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Abstract: The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in
clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific
reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant.
One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the
conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved
C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly
with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this
study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen,
MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular
dynamics simulations and surface plasmon resonance informed the design of a series of constrained
peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to
keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being
generated in all groups. The specificities of antibody responses revealed that a single point mutation
can focus the antibody response towards a more favourable epitope. This structure-based approach
to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other
intrinsically disordered antigens.

Keywords: malaria; merozoite surface protein 2; disordered protein; peptide vaccines; structural
vaccinology

1. Introduction

The global health burden of malaria remains significant, with over 200 million cases
and 409,000 deaths in 2019 [1]. Despite the recent regulatory approval of the pre-erythrocytic
RTS,S/A01 vaccine, the modest efficacy of this vaccine in young infants justifies further
research towards more effective and robust malaria vaccines [2,3]. Promising results have
recently reported from an early clinical trial of an alternative pre-erythrocytic stage vac-
cine [4]; however, in order to be highly efficacious, a malaria vaccine will probably need to
be multi-valent, targeting multiple stages of the Plasmodium life cycle. To complement RTS,S
and related vaccines, which target pre-erythrocytic stages, this work focuses on merozoite
surface protein 2 (MSP2), a blood-stage antigen found in abundance on the parasite surface.
All MSP2 proteins can be categorized into two allelic families, 3D7 and FC27, that are de-
fined and distinguished by their central variable regions. Flanking this polymorphic region
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are highly conserved N-terminal and C-terminal regions [5,6]. Furthermore, recombinant
MSP2 is intrinsically disordered, lacking a well-defined three-dimensional structure with
the exception of a single disulfide bond in the C-terminal region and the propensity of the
N-terminal region to adopt an α-helical structure in the presence of lipid [7,8].

A Phase I-IIb trial of the Combination B vaccine, of which 3D7-MSP2 was a compo-
nent, showed a 62% reduction in parasite densities in immunised Papua New Guinean
children [9]. In these children, there was a reduction in infections with parasites expressing
MSP2 of the vaccine 3D7 but not the FC27 type, which suggested that the protective re-
sponse induced by MSP2 was strain-specific. Subsequently, a vaccine containing two forms
of MSP2, representative of the two allelic families, was tested in a Phase I trial and was able
to induce antibodies that could mediate antibody-dependent cellular inhibition (ADCI) [10].
Further efforts to address the problem of strain-specificity involved production of MSP2
chimeras composed of the central variable region of both 3D7 and FC27 MSP2 and the
conserved N- and C-terminal regions [11]. Animal immunisations with these constructs
yielded a robust antibody response towards both MSP2 allelic types. In addition, recent
rabbit immunisations incorporating MSP2 fused to a Plasmodium-specific carrier protein
were able to induce strain-transcending and opsonising antibodies [12].

An alternative approach to circumvent the problem of strain-specificity is to target
epitopes in the conserved regions of antigens. The C-terminal conserved region of MSP2
is recognised by five mouse monoclonal antibodies (mAb), 4D11, 9G8, 9H4, 6C9 and 1F7,
which bind to overlapping epitopes [13]. Despite the close proximity of their epitopes, these
antibodies have different binding characteristics. mAbs 4D11 and 9G8 show strong recog-
nition of parasite MSP2 by Western blot and immunofluorescence assays (IFA), whereas
mAbs 9H4, 6C9 and 1F7 bind parasite MSP2 weakly, if at all, suggesting that these epitopes
are not readily accessible in native MSP2 on the parasite surface. Guiding the antibody
response towards conserved epitopes that are accessible in native MSP2 may yield a more
effective immune response.

Peptide vaccines may be a useful tool in guiding the immune response towards
these key epitopes [14–18]. They offer a cleaner antigen preparation with minimal allergic
and autoimmune responses owing to their synthetic origin, whilst avoiding redundant
or detrimental epitopes not associated with protection. Moreover, with the ability to
include multiple epitopes in the vaccine formulation, different life-cycle stages of the
parasite can be targeted for improved efficacy [19]. The intrinsically disordered nature
of MSP2 also lends itself to a peptide vaccine approach owing to a lack of discontinuous
or conformational epitopes in the antigen [13,15]. However, with increased flexibility
also comes a larger range of conformations that can be sampled by recombinant MSP2 in
solution, not all of which will be effective in inducing antibodies able to recognise parasite
MSP2. Structural vaccinology, an emerging field in rational vaccine design, involves the
use of antigen structure to inform the design of better vaccine candidates [20–23]. This
approach has shown promise in a variety of disease conditions, including meningococcus
B [24], respiratory syncytial virus [25–27], Group B Streptococcus, [28] and HIV [29–31],
although the application to disordered protein antigens and peptide vaccines remains
largely unexplored.

