
Published online 22 June 2021 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 1
https://doi.org/10.1093/nargab/lqab056

A computational method for direct imputation of cell
type-specific expression profiles and cellular
compositions from bulk-tissue RNA-Seq in brain
disorders
Abolfazl Doostparast Torshizi 1,2, Jubao Duan3,4 and Kai Wang 1,2,*

1Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia,
Philadelphia, PA 19104, USA, 2Department of Pathology and Laboratory Medicine, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA 19104, USA, 3Center for Psychiatric Genetics, NorthShore University
HealthSystem, Evanston, IL 60201, USA and 4Department of Psychiatry and Behavioral Neurosciences, The
University of Chicago, Chicago, IL 60015, USA

Received November 30, 2020; Revised May 24, 2021; Editorial Decision May 31, 2021; Accepted June 21, 2021

ABSTRACT

The importance of cell type-specific gene expression
in disease-relevant tissues is increasingly recog-
nized in genetic studies of complex diseases. How-
ever, most gene expression studies are conducted
on bulk tissues, without examining cell type-specific
expression profiles. Several computational methods
are available for cell type deconvolution (i.e. infer-
ence of cellular composition) from bulk RNA-Seq
data, but few of them impute cell type-specific ex-
pression profiles. We hypothesize that with external
prior information such as single cell RNA-seq and
population-wide expression profiles, it can be com-
putationally tractable to estimate both cellular com-
position and cell type-specific expression from bulk
RNA-Seq data. Here we introduce CellR, which ad-
dresses cross-individual gene expression variations
to adjust the weights of cell-specific gene mark-
ers. It then transforms the deconvolution problem
into a linear programming model while taking into
account inter/intra cellular correlations and uses a
multi-variate stochastic search algorithm to estimate
the cell type-specific expression profiles. Analyses
on several complex diseases such as schizophrenia,
Alzheimer’s disease, Huntington’s disease and type
2 diabetes validated the efficiency of CellR, while re-
vealing how specific cell types contribute to differ-
ent diseases. In summary, CellR compares favorably
against competing approaches, enabling cell type-
specific re-analysis of gene expression data on bulk
tissues in complex diseases.

INTRODUCTION

Bulk-tissue RNA sequencing (RNA-seq) yields an aver-
age gene expression profile across a collection of heteroge-
neous cell types, but it does not reveal the cell type-specific
gene expression profiles within the specific cell populations
of interest. Since not all of the cell types are equally in-
volved in disease progression (1), gene expression analy-
sis on the cell types that are most relevant to the disease
may reveal more biological insights than analysis on bulk
tissue. For example, developmental processes of organisms
including morphogenesis, embryogenesis and cell differen-
tiation are directly affected by relative composition of cell
types (2). Likewise, presence or absence of a particular cell
type explains etiology of many diseases (3,4). As an exam-
ple, Alzheimer’s disease is characterized by changes in the
glial populations in the brain (5), while the composition of
white blood cells can be an indicator of acute cellular re-
jection of transplanted kidneys (6). It has also been shown
how cell type composition plays a critical role in tumorige-
nesis in which heterogeneity of tumor cells are implicated
in cancer metastasis (7). Recent advancement in single cell
RNA-seq (scRNA-seq) technologies has made it clear how
specific cell types affect the diseases mechanisms. Remark-
able findings in autism spectrum disorders (8), schizophre-
nia (1,9,10), studying retinal tissue (11) and anatomy of hu-
man kidneys (12) all demonstrated how specific cell types
are most relevant to the pathogenesis of different diseases.

Emergence of scRNA-seq technologies has enabled re-
searchers to formalize classification of inherent heterogene-
ity of cell populations. However, such technologies are more
expensive and analytically challenging than bulk RNA-seq
assays, limiting their use in population-scale studies. De-
spite the prevalence of experimental approaches to enumer-
ate cells such as laser-capture microdissection and cell sort-
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ing, in silico deconvolution is gaining popularity. Broadly
speaking, computational deconvolution methods can be
categorized under two groups (13) including ‘partial’ and
‘complete’ approaches. In the former category, only cellular
proportions can be estimated from bulk data while in the
latter, cellular proportions and cell-type reference profiles
are directly deconvolved from bulk expression data. ‘Com-
plete’ deconvolution approaches can be further split into
semi-supervised and unsupervised. Most of the computa-
tional methods fall in the semi-supervised category where
a set of maker genes for each given cell/tissue types are
available (14,15). Another potential classification scheme
for in silico cell type deconvolution is based on the type
of transcription data: whether the method is designed for
microarray or RNA-seq (16). It is unclear whether and
how methods exclusively designed for microarray platforms
can be effectively adopted for next-generation sequencing
data (NGS), given the improved linear associations between
true RNA abundance and sequence reads over microarrays
(17,18). However, some researchers like Liebner et al. (19)
emphasize developing RNA-seq-specific statistical models.
In a recent benchmark study, Cobos et al. (20) have made
comparisons between some of the available methods which
offers insights into the characteristics of the existing meth-
ods.

Given a reference scRNA-seq data from tissues of inter-
est, estimating cellular composition of bulk RNA-seq data
as well as estimating cell-specific expression profiles is an
important yet challenging computational problem. There
have been multiple methods proposed over the past few
years such as CIBERSORT (3), CIBERSORTx (21), ABIS
(22), MuSiC (23), Deconf (24), DC3 (25), lsFit (4) and
BSEQ-sc (26). While some of these methods such as De-
conf or IsFit can be used in various contexts, others, such
as ABIS or CIBERSORT, were primarily developed for cer-
tain diseases such as cancers for enumerating immune cell-
types and tumor cells. A common feature shared by many
of these approaches is their reliance on known markers a
priori (i.e. users need to provide a list of ‘marker’ genes
for each cell type) as well as their limited use in special-
ized and well-studied cell types. Yet, CIBERSORTx pro-
vides an additional signature extraction module to generate
gene markers to be used during the deconvolution process
as well as a module to estimate cell-specific gene expression
profiles. More recently, efforts have been made to further
apply computational models in exploring cell-specificity in
transcriptomics studies. Sokolowski et al. (27) have intro-
duced scMappR to study what specific cell-types are mainly
driving dysregulation of genes in bulk RNA-seq data. They
had demonstrated capabilities of the method by assigning
differentially expressed genes to cell-types involved in kid-
ney regeneration, including a small population of immune
cells. Moreover, Jaakkola and Elo (28) have introduced a ro-
bust linear regression-based approach aimed at estimating
cell-specific expression profiles.

