natural products have played an important role in
drug development whereby a considerable number of drugs are derived from naturally
occurring compounds [4]. Today, there are more than 250 naturally derived drugs that are
manufactured at large scales in the healthcare industries such as morphine, cephalosporin,
and paclitaxel [5].

Taraxerol, an oleanane-type pentacyclic triterpene, is one of the natural compounds
that have been investigated extensively for its potential utilization in drug development [6].
It has received major attention for its potential use as a therapeutic agent for the treatment
of various diseases [7]. Plants containing taraxerol are Hypericum perforatum [8], Clitoria
ternatea [9], Mangifera indica [10], and Strobilanthes crispus [11]. Taraxerol attracted wide
interest among researchers due to its significant capabilities in modern pharmacology,
such as its ability to act as an anti-tumor [12], anti-microbial [13], and anti-inflammatory
agent [14], and in the treatment of Alzheimer’s disease [15].

Thus, this review aims to further explore the distribution of taraxerol in plants, their
valuable properties and activities, as well as sustainable approaches in further producing
this compound.

2. Taraxerol

Taraxerol, (3β)-D-Friedoolean-14-en-3-ol, is a pentacylic triterpenoid [6,16]. Its chemi-
cal structure was first elucidated by Beaton et al. (1955) who identified that the oleanane-3-ol
lacks the methyl group at position 14, with an α-methyl substituent at position 13 and a
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double bond between positions 14 and 15 [17] (Figure 1). This compound is also known by
a few other synonymous names, which are isoolean-14-en-3b-ol, skimmiol, alnulin, and
tiliadin. Taraxerol can be extracted from various plant families and species found in nature.
However, the synthesis of taraxerol is challenging and depends on natural resources that
have a negative impact on biological conservation. Hence, the ongoing research on taraxerol
production and its distribution provides vital information for future investigations.
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2.1. Distribution of Taraxerol in the Plant Kingdom

Members of the Asteraceae family comprise the greatest number of taraxerol-containing
taxa, followed by the Euphorbiaceae and Malvaceae families (Table 1). It should be noted
that within the Euphorbiaceae family, species in the Euphorbia genus have shown consid-
erable accumulation of taraxerol. The most prominent source of taraxerol was found to be
chiefly concentrated in the leaves for most taxa [11,18–37], followed by the roots [9,12,38–52]
and finally the stems [36,38,53–59]. Some literature has also managed to isolate taraxerol
from flowers (Table 1). However, the distribution of taraxerol is highly diverse in plants,
and taraxerol content differ in different parts of plants and across different plant species.

Table 1. The distribution of taraxerol isolated from different plant taxa.

Family Genus Species Parts Extracted Taraxerol
Accumulation Authors, [Ref.]

Acanthaceae Strobilanthes
S. callosus Aerial parts 0.69% for 5.0 Kg of plant

material [13]

S. crispus Leaves N/A 1 [11]

Anacardiaceae

Lannea L. schimperi Stems, bark, and roots 299 mg/Kg dry weight [38]

Mangifera
M. indica Leaves 0.4–0.9% yield 2 [18]

M. persiciformis Not specified N/A [60]

Annonaceae Uvaria

U. microcarpa Not specified N/A [61]

U. macrophylla Not specified N/A [62]

U. hookeri Bark of the roots 75 mg/Kg dry weight [39]

U. narum Bark of the roots 0.04 mg/g dry weight [39]

Apocynaceae Gomphocarpus G. fruticosus Aerial parts 80 mg/Kg dry weight [63]

Araliaceae Schefflera S. octophylla Bark of the roots N/A [40]

Araliaceae Acanthopanax A. trifoliatus Leaves N/A [19]
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Table 1. Cont.

Family Genus Species Parts Extracted Taraxerol
Accumulation Authors, [Ref.]