Recently, the crystal structure of a key epitope in the C-terminal region of MSP2,
bound by the variable fragment (Fv) of mAb 4D11 was solved at 2.2 Å resolution [32]. The
structure revealed that the bound epitope adopts a β-bend ribbon conformation stabilised
by two intramolecular hydrogen bonds. The peptide crystallised as a homo-dimer via
the free cysteine in the peptide sequence, with each peptide in the dimer able to bind a
separate 4D11 Fv antibody fragment. In this work, we use the dimeric 4D11-bound epitope
structure as a template for the rational design of a peptide vaccine that induces antibodies
to a conserved epitope of MSP2 that is exposed on the merozoite surface.
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2. Materials and Methods
2.1. Surface Plasmon Resonance

Affinities for peptide epitopes and dimer peptides to 4D11 and 9H4 IgG were mea-
sured by surface plasmon resonance (SPR) (Biacore T200, GE Healthcare, Parramatta,
Australia) using a competition assay method developed previously [32]. First, 3D7 MSP2
was immobilised on a CM5 chip. To determine binding, eight three-fold dilutions of
peptide, from 10 µM stock were added with 50 nM 4D11/9H4 IgG to compete with the
immobilised antigen. A standard curve was established by flowing eight two-fold dilutions
of 4D11 or 9H4 IgG from a 100 nM stock solution.

2.2. MD Simulations

MD simulations were used to assist in the design of dimer peptides before synthesis.
To evaluate if the conformational strain introduced by disulfide bonds and backbone
cyclisation would preclude the peptide from adopting a conformation capable of binding
4D11, each peptide was constructed in Maestro (Schrödinger 2016–4) using the 4D11 Fv
bound homo-dimeric peptide in the crystal structure (PDB ID: 5TBD) as a template. Each
model was checked for favourable rotamers and dihedral angles. The simulations and
analysis of each peptide were performed with GROMACS version 5.1.2 software and the
GROMOS 54A7 force field [33,34]. The complex was placed in a cubic box with a minimal
distance between protein and the wall of the unit cell set to 10 Å, and was solvated using
the TIP3P water model. The solvated system was minimised using the steepest descent
algorithm for 5000 steps. The system was equilibrated in three stages; first, a 100-ps MD
simulation at 10 K with positional restraints on the protein (1000 kJ/mol/nm2) in an NVT
ensemble. The V-rescale-modified Berendsen thermostat with a time coupling constant of
0.1 ps was then used for temperature regulation [35]. This simulation was then repeated
with no restraints. Finally, the system was equilibrated at 300 K for 100 ps in an NPT
ensemble. The Parrinello-Rahman barostat with a pressure coupling constant of 2 ps was
used to control the system pressure [36]. The LINCS algorithm was used to constrain
covalent bonds, allowing a simulation time step of 2 fs [33]. A non-bonded interaction
cut-off of 9 Å was used. Long-range electrostatics were calculated with the particle mesh
Ewald method [37]. The production simulations were performed in an NPT ensemble at
300 K and 1 bar for 100 ns. Post-processing of the MD simulations was performed using
the GROMACS utility rmsdist.

2.3. Peptide Synthesis

All peptides were synthesised in-house by standard 9-fluorenylmethoxycarbonyl
(Fmoc) solid-phase chemistry using an automated peptide synthesiser 3 (PS3, Pti Instru-
ments). All linear peptides (L1–L3, A1, K209A and alanine scan peptides) were assembled
by coupling 0.3 mmol (3 equiv.) of Fmoc-protected amino acids to 0.1 mmol Rink amide AM
resin (0.53 mmol/g loading). Coupling reactions were carried out for 50 min under the acti-
vation of 0.3 mmol (3 equiv.) O-(1H-6-chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium
hexafluorophosphate and 0.6 mmol (6 equiv.) N,N-diisopropylethylamine (DIPEA). A dou-
ble coupling was performed on the first residue of each peptide. Chain deprotection was
carried out with 20% piperidine in dimethylformamide (DMF) for 2 min. The peptides
were N-terminally capped with an acetyl moiety using 0.5 mmol (5 equiv.) of acetic anhy-
dride in 0.5 mmol (5 equiv.) DIPEA. Orthogonal protection of cysteines was employed to
ensure that the correct disulfide connectivity was present, with the C-terminal cysteine
free for conjugation to BSA or KLH. 4-methoxytrityl (MMT) was used as a thiol protecting
group for cysteines taking part in disulfide bond formation. Selective removal of MMT
was performed with trifluoroacetic acid (TFA):triisopropylsilane (TIPS):dichloromethane
(DCM) [1:2:97 (vol/vol)] for 2 × 30 min. The disulfide bonds of linear peptides were
formed using 0.2 mmol (2 equiv.) N-chlorosuccinimide (NCS) in DMF for 2 h [38,39].
Cyclic peptides (C1–C3) were assembled on 2-chlorotritiyl chloride resin (1.4 mmol/g
loading). Deprotection of MMT and cleavage from the resin were performed concurrently
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with TFA:TIPS:DCM [1:2:97 (vol/vol)] for 2 × 1 h. Disulfide bonds were formed with air
oxidation in 0.175 mM triethylamine (TEA), DMF for 2 days. The linear peptides were then
cyclised in solution with PyClock (3 equiv.) and DIPEA (10 equiv.) in DMF for 16 h.