To improve the accuracy to infer cell type-specific expres-
sion profiles, other factors need to be taken into account
such as cross-individual genetic variations that may result
in different magnitude of variation of ‘marker’ genes in bulk
samples from a specific individual. To overcome these lim-
itations and to maximize accuracy of cell-type deconvo-

lution in a data-driven fashion, we introduce CellR (Fig-
ure 1; https://github.com/adoostparast/CellR), a computa-
tional method to deconvolve bulk-tissue RNA-Seq data and
infer the cellular compositions as well as cell type-specific
gene expression values, using an external scRNA-Seq data
set as a reference. CellR incorporates cross-individual gene
expression variations during the deconvolution process,
which assigns different weights to the identified cell mark-
ers reflective of variations across individuals in a popula-
tion. Moreover, given the estimated cellular composition
of bulk samples, CellR is capable of imputing expression
profiles for each cell type, thus significantly extending the
practical utility of the tool beyond cell type deconvolution.
Indeed, estimation of cell type-specific gene expression will
open new doors to re-analyze gene expression data on bulk
tissues in population cohorts on complex diseases, by focus-
ing on comparative analysis on specific cell types. We illus-
trate a few case studies how such cell type-specific analy-
sis can generate biological insights beyond traditional bulk
tissue-based analysis.

MATERIALS AND METHODS

CellR is a data-driven method to recover the cellular com-
position of bulk RNA-seq samples given an scRNA-seq
data (usually generated on a different sample but from the
same tissue of interest) as a reference. In the following, vari-
ous stages of CellR depicted in Figure 1 are thoroughly dis-
cussed.

Model structure

CellR has two main modules including: (i) cellular enu-
meration module aimed at estimating the cellular propor-
tions within bulk RNA-seq samples; (ii) cell-specific gene
expression estimation module that infers the gene expres-
sion profile for each independent cell type of bulk RNA-seq
libraries.

In the cellular enumeration module, given the availability
of a reference scRNA-seq data from the tissue under study,
CellR partitions the cell types and obtains cell-specific genes
that are significantly upregulated in each cell type compared
to all others, using Wilcoxon rank sum test. CellR creates a
matrix called single cell marker matrix (scMM) describing
the expression of the data-derived markers across the se-
quenced cells while using the cellular annotations provided
by the user. Next, using the available data from the GTEx
project (29), CellR receives the cross-individual gene expres-
sion from specific human tissues and weights the extracted
markers so that stable markers, which are less prone to inter-
individual variations, rank higher. Upon applying the ob-
tained weights on the scMM followed by receiving and pre-
processing the bulk RNA-seq data to normalize for library
size, CellR creates a linear programming (LP) model penal-
ized over the contribution of every single cell in the refer-
ence data. Two penalty modes are considered including (i)
Lasso mode where contribution of transcription-wise cor-
related cells, i.e., most of the cells belonging to the same cell
type, are shrunk to zero and the most informative cells are
used in the model; (ii) Ridge mode in which contribution
of clustered cells are tightened together so that the overall

https://github.com/adoostparast/CellR


NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2 3

Figure 1. Schematic of the CellR pipeline. (A) Cell deconvolution module: CellR receives the reference scRNA-seq data followed by pre-processing it to
remove unwanted artifacts. CellR finds sets of cell types followed by extracting their corresponding markers. In order to account for genetic variations that
may modify gene expression, CellR receives TPM matrix from GTEx for the genes from the tissue under study and calculates the weights of the identified
gene markers to create scMM. scMM and bulk RNA-seq data, after pre-processing, are fed to the developed linear programming model and cellular
composition of each bulk sample will be output. (B) Cell-specific gene expression profiling module: CellR receives bulk RNA-seq libraries, infers cellular
proportions and cell-type counts within each library and processes each library via a newly developed meta-heuristic search optimization algorithm to
specify the distribution parameters of each gene within each cell population and outputs a separate transcriptional profiles for distinct cell-types.

objective function is minimized. After solving the optimiza-
tion model, cellular proportion of the identified cell types
in bulk tissue RNA-Seq data will be given by CellR. Ad-
ditionally, using the output cellular proportions by CellR,
one could generate the predicted gene expression profiles for
each cell type, given the bulk tissue RNA-Seq of the sample.

Cell-specific gene expression estimation module receives
cellular proportions in a bulk RNA-seq sample, either gen-
erated by CellR or similar approaches, consists of a meta-
heuristic multivariate search mechanism to optimize the dis-
tribution parameters of each gene within each independent
cell population, which later can be used for downstream
analysis. This module outputs the overall expression pro-
files across certain cell populations similar to a bulk RNA-
seq data that contain a mixture of expression profiles from
multiple cell types.

Optimization model

Let f be the objective function of the proposed model as
follows:

min f = |G − (PT B + λ.M)|
s.t.P ≥ 0

∀ i ∈ I,
∑
k

Pki = 1
(1)

where G = []I×T represents the gene expression levels of
the total number of bulk samples (I) such that T denotes
the number of marker genes, git represents the expression
of marker gene t in the sample i , P = []C×I represents the
proportion of the total number of cells (C) in the bulk sam-
ple, in which Pki is the proportion of the cell k in the bulk
sample i , B represents the created single-cell marker matrix
(scMM), λ is the complexity factor, and M is the elastic net

penalty described in what follows. Extending Equation (1),
the penalty term will be as follows:

λ.M = λ

[
1
2

(1 − α) ||P||22 + α ||P||1
]

(2)

where 0 ≤ α ≤ 1. α = 0 equates to ridge mode and α = 1
denotes lasso mode. In Equation (4), ||P||22 and ||P||1 denote
the l2 and l1 norms of the P matrix.

In the current version, CellR internally adopts glmnet
software package (30) (v. 2.0–16) to solve the optimization
problem and uses edgeR (31) (v. 3.22.5) for normalizing the
bulk RNA-seq data. glmnet employs cyclical coordinate de-
scent by successively optimizing the objective function over
the designed parameters while keeping the others fixed and
proceeds the cycle until convergence. Standard procedure
recommended by edgeR developers were used to normalize
the raw bulk RNA-seq counts. CellR annotates the identi-
fied clusters using the cell annotations provided by the user
as an input. After solving the optimization model, cellular
proportion of the identified cell types in bulk tissue RNA-
Seq data will be given by CellR.