Asteraceae

Artemisia A. incisa Roots 36.67 mg/Kg dry weight [41]

Conyza C. canadensis Roots 4.27 mg/Kg dry weight [42]

Ageratina A. pichinchensis var.
bustamenta Aerial parts 23.88 mg/Kg dry weight [64]

Crossostephium C. chinense Whole plants N/A [43]

Atractylodes A. lancea Rhizome N/A [44]

Hieracum H. pilosella Inflorescences 0.37% of 100 g of plant material [65]

Taraxacum T. officinale Roots N/A [12]

Chrysanthemum
C. morifolium (I) Flowers 0.2% yield 2 [66]

C. morifolium (II) Flowers 0.4% yield 2 [66]

Matricarcia M. matricarioides Flowers 0.1% yield 2 [66]

Cosmos C. bipinnatus Flowers 1.6% yield 2 [66]

Carthamus C. tinctorius Flowers 0.6% yield 2 [66]

Taraxacum T. platycarpum Flowers 0.5% yield 2 [66]

Betulaceae Alnus
A. nepalensis Leaves and twigs 19.7 mg (leaves) 2

6 mg (twigs) 2 [20]

A. hirsuta Bark of the stems 3.03 mg/Kg dry weight [53]

Braganiceae Cordia C. multispicata Leaves 19.05 mg/Kg dry weight [21]

Cactaceae
Pereskia P. aculeata Leaves 7.12% total abundance 3 [22]

Opuntia O. dillenii Stems N/A [54]

Caesalpiniaceae Acrocarpus A. faxinifolius Seed oils N/A [67]

Calophyllaceae Calophyllum C. cordato-oblongum Twigs N/A [68]

Campanulaceae

Adenophora A. triphylla Roots 0.04 mg/g dry weight [41]

Codonopsis
C. pilosula Not specified N/A [69]

C. pilosula var.
volubilis Not specified N/A [70]

caryophyllales Pseudostellaria P. heteraphylla Root tuber N/A [46]

Casuarinaceae Casuarina C. equisetifolia Seed oils N/A [45,67]

Celastraceae Maytenus M. undata Leaves 0.26 mg/g dry weight [23]

Clusiaceae Garcinia G. hombroniana Bark 2.31 mg/Kg dry weight [71]

Crassulaceae Kalanchoe K. daigremontiana Leaf N/A [72]

Ericaceae

Vaccinium V. iteophyllum Not specified N/A [73]

Rhododendron R. ovatum Not specified N/A [74]

Vaccinium V. oldhami Twigs 22 mg/Kg dry weight [75]

Rhododendron R. molle Roots 30 mg/Kg dry weight [47]

Euphorbiaceae

Sapium S. baccatum Bark of the stems 3.25 mg/Kg dry weight [55]

Euphorbia E. hirta Stems 0.03 mg/g dry weight [56]

Discocleidion D. rufescens Bark of the roots N/A [48]

Thyrsanthera T. suborbicularis Whole plant 13.67 mg/Kg dry weight [76]

Euphorbia E. antiquorum Not specified N/A [77]

E. chrysocoma Not specified N/A [78]

Excoecaria E. agallocha Not specified N/A [24]

Sebastiana S. adenophora Leaves 1.6–13.0 mg/Kg dry weight [25]

Homonoia H. riparia Roots N/A [43]
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Table 1. Cont.

Family Genus Species Parts Extracted Taraxerol
Accumulation Authors, [Ref.]

Macaranga M. triloba Leaves 0.19 mg/g dry weight [79]

Alchorneae A. latifolia Leaves 0.0007% 3 [80]

Fabaceae

Prosopsis P. juliflora Seed oils N/A [67]

Clitoria C. ternatea Roots 12.4 mg/g dry weight [9]

Erythrophleum E. fordii Leaves 3.01 mg/Kg dry weight [24]

Icacinaceae Pyrenacantha P. staudtii Leaves N/A [26]

Lamiaceae

Clerodendrum C. trichotomum Leaves N/A [27]

Vitex V. trifolia Not specified N/A [81]

Clerodendrum C. bungei Not specified N/A [82]

Lecythidaceae Barringtonia B. racemosa Bark of the stems N/A [83]