The dimer peptide D1 was synthesised by first assembling the short CGAA and
CGAAC peptides separately on Rink amide AM resin. The CGAA peptide was fully
cleaved from the resin whilst the MMT on the N-terminal cysteine of CGAAC was removed
by the methods discussed above. To form the disulfide bond between these peptides,
cleaved CGAA peptide was mixed with resin-bound CGAAC in 0.2 mmol (2 equiv.) NCS,
DMF for 2 h. The remaining amino acids were assembled by standard Fmoc solid-phase
chemistry and the N-termini were acetylated. As peptide conjugation with KLH was to be
established via activated maleimide on the carrier protein, a free cysteine was included
in the design of each peptide. Cleavage of the complete peptides was performed with
TFA:TIPS:dimethylbenzene (DMB) [92.5:2.5:5 (vol/vol)]. The cleaved material was precipi-
tated in cold diethyl ether and insoluble peptide material was spun down at 4000 rpm for
15 min at 0 ◦C, and the pellet washed twice in cold diethyl ether prior to removal of the
organic phase. The crude peptide mixture was resuspended in 50% acetonitrile/0.1% TFA
and freeze-dried prior to further purification. All peptides were purified on a reverse-phase
C18 column (Vydac; 10 × 300 mm) using a linear gradient of 5 to 60% of solvent B (80% ace-
tonitrile/9.9% water/0.1% TFA) against solvent A (0.1% TFA in water) over 1 h. The purity
of peptides was assessed by mass spectrometry (LCMS; Supplementary Figures S1–S5).

2.4. Protein Preparation and Mice Immunisation Experiments

Peptide was conjugated to maleimide-activated KLH (Sigma-Aldrich) following the
manufacturer’s protocol. Briefly, 1 mg of each peptide was mixed with 1 mg KLH in the
provided buffer for a 200-fold molar excess of peptide to carrier protein. The reaction
mixture was degassed under nitrogen and mixed at room temperature (RT) for 2 h. Any
unreacted peptide was removed by dialysis against PBS using a 10 kDa cut-off membrane.
The extent of conjugation was determined using Ellman’s reagent. Peptide-KLH conjugate
stock solution was stored at 4 ◦C until further use. Prior to immunisation, peptide-KLH
conjugates were diluted to 1 mg/mL in PBS and formulated with Montanide ISA720 at
an antigen:adjuvant ratio of 3:7 and a final concentration of 0.3 mg/mL. The 3D7 + FC27
MSP2 mix was formulated using 0.15 mg/mL of each allelic form. Female C57BL/6 mice
(n = 6 per group) were inoculated subcutaneously with 100 µL containing 30 µg of antigen
at weeks 0, 4 and 8, then euthanised at week 10. Sera were collected and stored at −80 ◦C.

2.5. ELISA

To determine peptide-KLH binding to 4D11 and 9H4, Maxisorp 96-well microtitre
plates (Nunc, Rochester, NY, USA) were coated overnight at 4 ◦C with 2 µg/mL peptide-
KLH in PBS. The plates were blocked with 1% BSA in PBS for 1 h before adding 100 µL of
4D11 and 9H4 IgG in eleven half log10 serial dilutions starting from stock at 1 µg/mL. After
1 h incubation at 4 ◦C and washing, antigen-bound antibodies were detected with goat anti-
mouse IgG (1:2000 dilution) and freshly prepared 2,2-azinobis(3-ethylbenzthiazolinesulfonic
acid (ABTS) substrate (1 mm) in citric acid buffer, pH 4.2, containing horseradish peroxidase
(HRP). The absorbance was read at 405 nm using a microplate reader. For determination of
peptide-specific antibody titres, peptide-BSA conjugate was coated on the plate at 2 µg/mL.
Individual mouse sera were added at a starting dilution of 1000-fold with six half log10
serial dilutions. Endpoint titres were taken as the x-axis intercept of the dilution curve at
an absorbance value of three standard deviations (s.d.) greater than OD405 for naïve mouse
serum. The fine specificities of the antisera were determined by ELISA using an array of
nine biotinylated 13-residue peptides (A-I), which overlap by 2 or 3 residues and spanned
the C-terminal region of MSP2 [11,13]. Maxisorp 96-well microtitre plates (Nunc) were
coated overnight at 4 ◦C with 1 µg/mL streptavidin in PBS. The plates were blocked with
1% BSA in PBS for 2 h before adding 1:500 biotinylated peptides. Individual sera samples
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were diluted 1:1000 in blocking solution before addition to the peptide array. Antibody
was detected with the same protocol as mentioned above.