Obtaining expression stability of genes using GTEx data

Let A = []C×T be the matrix of T extracted markers from
the reference scRNA-seq data across the entire number of
cells C (CellR internally employs some modules from Seurat
(32) for marker extraction). Then, scMM can be obtained
as follows:

∀ j ∈ C : Bj = Aj � W (3)

where W is the obtained weight vector from Equation (4),
Aj is the j -th row of the matrix A belonging to cell j , and
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� represents the element-wise product of the two vectors.
Row-wise concatenation of all Bj vectors will create the
scMM B. In order to obtain the weight vector denoted in
Equation (3), let X = []G×In be the TPM (transcripts per
million) matrix from genotype-tissue expression (GTEx)
database (29) where G denotes the genes and In denotes the
individuals in the GTEx data. xi j denotes the expression of
gene i for the individual j in the consortium. GTEx project
is a comprehensive public resource to study tissue-specific
gene expression and regulation. Let Xi be the expression of
gene i across the entire individuals in the GTEx data. We
obtain the gene weight vector W as follows:

wi = 1 + 1
Si

∑T
t = 1

1
St+ε

, i f Si �= 0

wi = 1 i f Si = 0
(4)

where wi denotes the weight of the gene i , Si denotes the
standard deviation of the expression of the gene i across the
entire individuals in the GTEx data, ε is a very small posi-
tive real number to avoid having a zero in the denominator,
and T denotes the total number of marker genes in scMM.

Creating artificial bulk RNA-seq data

Suppose S = []G×C be a scRNA-seq matrix containing C
cells and G genes, respectively. The artificial bulk data B =
[]G×1 can be obtained by summing up the raw counts of each
gene across the entire cell population.

Bg =
C∑

c=1

Sgc (5)

Competing methods

Four methods were used for comparing the effi-
ciency and accuracy of CellR including CIBER-
SORT(3) v. 1.06 (https://cibersort.stanford.edu/),
Deconf (24), CIBERSORTx (21) and IsFit (4).
We used CellMix 1.6 software package (13) (http:
//web.cbio.uct.ac.za/~renaud/CRAN/web/CellMix/) in
R to run Deconf and IsFit. For all of these methods,
standard running procedures were applied. To create sig-
nature marker list in CIBERSORTx, we used the reference
scRNA-seq data as well as the phenotype class files and
followed the CIBERSORTx standard procedure to create
the signature gene file. We used Seurat (32) to extract the
marker genes for the identified cell clusters and used these
genes as the input markers for Deconf and IsFit.

Cross-validation and re-sampling strategies

A 10-fold cross validation strategy was used to compare the
accuracy of CellR against the other methods. First, we split
the created artificial bulk RNA-seq datasets into 10 dif-
ferent subsets. In each iteration of cross validation, CellR
was applied to each subset and the corresponding root-
mean square error (RMSE) was calculated. Next, the ob-
tained RMSE values in each iteration were averaged and
reported on each artificial bulk data. To compare stabil-
ity of the output of the competing methods, we employed

a uniform distribution re-sampling with replacement com-
prising 30% and 10% of the cells in the reference scRNA-seq
datasets and trained the models. We iterated the re-sampling
for 1,000 times and reported the average RMSEs and their
variance in the paper.

Estimating cell type-specific gene expression

We generated cell type-specific gene expression levels
through estimating the prior distributions of each cell-type
within the bulk samples in the bulk data. We used the fol-
lowing equation to model the expression of a gene in an in-
dividual.

gi j =
C∑

c=1
pcj eicj where gi j denotes the bulk expression of

gene i in individual j , pcj denotes the proportion of cell type
c in individual j , eicj represents the expression of gene i in
cell type c for individual j , and C denotes the total number
of cell types. Suppose eicj follows a negative binomial distri-
bution of the form NB(ric, dic). We estimate the parameters
of the distributions for every gene i across every cell type
c though a simulated annealing optimization (SA) process
(please see the pseudocode in the following). We used the
SA structure in our other study (33). The algorithm starts
with random initial parameters for expression of each gene
regarding distinct cell types. To reduce the risk of falling in
local optima, we used the mean of the bulk counts for each
gene as the mean parameter of the prior distribution and
a randomly generated number between 0 and 1 as the dis-
persion parameter. During each iteration of the algorithm,
using the estimated parameters, sample cell-specific expres-
sion values are generated followed by obtaining an estima-
tion of bulk expression levels as follows.

g̃i j =
C∑

c=1
pcj ẽicj , in which g̃i j denotes the estimated bulk

expression of gene i in individual j and ẽicj represents the
estimated expression of gene i in cell type c for individual
j which has been sampled from the simulated prior dis-
tribution. Then, in each iteration, root mean square error
(RMSEi ) is calculated for each gene i as follows. RMSEi =

N∑
j=1

(gi j − g̃i j )2 where N represents the total number of in-

dividual samples in the bulk data. The convergent set of
parameters with the lowest RMSE will then be kept as the
prior parameters of cell-specific gene expression levels in the
bulk data. We should note that during each iteration of the
algorithm for each gene i , we have developed two pertur-
bation mechanisms to generate new parameters where each
one is randomly selected including: (i) current parameters
± rand(-0.5, .5) × current parameters; (ii) new mean pa-
rameter (rnew): current mean parameters (rcurrent) ± stan-
dard deviation of the gene i across the bulk data, new dis-
persion parameter (dnew): rand[0, 1]. Another major fea-
ture incorporated in this algorithm is its capability to escape
from local optimum regions by enabling us to accept pa-
rameters (with a restricted probability) with a worse RMSE
at another domain of the search space to ensure scanning
the entire search space for potential global optima (see the
pseudocode below). Simulated annealing has been proven
to converge to near optimal solution (34).

https://cibersort.stanford.edu/
http://web.cbio.uct.ac.za/~renaud/CRAN/web/CellMix/
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In the following, we have represented the pseudocode of
the developed algorithm:

Input: bulk libraries (b), reference scRNA-seq (r), cellular
proportions (p), cell-type counts (f), cell-type of interest
(c)

Output: gene expression profiles for the cell-type c within
each bulk library.