Malvaceae

Pavonia P. multiflora Not specified N/A [84]

Abroma A. augusta L. Leaf 28.80 mg/Kg dry weight [28]

Heritiera H. littoralis Leaf N/A [85]

Bombax B. ceiba (II) Leaf N/A [29]

Microcos M. tomentosa Roots 10.08 mg/Kg dry weight [49]

helmiopsis H. sphaerrocarpa Leaves 6.56 mg/Kg dry weight [30]

Sterculia S. foetida Leaves 0.11 mg/g dry weight [31]

Pterospermum P. heterophyllum Roots 12.88 mg/Kg dry weight [50]

Moraceae Ficus

F. thonningii Blume Roots 0.04 mg/g dry weight [51]

F. aurantiaca Stem N/A [57]

F. foveolata Stem 2.9 mg/Kg dry weight [58]

Myricaceae Myrica
M. rubra Bark 141.00 mg/Kg dry weight [52]

M. cerifera Root N/A [52]

Myrsinaceae Embelia E. schimperi Leaves 35 mg/Kg dry weight [32]

Myrtaceae Eugenia E. umbelliflora Leaves N/A [33]

Ranunculaceae Naravelia N. Zeylanica Leaves N/A [34]

Rhamnaceae
Ventilago V. leiocarpa Stems N/A [59]

Sageretia S. theezans Not specified N/A [86]

Rhizophoraceae Rhizophora
R. stylosa Leaves N/A [35]

R. mangle Leaves and stems 0.77 mg/g dry weight [36]

Rubiaceae Mitragyna M. rotundifolia Bark N/A [87]

Rutaceae Vepris V. punctata Wood 2.2 mg 2 [88]

Sapindaceae Cupania C. cinerea Bark 0.08 mg/g dry weight [89]

Sapotaceae Mimusops
M. elengi Seed oils N/A [45]

M. hexandra Bark 14.14 mg/Kg dry weight [90]

Solanaceae Solanum S. macrocarpon Cuticular waxes of the
leaves 3.5–7.4 ng cm−2 * [91]

Styracaceae Styrax S. japonica Stem-bark 28.08 mg/Kg dry weight [92]

Vitaceae
Vitis V. vinifera Leaf N/A [37]

Tetrastigma T. hemsleyanum Not specified N/A [93]

1 N/A: The authors did not fully provide the taraxerol accumulation information in their findings. 2 The amount
of starting material for extraction was not stated by the author. 3 Taraxerol accumulation data was based on
GC-MS analysis without comparison with authentic standard. * The standard was based on the composition of
free triterpene and sterol fractions of S. macrocarpon leaf cuticular waxes (ng cm−2) of leaf surface.
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2.2. Biosynthesis Pathway of Taraxerol

The biosynthesis pathways of taraxerol in plants have yet to be definitively elucidated.
Swain et al. (2012) hypothesized that the biosynthesis of taraxerol in plants begins from the
mevalonic acid pathway in the plant’s cell cytoplasm [94]. The mevalonate pathway begins
with acetyl-CoA and ends with the production of IPP and DMAPP, which are the basic
building blocks of various terpenoid compounds including taraxerol [95,96]. The DMAPP
produced will then undergo condensation with IPP which is catalyzed by geranyl pyrophos-
phate synthase, producing geranyl pyrophosphate (GPP) that will be further subjected
to condensation with IPP to produce farnesyl pyrophosphate (FPP) catalyzed by farnesyl
diphosphate synthase (FPS) [29,97]. Squalene synthase catalyzes the condensation of the
FPP molecules through reduction by NADPH to produce one molecule of squalene [98,99].
Squalene is then oxidised by NADPH and O2 to produce 2,3-oxidosqualene, which re-
sults in the reduction of NADPH into NADP+ and O2 to H2O [100]. 2,3-oxidosqualene is
then utilised as a precursor for the biosynthesis of various triterpenoids, starting with a
proton-initiated cyclization to produce dammarenyl cation, following which subsequent
rearrangement leads to the pentacylic oleanyl cation via baccharenyl and lupenyl cation
intermediates [101]. A series of 1,2-hyride shifts and/or methyl groups leads to com-
pound rearrangements. Finally, the rearrangements of compounds via taraxerol synthase
eventually lead to the formation of taraxerol in plants, more specifically in the cuticular
waxes [72,100,102]. A summary of the biosynthesis pathway is illustrated in Figure 2.
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3. Medicinal Properties of Taraxerol
3.1. Antioxidative Properties