2.6. Merozoite ELISA

The reactivity of mouse polyclonal antibodies with merozoites was determined by
ELISA using merozoites from both the 3D7 and FC27 (D10 clone) strains of P. falciparum.
The parasites were cultured in human erythrocytes at a haematocrit of 3% in RPMI me-
dia supplemented with 10% AlbuMAX II. Viable merozoites were isolated as described
previously [40]. Highly synchronised late-stage schizonts were magnet-purified via a
MACS magnet separation column (Miltenyi Biotec, Macquarie Park, Australia) and treated
with E64 protease inhibitor (ThermoFisher Scientific, Scoresby, Australia) until mature
merozoites were formed. Merozoites were released forcing them through a 1.2 µm filter.

Purified whole merozoites were resuspended in PBS supplemented with a cocktail
of protease inhibitors (Roche, Castle Hill, Australia). Isolated merozoites were used to
coat Nunc Maxisorp™ plates at 1 × 107/well and incubated overnight at 4 ◦C. The plates
were then blocked with 1% casein in PBS at 37 ◦C for 2 h (or overnight at 4 ◦C). Pooled
sera samples were added to wells at two-fold serial dilution in duplicate with a starting
dilution of 1:500 and incubated at RT for 1 h. The plates were further incubated with
HRP-conjugated goat anti-mouse IgG antibody diluted at 1:1000 in 0.1% casein in PBS
at RT for 1 h. The plates were washed six times with PBS between each incubation step.
Finally, 3,3′,5,5′-tetramethylbenzidine (TMB) substrate (Thermo Fisher Scientific, Scoresby,
Australia) was added to the wells for the development of colour for 15 min and the reaction
was stopped with 1 M sulfuric acid. The OD was measured at 450 nm.

3. Results
3.1. Alanine Scans of mAb 9H4 and 4D11 Epitopes

In our previous work, the minimal epitope and key residues involved in 4D11 binding
were defined as the 8-residue peptide 3D7-MSP2215–222, with Lys216, Glu217 and Asn218
crucial for binding [13,32]. To characterise the epitope of 9H4 and compare it with that of
4D11, the same alanine-scan peptides were used to probe 9H4 binding (Figure 1A,B). Affini-
ties for 9H4 binding were measured by SPR, using a competition binding assay described
previously [32]. Mutation of Lys209, Thr212 or Asp213 to Ala resulted in a significant loss
of 9H4 binding, suggesting that these residues are crucial for 9H4 recognition (Table 1).

Table 1. Alanine scan of 16-residue epitope MSP2207–222 to determine key residues for binding of mAbs 9H4 and 4D11. The
Ala residue is highlighted in red.

Peptide Sequence Kd against 9H4 IgG (µM) Kd against 4D11 IgG (µM)

3D7-MSP2207–222 (WT) SQKECTDGNKENCGAA 1.5 0.9
S207A AQKECTDGNKENCGAA 2.9 0.5
Q208A SAKECTDGNKENCGAA 2.9 0.4
K209A SQAECTDGNKENCGAA 7.3 0.3
E210A SQKACTDGNKENCGAA 1.4 0.5
T212A SQKECADGNKENCGAA 4.8 0.5
D213A SQKECTAGNKENCGAA 0.6 0.5
G214A SQKECTDANKENCGAA 0.07 0.4
N215A SQKECTDGAKENCGAA 0.1 0.5
K216A SQKECTDGNAENCGAA 0.09 21.0
E217A SQKECTDGNKANCGAA 0.09 219.4
N218A SQKECTDGNKEACGAA 2.7 6.0
G220A SQKECTDGNKENCAAA 2.9 42.2
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Figure 1. SPR competition assay using alanine-scan 16-residue peptides of 3D7-MSP2207–222 with
(A) mAb 9H4 and (B) mAb 4D11. Schematic representation of disulfide-bonded epitope sequence for
both (C) 9H4 and (D) 4D11 indicating the location of key residues. Black indicates alanine mutants
with no effect on binding, the green shows the wild-type binding of 3D7-MSP2207–222, red indicates
the alanine mutations that decreased the binding and blue indicates mutations that increased binding.