Set: temperature (t), maximum temperature (t max), mini-
mum temperature (t min), rate factor (�)

For every gene in b
Calculate mean expression of the gene as the search start

point (μ)
Create negative binomial distribution NB(μ,θ) where θ

is random real number from [0, 1]
Generate b random values from the created distribution
While t>t min

For 1 to 200
Generate new parameters using two mechanisms

each randomly chosen
CalculateRMSE
If RMSE gets lower, keep the new parameters
Else keep the new parameters if 1-

exp(t×RMSE)<0.01
End If

End For
Set t = t max×(1- �)iteration

End While
End For

Measuring similarity of estimated cell-specific expression
profiles with the bulk data

In order to measure the similarity of each cell-specific es-
timation of expression profiles with the original bulk data,
we used Cosine similarity measure in text2vec R package.
Cosine similarity between two vectors x and y is defined as
follows (35): CS (x, y) = xt y

‖x‖‖y‖ where ‖x‖ and ‖y‖ denote
the Frobenius norm of the two vectors x and y, respectively.
We calculated the similarity of expression profiles of each
gene in cell-specific estimated data versus its expression in
the bulk data and averaged the similarity values for all of
the genes in distinct cell-types.

Processing of scRNA-seq data

To pre-process the raw scRNA-seq count data, CellR in-
ternally employs Seurat software (32) (v. 2.3) in R. During
the pre-processing stage first, the percentage of mitochon-
drial gene counts is detected. Then, to normalize the gene
expression measurements for each cell, global-scaling nor-
malization is applied followed by multiplying the counts by
a scale factor of 10000 to keep the linear assumption made
in this paper. Next, the data are scaled by regressing out
the percentage of mitochondrial gene content. Using the
pre-processed data, principal component analysis (PCA) is
done. The number of principal components to be used in
clustering for finding the cluster markers can be determined
by a resampling test inspired by the jackStraw procedure
(36).

RESULTS

Numerical experiments on simulation data

To test the efficiency of CellR, first, we created two artificial
bulk RNA-seq data (see Methods and Materials section)
using two sets of independent scRNA-seq data from Lake
et al. (37) and Segerstolpe et al. (38) on cerebellum and pan-
creas, respectively. We used the procedure recommended by
Wang et al. (23) to create the artificial bulk data. The main
advantage of such an approach is that the correct propor-
tion of available cell types are already known so that differ-
ent computational approaches can be evaluated against the
known truth. The data on cerebellum contain >5,600 cells
including neuronal cell types such as granular cells (Gran,
Percentage = 58.8%) and Purkinje cells (Purk, Percentage =
17.8%) as well as non-neuronal cells including endothelial
cells (End, Percentage = 1.2%), astrocytes (Ast, Percentage
= 9.9%), oligodendrocytes (Oli, Percentage = 3.4%), per-
icytes (Per, Percentage = 0.77%), oligodendrocyte precur-
sor cells (OPCs, Percentage = 5.13%) and microglia (Mic,
Percentage = 3%). The data from pancreas are a less het-
erogeneous set of endocrine cells comprising five cells types
called α (Percentage = 60.1%), β (Percentage = 18.3%), δ
(Percentage = 7.72%), ε (Percentage = 0.48%) and γ (Per-
centage = 13.4%). We ran CellR using two modes (lasso and
ridge) and compared its accuracy with a few existing meth-
ods including CIBERSORT, CIBERSORTx, MuSiC, De-
conf and lsFit. To test the accuracy, we split the counts of
each gene equally to 10 subsets and adopted the cross val-
idation strategy, such that we trained each method using 9
subsets and ran the model on the remaining subset. Dur-
ing each iteration, accuracy was measured using root mean
square error (RMSE) and at the end, the average RMSE
was reported (Figure 2A and B). We observed that CellR in
lasso mode, CIBERSORT and CIBERSORTx outperform
the other methods while CellR on Ridge mode does not
yield the best performance as measured by average RMSE.
MuSiC in both cases performs better than CIBERSORT
and CIBERSORTx as well as CellR in ridge mode while
showing slight increase in RMSE compared to the CellR in
lasso mode. IsFit and Deconf underestimated the propor-
tion of abundant cell types, such as Gran in cerebellum and
α cells in pancreas.

Additionally, it is known that computational methods for
estimating cellular composition may be unstable when the
number of cells is small. To compare the stability of the out-
puts of each method, we re-sampled the reference scRNA-
seq data, including 30% of the entire cells in each iteration,
performed the experiment 1,000 times and compared the av-
erage RMSEs (Figure 2C and D). CellR in the lasso mode
yields more stable numbers with less variation compared to
the competing methods. As depicted in Figure 2C and D,
CellR leads to lower RMSEs. The bars representing the av-
erage RMSE values for each method includes an error bar.
The error bars denote the stability of RMSEs in each iter-
ation that demonstrates that CellR shows a reasonable de-
gree of stability compared to the other models. We were in-
terested in investigating how CellR and competing methods
perform when decreasing the re-sampling rate to 10%. We
re-iterated the re-sampling procedure explained above at a
rate of 10% and calculated the RMSE on all of the bench-
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Figure 2. Comparative analysis of CellR and four other competing approaches. (A) Output of the compared methods using the artificial bulk RNA-seq
data on cerebellum. (B) Output of the compared methods using the artificial bulk RNA-seq data on pancreas. (C) Average RMSE of re-sampling from
the reference scRNA-seq data from cerebellum to compare stability of each method at 10% and 30% number of cells re-sampled. (D) Average RMSE of
re-sampling from the reference scRNA-seq data from pancreas to compare stability of each method at 10% and 30% number of cells re-sampled. (E and F)
Number of the identified cell-specific markers in brain and pancreas, respectively. (G and H) The effects of removing GTEx information from CellR on
the accuracy of the results on cerebellum and pancreas data, respectively. (I) Average RMSE on the independent simulated data. (J) Comparison results
of the competing methods compared to the ground truth data in human brain.
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marked methods. As shown in Figure 2C and D, the RMSE
in all methods has increased, which is a natural outcome of
under-sampling of less-populated cell-types that ultimately
leads to an increased RMSE. However, we did not see sig-
nificant changes in the variations of RMSEs upon 1000 it-
erations and the order of RMSEs remain the same as the
30% re-sampling rate. To conduct an independent analysis
using simulated bulk data from another study, we used the
procedure introduced by Jaakkola and Elo (28) where artifi-
cial data were used encompassing five artificial cell-types A,
B, C, D and E with different proportions across 40 samples.
Then, we ran CellR on these data and calculated the pro-
portions of these five cell types followed by computing the
RMSEs over the generated artificial population (Figure 2I).
We observed that CellR in lasso mode performs best among
the benchmarked methods while CIBERSORTx yields the
second lowest RMSE. CellR in ridge mode yields a rela-
tively similar value to CIBERSORT. This additional analy-
sis on an independent simulated data indicates the reliable
performance of CellR.