‘Reactive oxygen species’ (ROS) is a term that encompasses various oxygen free radi-
cals produced during cellular oxidative process. These compounds pose a significant risk
factor for various diseases. Hence, antioxidants play an important role as a phytochemical
that could inhibit the oxidative process. A study reported that taraxerol isolated from the
bark of Styrax japonica exhibited weak radical-scavenging activity in the DPPH assay [103].
Increasing the concentration of taraxerol from 0.05–0.5 mg/mL yielded moderate radical
scavenging activity in DPPH assay [85]. Jamila et al. (2015) supported the findings from
Min et al. (2004), where taraxerol isolated from Garcinia hombroniana was found to be more
potent than trolox and equipotent to gallic acid in DPPH radical scavenging activity, while
in ABTS the scavenging activity of taraxerol was higher than trolox but less than gallic
acid [71]. The reducing capacity of the extracts is related to the presence of biologically
active compounds, particularly the hydrogendonating ability [17]. Owing to the potential
chemical structure of taraxerol itself, this might explain the potent antioxidative capabilities
of taraxerol. The current body of literature on taraxerol as an antioxidant provides valuable
insight on this compound, but the work is not yet completed, and there are aspects that are
under-explored.

3.2. Antimicrobial Properties

Singh et al. (2002) observed that 1 mg of taraxerol compound exhibited moder-
ate antimicrobial activity against two Gram-positive (Staphylococcus aureus and Bacillus
thuringiensis) and three Gram-negative bacteria (Escherichia coli, Enterobacter cloacae, and
Klebsiella pneumonia) [13]. Koay et al. (2013) investigated the minimum inhibitory concentra-
tions (MICs) of taraxerol on several bacteria and found that the compound is active against
Gram-positive Bacillus subtilis and Staphylococcus aureus at a concentration of 15.6 µg/mL
but is only moderately inhibitive to the Gram-negative Escherichia coli, Klebseilla pneumonia,
and Salmonella typhimurium at a concentration of 62.5 µg/mL The taraxerol antimicrobial
activity is comparable to that of positive control gentamicin [11]. Meanwhile, Hernandez-
Chavez et al. (2012) reported on the anti-gardial activities of taraxerol towards Giardia
lambia, a parasitic protozoan [104]. It was found that taraxerol possessed strong anti-gardial
activity exhibiting a growth inhibition (IC50) of 50% at a concentration of 16.11 µg/mL and
a growth inhibition of 90% at a concentration of 102.4 µg/mL, although the activity is lower
compared to the positive control metronidazole. Another study on the cytotoxic activity of
taraxerol against parasitic protozoans was conducted by Simelane et al. (2013), targeting
malaria-causing Plasmodium falcifarum and Plasmodium berghei [105]. Anti-plasmodial activi-
ties were reported for taraxerol at a concentration of more than 100 µg/mL [105], but it was
found to have no effect on mycobacteria (Mycobacterium Madagascar and M. indicuspranii),
exhibiting a lower activity than the positive control chloroquine (IC50 = 14.1 ng/mL) [85].
Thus, future studies should focus mainly on the potential of taraxerol as an anti-protozoan
drug. Warfield et al. (2014) conducted studies on the efficacy of taraxerol in combating
the parasitic Trypanosoma cruzi [106]. The authors characterized the affinity of taraxerol
with the sterol 14α-demethylase enzyme from Trypanosoma cruzi and found that the skeletal
structure of taraxerol has higa affinity towards the enzyme, therefore providing potent
inhibitory activity.