Intriguingly, mutations to residues Gly214-Glu217 resulted in a 10-fold increase in the
affinity of 9H4 binding, relative to the affinity of 9H4 binding for the wild-type sequence.
Attempts to crystallise 9H4 with its cognate epitopes and the tighter binding mutants were
unsuccessful, so the structural determinants of this binding interaction are still unknown.
Nonetheless, the alanine scan confirmed that the epitope of 9H4 is located N-terminal to
the 4D11 epitope and indicated that no residue crucial to mAb binding is shared between
the two epitopes (Figure 1C,D) [13].

3.2. Design of Peptides for Immunisation

Two distinct approaches to optimise the antibody response to MSP2 were explored.
First, we reasoned that removal of residues key to 9H4 binding may refocus the antibody
response away from the less accessible 9H4 epitope and towards the 4D11 epitope. This
was assessed by synthesising two peptides that spanned the 9H4 and 4D11 epitopes,
one with the wild-type sequence and the other with K209, a residue critical for 9H4
binding but relatively distant from the 4D11 epitope, mutated to alanine. Second, we
tested whether it would be possible to constrain the conformation of this region of MSP2
to better match the conformation recognised by 4D11-type antibodies, and thereby bias
the response towards antibodies with this specificity. To this end, we recognised that
the symmetry and the close proximity of the N- and C-termini (5.0 Å) of peptides in the
disulfide-mediated dimer (Figure 2B) allowed for linkage at one or both termini, making
linear (L1-L3) or cyclic (C1-C3) peptides, respectively. Glycine was chosen as a linker owing
to its structural flexibility and easy integration by peptide synthesis. To assess whether
introduction of constraints through backbone cyclisation would drastically alter the epitope
conformation and/or potentially impede synthesis, molecular dynamics (MD) simulations
were employed. These simulations also proved useful in informing the ideal linker length
and peptide design.
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Figure 2. (A) Schematic representation of dimeric 4D11 epitope peptides: dimer—D1, linear—L1,
backbone cyclised—C1, wild-type sequence 17-residue peptide—A1 and its single point mutant—
K209A, which has had the residue Lys209, which is important for 9H4 binding, replaced with alanine.
(B) Crystal structure of 4D11-bound homodimer peptide (PDB ID: 5TBD) shows close proximity
between the N- and C-termini of the peptides; green dashed lines indicate distance between the
peptide termini.

All linear and cyclic peptides, with linker lengths ranging from 1–3 Gly residues,
proved to be stable during 100 ns MD simulations (Supplementary Figure S6). As the
peptides contained two repeats of the 4D11 epitope they were each aligned individually
with the 4D11-bound peptide from the crystal structure. RMSD values were calculated
using the backbone atoms of residues involved in 4D11 binding (MSP215–19). As expected,
owing to the additional constraints, the cyclic peptides were more stable, with less variation
and flexibility than the linear peptides. In most cases, the conformations of both epitopes
in the peptide were within 2.5 Å RMSD of the 4D11-bound conformation. However, there
were instances of one side of the peptide straying from the bound conformation more than
the other. This was most pronounced in C3, with one face of the peptide having a RMSD of
2 Å and the other a RMSD of 3 Å.

Following the MD simulations, each peptide was synthesised by standard Fmoc
synthesis. Orthogonal protection of cysteines was used to ensure that the desired disulfide
bond was formed, leaving a single free cysteine for conjugation to an appropriate carrier
for immunisation. This complicated the synthesis of backbone-cyclised peptides as cysteine
de-protection conditions also cleaved the peptide from the resin. Consequently, disulfide
bond formation and cyclisation coupling were performed in solution. To determine if the
additions incorporated into the dimer sequence hindered binding to 4D11, SPR was used
to measure their binding affinity to the mAb (Table 2). All peptides were able to bind 4D11,
with the strongest binding peptides, A1 and K209A, both having a Kd of 0.2 µM and the
weakest, D1, a Kd of 2.38 µM. All linear and cyclic peptides showed tight binding to 4D11,
and in both cases the peptides with the shorter linker length of a single Gly residue, L1
and C1, had the strongest affinities of 0.47 and 0.44 µM, respectively. For both the linear
and the cyclic peptides, affinity decreased slightly with increasing linker length, consistent
with our design intent that greater conformational restraint should favour 4D11 binding.
Therefore, L1 and C1 were chosen for immunisations, along with the unconstrained dimer
D1, MSP2207–222 K209A, and the corresponding wild-type peptide, A1. For immunisations,
the commonly used carrier protein, keyhole limpet hemocyanin (KLH) was chosen. As
conjugation to KLH required a free thiol, an additional cysteine residue was included in all
of the peptides (Figure 2).
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Table 2. Binding affinities of peptides for KLH conjugation were determined by a SPR competition
binding assay. Cysteines required for conjugation to maleimide-activated KLH are indicated in
yellow and underlined; additional linker residues and mutations are shown in red.