An advantage of CellR lies in its ability to robustly char-
acterize cellular composition without having a prior biolog-
ical knowledge of the markers representing cell types (how-
ever, we acknowledge that a prior clustering analysis of
the scRNA-Seq data need to be performed to define cellu-
lar clusters, which represent cell types). CIBERSORT, on
the other hand, requires providing cellular markers that
makes it difficult in scenarios where no sufficient informa-
tion about the underlying molecular signatures of various
cell types is known. However, CIBERSORTx provides an
automated module to extract gene signatures to be used
during the deconvolution process. Details on the identified
markers on cerebellum and pancreas are reported in Supple-
mentary Tables S1–S2, respectively. In cerebellum, CellR re-
vealed 1,292 gene markers while 3,814 genes were identified
in the pancreas data. We used the same markers in CIBER-
SORT. The number of markers per cell-type is provided in
Figure 2E and F.

Another added value of CellR is to consider cross-
individual gene expression variations during cell-type de-
convolution. To demonstrate this, we repeated the re-
sampling procedure described above on cerebellum and
pancreas data when cross-individual gene expression vari-
ations from GTEx are not used in CellR (Figure 2G and
H). We observed ∼9% increase in RMSE for both lasso and
ridge modes when GTEx information is not included in the
model compared to the cases where GTEx information is
available. This stems from uncertainties induced in the lin-
ear programming model used by CellR that leads to desta-
bilized outcomes in the optimization stage. Moreover, com-
pared to the other benchmarked methods, it is clear that
ignoring the GTEx information decreased the stability of
CellR and resulted in a dramatic decrease in the overall ac-
curacy of the method.

An important measure to check the accuracy of the pro-
posed method is to evaluate its performance on sample data
where ground truth single cell information is available on
the same sample. To this end, we obtained a set of single nu-
cleus RNA-seq data from human cerebral cortex (39) as well
as bulk RNA-seq data from the same individual. The data

contain 13 cell-types including 8 excitatory (Exc) and 5 in-
hibitory (In) neurons. We ran CellR and the other compet-
ing methods on the bulk data and compared the outcomes
with the known number of available cell-types in the bulk
library (Figure 2J). In the majority of the cell-types, CellR
yields the most accurate proportions compared to the rest
of the methods. In Exc-A set, CIBERSORT and CIBER-
SORTx perform better, while CIBERSORTx and MuSiC
show a close performance in the other cell-types compared
to the other methods. Deconf and lsFit demonstrate the
poorest performance across the board. Overall, CellR was
shown to have a high accuracy in the majority of the profiled
cell-types.

Deconvolution of bulk RNA-Seq data in tissues that are rel-
evant in several diseases

In real experimental situations, reference scRNA-seq and
bulk RNA-seq data from the same individual may not al-
ways be available. Hence, cell type deconvolution meth-
ods should be able to accurately characterize the cellular
composition of bulk data coming from different individ-
uals than the source of the scRNA-seq data. To evaluate
the performance of our method on real bulk tissue RNA-
Seq data sets, using scRNA-Seq data generated on unre-
lated tissue samples, we obtained two sets of bulk data on
postmortem human frontal cortex brain tissues. The first
set, provided by Allen et al. (40), comprises 278 subjects
with the following pathological diagnoses: Alzheimer’s dis-
ease (AD), N = 84; progressive supranuclear palsy (PSP),
N = 84; pathologic aging (PA), N = 30; control, N = 80.
The second data were obtained from a study by Labadorf
et al. (41) on Huntington’s disease (HD) generated from
human prefrontal cortex, including 20 HD subjects and 49
neuropathologically normal controls. We used the reference
scRNA-seq data from reference (37) on human frontal cor-
tex. We ran CellR as well as four other methods on the
two aforementioned datasets. Cellular proportions are re-
ported in Figure 3A to D. Eight cell-types have been enu-
merated including: excitatory and inhibitory neurons, en-
dothelial and oligodendrocyte progenitor cells, microglia,
oligodendrocytes, astrocytes, and pericytes. The enumer-
ated proportions on AD and HD are represented in Fig-
ure 3A,B and Figure 3C,D, respectively. CellR in the ridge
mode yields correlated proportions while dispersion of pro-
portions in the lasso mode is relatively higher in astrocytes,
inhibitory neurons and OPCs. CIBERSORT overestimates
most of the analyzed cell types both in AD and HD sam-
ples. For instance, the proportion of astrocytes given by
CellR in AD samples is ∼8–21% while the proportion is
∼0–58% by CIBERSORT. This is also the case for IsFit
and Deconf whose output proportions are overestimated
in pericytes. For example, both of these methods report a
proportion of over 25% while the real proportion of peri-
cytes in the reference data is <1%. Upon making compar-
isons, we observed that CIBERSORTx tends to yield less
dispersed cellular proportions compared to CEIBERSORT.
In addition, in most cases, the mean cellular proportions
by CIBERSORTx are closer to CellR rather than CIBER-
SORT including endothelial cells, pericytes and excitatory
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Figure 3. Cellular proportions of AD and HD cohorts. (A) Output of the compared methods using the bulk data from AD samples generated from human
brain tissues for Exc, End, Mic and Oli cells. (B) Output of the compared methods using the bulk data from AD samples generated from human brain
tissues for Ast, In, OPC and Per cells. (C) Output of the compared methods using the bulk data from HD and normal (N) samples generated from human
brain tissues for Exc, End, Mic and Oli cells. (D) Output of the compared methods using the bulk data from HD and normal (N) samples generated
from human brain tissues for Ast, In, OPC and Per cells. N: normal healthy controls; PSP: progressive supranuclear palsy, PA: pathologic aging, Exc:
excitatory neurons, In: inhibitory neurons, Ast: astrocytes, OPC: oligodendrocyte progenitor cells, Per: pericytes, End: endothelial cells, Mic: microglia,
Oli: oligodendrocytes.

neurons in AD as well as microglia, excitatory neurons, as-
trocytes and oligodendrocytes in HD. To gain a deeper in-
sight into the number of the identified gene markers within
the brain and pancreas scRNA-seq datasets, the number
of cell-specific markers is shown in Figure 2E and F. We
observed that the number of differentially expressed (DE)
genes is larger in cell types which predominantly constitute
the overall number of sequenced cells. Our tests indicate that
on the simulation data, CellR in lasso mode yields better
accuracy while outputting slightly higher dispersion in the
proportion of cell types on real data (Figure 3). As a result,
for less heterogeneous data, similar to the simulation data
here, we recommend using lasso mode, whereas the ridge
mode may have some advantages for more complex real
data.