3.3. Anti-Fungal Properties

In an earlier study, taraxerol at a concentration of 1 mg/disc exhibited weak antifungal
activities against four types of fungi namely Aspergillus niger, Aspergillus flavus, Rhizoctonia
phaseoli, and Penicillium chrysogenum [13]. On the other hand, Aguilar-Guaddarama et al.
(2009) shed some positive light on the anti-fungal potential of taraxerol [64]. The authors
focused on another type of fungus known as dermatophytes, which are pathogens that
cause skin diseases in animals and humans [107]. The compound exhibited strong anti-
dermatophytic activities against various dermatophytes, at varying degrees of inhibition.
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Taraxerol was particularly effective against several species of Trichophyton, for instance
T. rubrum and T. mentagrophytes, with an MIC of 12.5 µg/mL, as well as Candida albicans
(MIC = 25 µg/mL) and Aspergillus niger at 100 µg/mL [64].

3.4. Cytotoxic Properties

Chaturvedula et al. (2004) found taraxerol at a concentration of 21.8 µg/mL was
enough to inhibit 50% (IC50) of the growth of the A2780 ovarian carcinoma cell line,
although it performed worse than the positive control doxorubicin (IC50 1–3 ng/mL) [88].
At concentrations lower than 20 µg/mL, it showed little to no effect on the A2780 cell
line [30]. Taraxerol also showed cytotoxicity towards the A431 squamous carcinoma cell
line at 2.65 µg/mL, even though it was found to be inactive against HeLa, MCF-7, and MRC-
5 cancer cell lines. While taraxerol cytotoxicity exhibited low activity compared to positive
control doxorubicin, the activity is comparable to that of cisplatin [42]. Taraxerol also
showed little to no inhibitory potential against Hypoxia-Induced Factor-1 (HIF-1) protein to
reduce hypoxic tumor growth compared to 17-DMAF [17-(dimethylaminoethylamino)-17-
demethoxygeldanamycin] [53]. However, taraxerol exhibited strong cytotoxicity towards
human AGS gastric epithelial cell line at a concentration of 100 µmol/L by elevating cells
arresting from complete mitosis and promoting early cell apoptosis rate from 4.45% to
10.29% [108]. Moreover, the report by Kaennakam et al. (2013) [49] contradicted earlier
results from Csupor-Lötfer et al. (2011) [42] whereby the former observed that taraxerol
displayed potent cytotoxicity to HeLa cells at a concentration of 14.94 µg/mL and to KB
cells at a concentration of 13.58 µg/mL. Based on these results, taraxerol shows potential as
a chemotherapeutic agent in cancer therapy.

3.5. Anti-Diabetic Properties

The utility of taraxerol in the treatment of diabetes was reported by Kwon et al.
(2008), in which the compound was tested against the protein tyrosine phosphatase 1B
(PTP1B)—a negative regulator of the insulin-signalling pathway for the treatment of type
2 diabetes [92]. Taraxerol was shown to exhibit moderate inhibitory properties against
PTP1B at concentrations higher than 50 µM. Yet, Sangeetha et al. (2010) discovered that
instead of targeting the PTP1B protein, taraxerol holds the potential to treat type 2 diabetes
by dual action: as a glucose transport activator and as a glycogen synthesis stimulant [109].
The authors also revealed that taraxerol could reverse the effects of dexamethasone-induced
insulin resistance back to its normal homoeostasis state. These findings were supported by
Gururaja et al. (2015) who claimed that taraxerol is one of the active compounds that shows
inhibitory activities against cholesterol esterase enzyme [18]. The antidiabetic properties of
taraxerol were mostly attributed to its high affinity towards proteins involved in glucose
metabolism [71].