Name Sequence Kd against 4D11 IgG (uM)

8mer NKENCGAA 0.24
D1 NKENCGAANKENCGAAC 2.38
L1 NKENCGAAGNKENCGAAC 0.47
L2 NKENCGAAGGNKENCGAAC 0.67
L3 NKENCGAAGGGNKENCGAAC 0.58
C1 c[NKENCGAAGNKENCGAAC] 0.44
C2 c[NKENCGAAGGNKENCGAACG] 0.68
C3 c[NKENCGAAGGGNKENCGAAGCG] 1.04
A1 SQKECTDGNKENCGAAC 0.20

K209A SQAECTDGNKENCGAAC 0.20

3.3. mAbs 4D11 and 9H4 Bind to Their Epitopes in Peptide-KLH Conjugates

ELISA was used to assess whether mAbs 4D11 and 9H4 could still recognise the
KLH-conjugated peptides using a mixture of full-length 3D7 and FC27 MSP2 as a positive
control antigen (Figure 3A). 4D11 mAb was able to bind all peptide conjugates, with
C1-KLH the tightest binder, having an EC50 of 0.009 µg/mL, followed by L1-KLH and
D1-KLH with EC50 of 0.02 and 0.07 µg/mL, respectively. The A1-KLH and K209A-KLH
conjugates had weaker binding (EC50 of 0.21 and 0.12 µg/mL, respectively) when compared
to other peptide conjugates. This suggests that the dimeric peptides may be stabilised in a
conformation that is more favourable for mAb binding. Additionally, the close proximity of
the C-terminal cysteine conjugation to the 4D11 epitope in A1-KLH and K209A-KLH may
hinder binding of 4D11 to these two conjugates. 9H4 mAb bound the A1-KLH conjugate
but not the K209A-KLH conjugate, confirming that the mutation of residue Lys209 to Ala
had successfully inhibited recognition by this mAb (Figure 3B).
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Figure 3. (A) Direct ELISA indicates that all peptide-KLH conjugates are recognised by mAb 4D11, (B) K209A-KLH is
unable to bind to mAb 9H4, indicating that the 9H4 epitope had been removed successfully.

3.4. Peptide-KLH Conjugates Were Able to Induce Epitope-Specific Antibody Responses

Anti-peptide antibody titres in the sera of immunised mice were determined using
ELISA plates coated with the corresponding peptide-bovine serum albumin (BSA) conju-
gates. All BSA-peptide conjugates showed a 4D11 IgG response (Supplementary Figure S7).
Median endpoint titres were comparable between the positive control MSP2 mouse sera
(1.7 × 104) and all the sera from mice immunised with peptide-KLH conjugates (Figure 4).
L1-KLH and C1-KLH sera had a higher median endpoint titre of 1.7 × 104 and 1.6 × 104,
respectively, when compared to the less conformationally stable D1-KLH (1.1 × 104). The
two peptides containing the full 17-residue native sequences, A1-KLH and K209A-KLH,
had lower median titres of 0.8 × 104 and 0.9 × 104, respectively. To confirm that the
maleimide linker present in each conjugate was not eliciting a response, a non-related
peptide was conjugated to BSA and coated on the plate. None of the pooled sera showed
any response to this conjugate at 1000-fold dilution (Supplementary Figure S8). However,
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most sera had a strong response towards the carrier protein when tested for binding against
unconjugated KLH (Supplementary Figure S9). These results indicate that immunisation
with peptide-conjugates can induce a peptide-specific response of comparable magnitude
to the much larger full-length antigen.
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Figure 4. Mouse sera, taken two weeks after final immunisation with antigen, contain antibodies that
recognise their corresponding peptide-BSA conjugate or in the case of the MSP2 mix, recombinant
3D7 and FC27 MSP2 coated on the ELISA plate. Each point is the mean of two replicate wells for
individual mouse sera. The line indicates group median. Endpoint titre was calculated using a cut-off
value of three standard deviations greater than OD405 for naïve mouse serum (~0.09).