In addition, we analyzed a bulk RNA-Seq data from
Fadista et al. (42) on type 2 diabetes (T2D), due to the avail-
ability of a scRNA-Seq data on pancreas, which is the tissue
that is directly relevant to T2D. We used CellR to analyze
the putative associations between the proportion of beta
cells and HbA1c level, a measure of long-term glycemia.
HbA1c denotes normal glucose tolerance (HbA1c ≥ 6.5%
in T2D, HbA1c ≤ 6% in healthy individuals). Only CellR
successfully captured negative correlations between the beta
cell proportion and HbA1c levels (correlation coefficient
= -0.41, P-value = 0.003827). We also noticed that a re-
cently published study (23) that re-analyzed the same data
has come to a similar conclusion with correlation coefficient
= ∼-0.31 and P-value = 0.00126 (see Supplementary Figure
S1).
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Estimating cell-specific gene expression profiles

A major application of CellR is to estimate cell type-
specific gene expression profiles in distinct cellular popula-
tions within a heterogeneous bulk data. We have developed
a meta-heuristic optimization-based search mechanism that
enables estimating the distribution parameters for distinct
cell populations and generates a transcriptomic profile of
the cellular constituents of a bulk RNA-seq library (see
Methods and Materials section). CellR receives bulk data,
reference scRNA-seq data from the same tissue as well as es-
timated cellular proportions and counts (whether estimated
by CellR or other methods) and generates a starting solu-
tion per gene for each cell type. Next, through several lay-
ers of search, it estimates near optimal distribution param-
eters for each gene and generates expression profiles for ho-
mogeneous cell populations separately. To evaluate the ef-
ficiency of the developed method, we conducted multiple
experiments including simulation tests and real-world ex-
periments on schizophrenia.

Initially, we created 50 pseudo-bulk RNA-seq samples by
simulating scRNA-seq data on human cerebellum. For this,
we used the data on cerebellum from Lake et al. (37) and
simulated 50 scRNA-seq datasets (Figure 4A) upon it using
Splatter (43). We turned each simulated data into a pseudo-
bulk sample enabling us to have a ground truth for the
transcriptome-wide distribution of genes in separate cell-
types. Later, we ran CellR on each sample and compared the
inferred average expression of the genes with the known ex-
pression levels. First, we calculated the similarity of the esti-
mated gene profiles between pairs of cell-types (Figure 4B)
using cosine measure library (see Methods and Materials
section). We had profiled expression levels across nine cell-
types including Gran, End, Ast, Oli, Per, OPC, Mic, as well
as two Purkinje cells Purk1 and Purk2. We observed strong
similarities between the average expressions of the inferred
profiles between the same cell-types (Figure 4B and Supple-
mentary Figure S2). For example, inferred profiles of Gran
cells indicate a strong similarity with the Gran cells in the
ground truth while showing elevated levels of dissimilarity
with the other cell-types. Notably, we were able to show how
subpopulations of Purk cells, e.g. Purk1 and Purk2, demon-
strate similar patterns versus each other while indicating ex-
cessive differences with the other cell populations. We also
made a second round of comparisons on the basis of our
simulations. We calculated the Pearson correlations (Figure
4C) between the inferred and ground truth expression levels
between pairs of cell-types and showed that there is strong
correlations between the same cell-types, suggesting the re-
liability of the inferred expression profiles. We acknowledge
that the developed method may not be error-free given lim-
itations of scRNA-seq data, such as low library depth and
dropout effects.

We were interested to apply CellR on real transcriptome
data on schizophrenia. We used CommonMind Consor-
tium (CMC) study data for this analysis (44). CMC study is
currently the largest repertoire of schizophrenia bulk RNA-
seq data on human postmortem dorsolateral prefrontal cor-
tex from a population of 258 schizophrenia individuals
and 279 control subjects. To delineate how transcriptional
patterns across distinct cellular populations differ among

schizophrenia and normal individuals, we used CellR to
create cell-specific expression profiles on the entire samples
in the CMC data on eight cell-types including Ex, Ast, End,
In, Mic, Oli, OPC and Per. We ran CellR and looked for
DE genes within each cell-type (Supplementary Table S3).
Overall, we observed 589 DE genes to be dysregulated in
at least one cell-type while 693 genes are DE in the bulk
data (Figure 4D). All of these DE genes were among the DE
genes reported in the CMC study. Excitatory neurons were
found to have the largest number of DE genes (∼71% of the
total DE genes) while In, End, and Mic cell-types showed
an almost identical number of DE genes (∼57% of the to-
tal DE genes, each). This is consistent with the observations
made by Skene et al. (1) where Ast and Mic are found to be
less relevant to the disease while Ex and In neurons share
the highest number of susceptibility genes in schizophrenia.

In order to compare the performance of CellR in in-
ferring cell-specific expression profiles, we ran CellR on
two RNA-seq datasets on melanoma (45) and rheumatoid
arthritis (46,47) and compared it with Rodeo (28). Rodeo
is a novel method showing superior performance against
some existing methods including cd-qprog (48), LRCDE
(49), CDSeq (50) and Deblender (47). We calculated the
cell-specific expression profiles on the constituent cell-types
being indicated in (28) and obtained the correlation coef-
ficient between the real and estimated expression profiles
(Figure 4H and I). Our findings indicate that CellR pre-
dominantly leads to higher correlation values compared
to Rodeo, suggesting its superior performance on inferring
cell-specific expression profiles.