3.6. Anti-Inflammatory Properties

Perhaps the most potent pharmacological properties actively shown by taraxerol is
as an anti-inflammatory agent. Singh et al. (2002) investigated the anti-inflammatory
activity of taraxerol on carrageenan-induced paw edema on rats and found that applying
the triterpenoid extract at a dosage of 20 mg/kg led to edema reduction by 49.66% after
7 h [13]. Naik et al. (2004) further uncovered the anti-inflammatory effects of taraxerol
on TPA-induced local inflammation in Swiss Albino mice, in which development of ear
edema in rat model was suppressed following its application. A dosage of 1 mg/ear
showed the best suppressive effects with a 25.7 mm difference in ear thickness 4 h following
the injection [31]. Apart from paw and ear inflammation, taraxerol was also found to be
beneficial in inflammatory pulmonary diseases. By directly acting on airway epithelial cells,
taraxerol regulates the expression of the Muc5a gene in the cells, thus regulating mucus
production in the inflamed airway [45].

Other than in the treatment of edema, taraxerol’s neuroinflammation amelioration
effect has also been studied. Tsao et al. (2008) examined the effect of taraxerol on the
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production of nitric oxide (NO) and reactive oxygen species (ROS) by activated microglial
cells, which play a number of deleterious roles in central nervous system mediation [24].
The NO and ROS are produced by activated microglial cells through the induction of
NADPH oxidase (NOX) and nitric oxide synthase (NOS), which the authors noted to
have been inhibited by 11.6% at 50 µM concentration and 50% at 24.2 µM concentration,
respectively. The mechanism through which taraxerol functions as an anti-inflammatory
agent was further elucidated by Yao et al. (2013) who showed that taraxerol downregulates
the expression of proinflammatory mediators in macrophages through the interference
of TAK1 and Akt protein activation, thus preventing NF-κB activation from producing
various proinflammatory mediators through a cascade effect [110]. Cellular redox reactions
have a critical role in the regulation of immune response, which directly suggested that
taraxerol could also mediate inflammatory responses [110].

3.7. Treatment for Neurodegenerative Diseases

Taraxerol has also been extensively studied for its potential in treating neurodegen-
erative diseases. Cholinesterase enzymes were targeted by various target compounds in
drug development to find possible treatments for neurodegenerative diseases, particularly
Alzheimer’s [111]. Lee et al. (2004) found the potential of taraxerol for this purpose by
inhibiting acetylcholinesterase (AChE) activity in a dose-dependent manner, with an IC50
value of 33.6 µg/mL [75]. This finding was supported by Jamila et al. (2014) in which taraxe-
rol could not exercise its inhibitory effects at concentrations higher than 33.6 µg/mL [71].
Nevertheless, at 50 µg/mL, taraxerol exhibited inhibitory effects on butyrylcholinesterase
(BChE) with 98.4% inhibition [71]. The IC50 of taraxerol against BChE was found to be at
17.8 µM.

Furthermore, taraxerol displayed high binding affinity to the monomers and mature
fibrils of amyloid peptides, which are critical proteins associated with neurodegenerative
disorders [111]. Taraxerol can completely assimilate into the human body and cross the
blood-brain barrier, which are the two prerequisites for the development of a potent neu-
rodegenerative drug [15]. In silico analysis of taraxerol affinity towards acetylcholinesterase
A and B revealed high affinity towards both enzymes through the formation of hydrogen
bonds [71]. This might explain the ability of taraxerol to compete for the active site of acetyl-
cholinesterase, thereby exhibiting potential as a treatment for neurodegenerative diseases.

3.8. Other Notable Pharmacological Properties of Taraxerol

Taraxerol also exhibited wound healing properties. Naik et al. (2004) tested taraxerol
for its inhibition on glycogen synthase kinase-3β (GSK-3β) protein, a wound healing
biomarker through molecular and dynamic approach [31]. In silico studies have indicated
that taraxerol may be a potent inhibitor of GSK-3β due to its expressed minimum binding
(−12.59 kJ/mol) and docking energy (−11.25 kJ/mol). On the other hand, in vivo studies
have shown that taraxerol displayed an astounding capability in healing three types of
wounds, namely excised wounds (18.28 days with 94.42% enclosure), incised wounds
(epidermal tensile strength of 562.36 g after 10 days of wounding), and dead space wounds
(increased weight of granuloma tissues up to 21.02 mg, tissue breaking strength at 657.12 g,
and hydroxyproline content of 1455.93 µg/100 g). Thus, the therapeutic properties of
taraxerol can be extended to wound healing and remain to be further explored.