3.5. Peptide-KLH Conjugates Induced Antibodies Recognising the 4D11-Specific Epitope

To characterise the response against these dimeric peptides further, the specificity of
the induced antibodies was determined by indirect ELISA using an array of nine biotiny-
lated peptides that spanned the epitopes recognised by the 4D11 and 9H4 mAbs (peptides
A-I) (Table 3). Peptides C and D spanned the 9H4 epitope, whilst peptides E to G spanned
the 4D11 epitope. The 3D7 + FC27 MSP2 mixture elicited a response towards peptides C-F,
encompassing both the 9H4 and 4D11 epitopes (Figure 5). However, the response against
MSP2 was largely dominated by a single mouse in the group. In contrast, responses against
each of the dimeric peptide-KLH conjugates (D1, C1, and L1) were more consistent across
the groups, and were almost exclusively directed to the 4D11 epitope. Only one instance of
cross reactivity was observed, with one mouse in the L1 cohort generating antibodies that
recognised peptide D. The lack of binding to the adjacent peptide C suggests that these
antibodies recognised residues closer to the peptide C-terminus, probably the GNKENC
residues that are present in the immunising peptide.

Table 3. Peptide array used to probe antibody specificities, peptides C-D encompass the 9H4 epitope
(orange) and peptides E-G contain the 4D11 epitope (green).

Peptide Name Sequence

A HPQNTSDSQKECT
B QNTSDSQKECTDG
C SDSQKESTDGNKE
D SQKECTDGNKENC
E ECTDGNKENCGAA
F TDGNKENCGAATS
G NKENCGAATSLLN
H ENCGAATSLLNNS
I CGAATSLLNNSSN
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3.6. The K209A Mutation Biased the Antibody Response towards the 4D11-Specific Epitope

Removal of the key residue Lys209 in the K209A peptide resulted in a drastic change in
antibody specificity when compared to the wild-type A1 peptide. The A1 peptide generated
antibodies primarily against peptides C and D, spanning the 9H4 epitope, suggesting that
this epitope is immunodominant over the 4D11 epitope (Table 3 and Figure 5). However,
the single mutation in the K209A peptide successfully abolished 9H4-like responses and
shifted antibody recognition towards the 4D11-specific epitope represented by peptides
E and F (Figures 2A and 5). Importantly, this was achieved without reducing the overall
antibody response elicited by this peptide.

3.7. Peptide-Induced Antibody Responses Recognised Native MSP2 on the Merozoite Surface

The ability to induce an immune response that can recognise parasite MSP2 is essential
in the design of an MSP2-based peptide vaccine. We isolated merozoites from both 3D7 and
FC27 (D10 clone) strains of P. falciparum, coated them on ELISA plates and probed them
with sera from the immunised mice (Figure 6). mAb 4D11 and the MSP2 mix pre-bleed
were also included as positive and negative controls, respectively. For both strains of
merozoites the MSP2 mix sera had the strongest response, followed by K209A, A1, C1 and
L1. D1 showed weak reactivity to both strains.
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4. Discussion

Despite many decades of research, an effective vaccine for some pathogens, including
those causing malaria, remains elusive [41]. The reverse vaccinology approach, in which
the genome of an organism is examined to identify novel antigens, has brought about a
new generation of vaccine candidates [42,43]. Advances in multi-strain genome sequencing
have enabled not only the identification of novel surface antigens, but also the ability to
discern polymorphic and conserved regions. However, vaccines designed using protein
sequence alone are not likely to induce optimal antibody responses to pathogen antigens in
their native state. The application of structural vaccinology may be the next step in rational
vaccine design. Similar to structure-based drug design [44,45], the structural vaccinology
strategy employs structural data from X-ray crystallography, NMR spectroscopy and/or
cryo-EM to inform the rational design of novel vaccine antigens.

Currently, the use of structure-based vaccine design in malaria or disordered antigens
is sparse. One study of the circumsporozoite protein (CSP) from Plasmodium falciparum
detailed the structure of the immunodominant NANP repeat region when complexed with
functional antibodies elicited by RTS,S vaccinees [46,47]. In that study the same peptide
epitope was found to adopt different conformations when bound to different antibodies.
Such structural insights may provide a rationale for structure-based antigen design to
improve the efficacy of the RTS,S vaccine. Early applications in other diseases, involving
the grafting of multiple electrostatic surfaces from Neisseria meningitidis variants onto
chimeric antigens have shown promise and were able to elicit a cross-protective immune
response [24]. In the HIV field, a key epitope recognised by the broadly neutralising
antibody 2F5 was stabilised using protein scaffolds [30,48,49]. Although antibodies with
similar binding to 2F5 were elicited when the antigen was used to immunise guinea pigs,
the project faltered at later stages when these antibodies were unable to neutralise HIV.
Crystal structures have also been used to assist in the design of respiratory syncytial virus
antigens stabilised in a pre-fusion conformation [26]. Significant effort is often required to
mimic the conformational epitopes in these structured antigens. In contrast, the intrinsically
disordered nature of MSP2 presents a unique opportunity that may benefit from the
structure-based strategy. Although conformational disorder has commonly been suggested
to impede the affinity maturation of specific and high-affinity antibody responses, in-depth
analysis and comparison of ordered and disordered epitope-antibody interactions have
shown otherwise [50]. Indeed, antibody affinity was found to be only weakly dependent
on disorder, with similar antibody binding affinities seen in both disordered epitopes and
their structured counterparts. Furthermore, disordered epitopes were found to be shorter
in length than ordered epitopes, making more efficient interactions with the antibody
paratope [50]. This challenges the long-held belief that the entropic costs associated with
the transition from disorder to order are detrimental to antibody binding and reinforces
the notion that disordered antigens are bona fide targets of antibody recognition.