Particular cell-types are more relevant to schizophrenia

A study by Skene et al. (1) on how common genetic vari-
ants in schizophrenia can be mapped to brain cell types has
demonstrated the importance of considering cell-types in
studying genetic susceptibility to brain diseases. They had
shown that schizophrenia common variants are predomi-
nantly enriched in pyramidal cells, medium spiny neurons
(MSNs) and certain interneurons (1). They have concluded
that schizophrenia variants are far less mapped to progeni-
tor, embryonic and glial cells. A clear picture of susceptibil-
ity genes and their corresponding cell-types in schizophre-
nia can be achieved by CellR. Therefore, we were interested
to evaluate if any of schizophrenia DE genes can be mapped
to certain cell-types. To do so, we obtained the list of 693 DE
genes in schizophrenia from the CMC study (44). Then we
used the scRNA-seq reference data by Lake et al. (37) and
obtained the gene markers by CellR. For each cell-type, we
looked for the genes which were shared between their corre-
sponding markers by CellR and the list of DE genes in the
CMC data aimed at looking for potential enrichment of DE
genes in any of the extracted cell types. We found two cell
types of granular cells (P-value = 5 × 10–3, fold enrichment
= 2) and Purkinje cells (P-value = 9 × 10–3, fold enrichment
= 2.4) to enrich for schizophrenia DE genes. In addition
to DE genes, we sought to evaluate whether schizophrenia
common variants are enriched in any of cell-types within
the brain. We collected the genome-wide association study
(51) hits from the CLOZUK study (52) and the Psychiatric
Genomic Consortium study (PGC2) (53) which correspond
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Figure 4. Cell-specific gene expression profiling by CellR. (A) the workflow of simulating RNA-seq libraries to test the efficiency of CellR; (B) similarity
heatmap of the inferred gene expression profiles compared to the simulated data on human cerebellum; (C) correlation levels between the inferred gene
expression profiles and the simulated data on human cerebellum; (D) number of DE genes within distinct cell populations in the CMC data on schizophre-
nia; (E) average cellular proportions in the CMC samples by CellR; (F) average of similarity values of the estimated expression of each gene in a cell-types
compared with the bulk data in log10 scale; (G) enrichment degree of the TCF4 targets being disrupted in the cell-specific expression profiles estimated by
CellR; (H) correlation of expression profiles of the real and inferred cell-specific expression in melanoma; (I) correlation of expression profiles of the real
and inferred cell-specific expression in rheumatoid arthritis; Tcm: central memory T cells, Tem: effector memory T cells, Tn: naı̈ve T cells.

to 417 protein coding genes that are close to the risk loci
(only a fraction of the 417 protein-coding genes may be as-
sociated with schizophrenia though, as GWAS only exam-
ine proxy markers of causal variants; genes have been used
from CLOZUK and PGC2 datasets). We found the same
cell-types to be enriched for schizophrenia GWAS hits in-
cluding granular cells (P-value = 0.022, fold enrichment =
2.2) and Purkinje cells (P-value = 0.012, fold enrichment =
1.8). The rest of the cell types did not pass the significant
threshold. Enrichment of schizophrenia risk factors in cer-
tain neuronal cells is in line with the findings of Skene et al.

(1) where schizophrenia risk loci were mapped only to neu-
ronal cells. To provide further evidence, we used CIBER-
SORT and CIBERSORTx signature creation modules and
characterized the list of markers they use for deconvolu-
tion. Since both methods share the exact same approach
for marker genes, we obtained the same set of marker genes.
Similar to the analysis mentioned above, we computed the
enrichment of schizophrenia DE genes in the cell-types an-
notated by Lake et al. (37). We found that granular cells
(P-value = 3.4 × 10–4, fold enrichment = 1.9) and Purkinje
cells (P-value = 4 × 10–3, fold enrichment = 2) share the
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highest enrichment scores similar to our observation using
CellR. Moreover, we repeated the same analysis on GWAS
hits and found relatively close significance scores on gran-
ular cells (P-value = 0.01) and Purkinje cells (P-value =
0.008). These observations suggest the accuracy of CellR
in extracting marker genes from reference scRNA-seq data
and demonstrate how genetic signals in schizophrenia orig-
inate from neuronal cells.

A critical application of CellR is to numerically estimate
the proportions of cells-types in bulk samples without con-
ducting costly scRNA-seq experiments. As a proof of con-
cept, using the scRNA-seq reference data on the frontal
cortex by Lake et al. (37), we obtained the cellular propor-
tions of the samples in the CMC dataset. Average propor-
tions across the entire cohort are represented in Figure 4E.
We clearly see that neuronal cells including excitatory (Ex)
and inhibitory (In) neurons, accounts for ∼70% of the cel-
lular proportions within each sample. Therefore, we expect
that transcriptional signals in these samples predominantly
originate from these cell-types. This important observation
motivated us to follow how network gene complexes be-
ing targeted by schizophrenia transcriptional master regu-
lators (MRs) are expressed in distinct cell-types. In a recent
study (54), we had identified TCF4 as a schizophrenia MR
through re-analyzing the CMC bulk RNA-seq data and ex-
perimentally showed how disrupting the expression of this
gene can control a large basket of target genes in human
induced pluripotent stem cell (hiPSC)-derived neurons. For
this, we re-generated cell-specific gene expression levels for
each individual in the CMC data (see Methods and Materi-
als section). To do this, we used CellR to estimate the prior
distributions of cell-specific gene expression levels. These
cell types include excitatory neurons (Ex), inhibitory neu-
rons (In), astrocytes (Ast), oligodendrocyte progenitor cells
(OPC), pericytes (Per), endothelial cells (End), microglia
(Mic) and oligodendrocytes (Oli). Then for each distinct
cell-type, we generated cell-specific expression levels across
the entire individuals in the CMC data, which led to cre-
ating eight cell-specific gene expression datasets. Next, for
each of these datasets, we created the regulatory networks
using the same tools used in our study (54) and obtained
the targets of TCF4. Finally, we looked for the overlap-
ping targets of TCF4 generated from the bulk sample ver-
sus cell-specific expression data. Only for TCF4 targets in
the data in Ex, we observed a significant overlap (P-val =
4.6 × 10–38, fold enrichment ratio = 119, Figure 4G). No
significant overlap between the TCF4 targets in the original
bulk data versus other cell-specific expression data was ob-
served. We sought to analyze the similarities between cell-
specific estimated gene expression profiles of TCF4 targets
and the bulk expression levels. Upon obtaining cell-specific
profiles, we calculated the similarities between the estimated
expression of each gene in distinct cell-types compared to its
expression in the bulk data and averaged the similarity val-
ues of the entire TCF4 targets in various cell-types (Figure
4F, see Methods and Materials section). Average similarity
of TCF4 targets in Ex is almost 10-fold higher than other
cell-types, signifying that the transcriptional signals cap-
tured in the bulk RNA-seq data predominantly originates
from excitatory neurons. In addition, for each estimated
cell-specific expression profiles, we obtained DE genes be-
tween schizophrenia cases versus normal controls and com-

pared them with the list of DE genes in bulk CMC data. We
observed significant overlap between the DE genes from Ex-
specific expression profiles compared to the bulk data (P-val
= 2.3 × 10–38, fold enrichment ratio = 24) while no signifi-
cant overlap was observed for the rest of the cell-types. All
these findings validated the accuracy of CellR in estimating
the cellular proportions of bulk RNA-seq data. These ob-
servations indicate strong performance of CellR in estimat-
ing the cellular proportions and illustrate the importance
of taking into account the cellular heterogeneity of bulk
RNA-seq data to boost the signals and reduce biological
noises.