Natural compounds and extracts have been an important source for alternative
medicine. The specific chemical compounds that have been isolated from natural plants
hold a great potential in medicine, as had been demonstrated by the high number of
FDA-approved drugs or natural products as well as their derivatives [112]. The search for
antivirals is gaining popularity due to the coronavirus disease 2019 (COVID-19) which have
had a huge impact on human well-being. Several phytochemicals such as friedelin, stigmas-
terol, and taraxerol were reported to exhibit promising antiviral properties [113]. Molecular
dynamics simulation demonstrated that taraxerol has a better binding energy with viral
proteins such as spike protein, main protease enzyme Mpro, and the RNA-dependent RNA
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polymerase of COVID-19 [113]. This has shed light into further evaluation of taraxerol
using in vitro and in vivo experiments for the development of a COVID-19 inhibitor.

4. In Vitro Production of Taraxerol

Cell culture techniques have emerged as an attractive alternative for the production
of plants’ secondary metabolites, and various strategies have been developed for use in
biomass accumulation as well as synthesis of a slew of secondary compounds [3]. However,
taraxerol production through in vitro techniques has been limited so far. An example is
the protocol developed by Swain et al. (2012) for producing taraxerol from Clitoria ternatea
(Butterfly pea) through the establishment of transformed hairy root cultures [94]. Trans-
formed hairy roots contained integrated TL-rolB gene and were able to increase taraxerol
four-fold greater by dry weight basis compared to natural roots. Since transformation
was involved in the process, the taraxerol isolated were ascertained by IR, 1H-NMR, and
1C-NMR spectroscopy as the modification of the Clitoria ternatea genetic make-up could
change its phytochemical content.

Zafar & Sharma (2015) also used an in vitro approach to produce taraxerol through
the establishment of callus cultures from the roots of Taraxacum officinale (Dandelion) [114].
Calluses were induced from the roots of Taraxacum officinale by using two types of MS
media supplemented with 0.5 mg/L IAA + 1 mg/L BAP + 0.5 mg/L 2,4-D and 2 mg/L IAA
+ 1 mg/L BAP. The established root callus has successfully increased the taraxerol yield
by 1.04 times. To further enhance taraxerol production, Zafar & Sharma (2015) established
root callus suspension cultures using the same MS media and PGR combinations from
Sharma and Zafar (2014) with the addition of methyl jasmonate (MJ) and β-cyclodextrin
(CD) as elicitor agents [16,114]. According to the authors, both elicitors were able to elevate
taraxerol production by 0.018% with MJ at 0.05 mM, 0.1 mM, and 0.2 mM, and by 0.023%
with 25 mM β-CD compared to natural roots.

5. Conclusions

Taraxerol is a bioactive metabolite present in some higher plants which possesses mul-
tiple selective biological actions, especially in medicinal applications. Despite displaying
little anti oxidative abilities and only moderate antimicrobial properties, various studies
have reported the potential of taraxerol to act as an anti-plasmodial, antidiabetic, anticancer,
anti-inflammatory, and anti-dermatophyte. These findings demonstrated the potential of
taraxerol in the development of a novel and multipurpose drug. From a commercial point
of view, taraxerol is hitherto a costly compound to chemically and biologically synthe-
size. With several pathways towards in vitro synthesis of taraxerol having already been
established, it may not be a good use of resources to continue exploring more alterna-
tive synthesis pathways. Instead, research efforts should be directed towards optimizing
known synthesis techniques through an experimental approach by the establishment of
high-yielding cell lines, optimizing culture conditions, nutrient media, phytohormone
contents and carbohydrate sources, elicitors, and precursors. With enhanced taraxerol
production, further drug research and development works for various treatments using
taraxerol can be performed.
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