An important consideration when constraining disordered epitopes into their antibody-
bound or native conformations is the effect on antibody maturation. Introducing rigidity in
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epitopes may be favourable to limit the number of conformations sampled by the epitope,
but it may also lead to activation of fewer germline antibodies. There are examples in
the literature of multiple neutralising antibodies recognising the same disordered epitope
in different conformations [46,51,52]. Presumably, the flexibility of these epitopes allows
for affinity maturation down multiple pathways of B cell maturation. It is possible that
confining the immune response to a narrow repertoire of B-cell precursors may be less effi-
cient and that some antigen flexibility may be required to elicit a robust immune response.
However, in this work we saw no significant reduction in antibody response even when
the specificity is narrowed substantially to the 4D11 epitope.

The utilisation of peptides in structure-based vaccine design is surprisingly unex-
plored, perhaps due to their limited ability to mimic conformational epitopes. However,
this is not an obstacle for disordered antigens such as MSP2, with epitopes that are invari-
ably linear and amenable to peptide-based strategies [15,50]. The high customisability of
peptides, coupled with detailed structural analyses of epitope-antibody interactions, means
that peptides can be constrained into their antibody-bound conformation. Furthermore,
the presentation of a relatively small immunogenic portion of a protein reduces the likeli-
hood of introducing potentially distracting epitopes, and so decreases undesired antigenic
load [53].

Here, we used the crystal structure of 4D11 Fv in complex with its minimal binding
epitope to inform the design of a series of peptide epitope vaccines. The homo-dimeric
peptide present in this structure led to the design and synthesis of a series of dimeric
peptides constrained as linear or backbone cyclised analogues, all of which were capable of
inducing a peptide-specific response specific to the 4D11 epitope.

The stark change in antibody specificities induced by the mutant peptide K209A
when compared to the wild-type sequence peptide, A1, presents a simple strategy to
bias the immune response to favourable epitopes. Recently, chimeric MSP2 antigens that
include variable and conserved regions of the 3D7 and FC27 alleles were able to induce
a broad immune response to both strains in mice [11]. Mutations such as K209A can
be implemented into recombinant analogues of MSP2 such as these chimeras and may
enhance antibody production to the more accessible 4D11 epitope.

The ability to elicit an immune response that can recognise parasite MSP2 using
peptide antigens is an important result. The poor reactivity with D1 in comparison to
K209A, L1 and C1 suggests that the additional constraints may help to present a 4D11
epitope conformation similar to that seen on the parasite surface. Although the MSP2 mix
elicited the strongest response of all the antigens, the presence of variable region epitopes
accounts for a portion of this response. The capability of the peptide antigens to elicit
comparable reactivity to the MSP2 mix, despite only presenting a single epitope, further
highlights their potential as vaccine candidates.

To further characterise the immune response to these peptide vaccines, reliable func-
tional correlates of protection such as antibody-mediated complement-dependent inhibi-
tion [54], antibody-dependent cellular inhibition [55], and opsonic phagocytosis [56] assays
will be required. Nonetheless, these results provide a promising platform for further work
on MSP2-based peptide vaccine candidates. Furthermore, the structure-based vaccine
design approach could be broadened to other disordered antigens of malaria parasites such
as the circumsporozoite protein or to epitopes found in disordered regions of antigens in a
wide range of pathogens [57–59]. Collectively, these results suggest that, with knowledge
of the structures of antibody-bound epitopes, structural vaccinology can be applied to
customisable peptide vaccines to induce a highly specific antibody response.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/vaccines9080855/s1, Figures S1–S5: LCMS profile of purified peptides. Figure S6: RMSD of the
4D11 epitope shape over 100 ns MD simulation with respect to the conformation of the 4D11-bound
epitope, Figure S7: 4D11 IgG binding to BSA-peptide conjugates, Figure S8: Pooled sera binding to
non-relevant peptide conjugated to BSA, Figure S9: Single-point individual mouse sera binding to
unconjugated KLH.

https://www.mdpi.com/article/10.3390/vaccines9080855/s1
https://www.mdpi.com/article/10.3390/vaccines9080855/s1
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