Differentially expressed genes are highly enriched in granular
and Purkinje cells in Alzheimer’s and Huntington’s diseases

We sought to evaluate if the DE genes in the bulk data
can be traced back in the cell-specific molecular signatures,
with the hypothesis that DE genes in specific cell types may
be the major contributor to overall DE genes identified
from bulk RNA-Seq data. To do this, we obtained the list
of DE genes between HD samples and negative controls.
About 5480 genes have been reported by Labadorf et al.
(41) to be DE. We intersected the list of DE genes with the
identified marker genes by CellR, using scRNA-seq data by
Lake et al. (37), and found 316 genes shared by the two
groups (Fisher Exact Test (FET) P-val = 0.007, Figure 5A).
Next, we annotated the shared genes to their corresponding
cell-types in the reference scRNA-seq data. About 50% of
these genes were annotated to Purk and Gran cells which
are classified as neuronal cells, whereas the rest of the genes
were annotated to five other cell-types. Notably, Purk cells
consisted ∼33% of the entire set of HD DE genes, e.g., the
list of common marker genes by CellR and the DE genes
reported by Labadorf et al. (41). These cells have been re-
ported to be compromised in aggressive mouse models of
HD and their dysfunction is shown to be correlated with
HD’s pathology (55). Our observations indicate that a large
fraction of DE genes in bulk tissue samples are in fact mark-
ers of specific cell-types. In other words, the statistical sig-
nals being picked up in bulk transcriptomic analysis origi-
nate from only a fraction of the cellular constituents of the
samples, further highlighting specificity of cell-types in dis-
tinct diseases.

Next, we performed a similar analysis on AD where we
obtained DE genes (40) comparing three different pairs in-
cluding AD-control, PA-control and PSP-control. No DE
genes were observed between PA and normal control sam-
ples. We observed 707 marker genes to be DE in AD-
control pair while finding 17 marker genes to be DE in
the PSP-control pair (Figure 5B). We observed ∼54% of
the DE genes to be enriched in Gran and Purk cell-types
(FET P-val = 6.26 × 10–32). These observations suggest a
similar conclusion that much of the signal captured from
bulk samples are largely attributed to a limited number
of disease-relevant cell-types. Although single-cell sequenc-
ing is an effective means to investigate this issue and iden-
tify the disease-relevant cell types, it is not cost effective
to be scaled to a very large number of samples; in com-
parison, CellR circumvented this problem and allowed the
use of bulk RNA-Seq data to investigate cell type-specific
contributions.
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Figure 5. Cell-specific enrichment of dysregulated genes in Huntington’s disease and Alzheimer’s disease. (A) Number of shared dysregulated genes in
Huntington’s disease and cell-specific gene markers in human brain; (B) Number of shared dysregulated genes in Alzheimer’s disease and cell-specific gene
markers in human brain.

DISCUSSION

Heterogeneous cell populations in many of the genetically-
driven diseases have different contributions to the disease
onset and progression. Such differences cannot be cap-
tured by bulk RNA-seq. However, computational deconvo-
lution of bulk mixtures can reveal the proportion of con-
stituent cell-types within the samples. We introduced CellR,
a data-driven approach that eliminates the need for having
prior biological knowledge on representative gene mark-
ers of cell-types (though a prior clustering of the scRNA-
Seq is required where each cluster represent a separate cell
type), while correcting for potential rare and common ge-
netic variations in the populations that may introduce con-
founding expression artifacts. As a proof of concept, we
made exploratory tests on multiple complex diseases includ-
ing schizophrenia, Alzheimer’s disease, Huntington’s dis-
ease and type 2 diabetes. We showed how CellR can be effec-
tively employed to yield biological insights into the cellular
mechanisms of complex diseases.

Compared to other computational approaches, we
demonstrated several unique aspects of CellR in the study:
First, CellR outputs more stable proportion values for dif-
ferent samples in the same study. Second, the improved ac-
curacy and lower variation in the identified cell-proportions
from CellR demonstrated that we can infer novel biological
insights from bulk RNA-Seq samples, as demonstrated in
several disease-relevant data sets in our study. Third, with
the exception of MuSiC, which considers person-to-person
gene expression variations at the single-cell reference level
not at bulk resolution, existing methods ignore the vari-
ations of gene expressions that differ across individuals,
which is a critical factor in elucidating true cell proportions
in bulk transcriptomic data. In comparison, the CellR tool
makes use of existing knowledge in GTEx knowledge por-
tal to account for cross-individual genetic variations lead-
ing to fluctuations in gene expression. We believe that as-
signing the same weights to the gene signatures during the
deconvolution process is the main reason leading to higher
variations in the enumerated cell proportions by CIBER-
SORT and CIBERSORTx. This mainly stems from the gene

signatures used in these methods, where classification accu-
racy (based on support vector machine) is the priority in
deconvolution while population heterogeneity is not consid-
ered. In addition, using the identified cellular proportions
on schizophrenia bulk RNA-seq data, we adjusted the gene
expression values for distinct cell-types and showed how a
significant portion of biological signals in bulk transcrip-
tional signals originate from only excitatory neurons, signi-
fying the importance of taking into account the heterogene-
ity of data when conducting transcriptome studies. More-
over, CellR is designed to estimate near optimal cell-specific
gene expression profiles from RNA-seq libraries. Conduct-
ing rigorous numerical experiments, we showed how CellR
can specify transcriptional dysregulations within distinct
cell populations where conventional RNA-seq technologies
are not able to distinguish. An important factor in deconvo-
lution is to consider batch effects within the bulk and single
cell data. While we acknowledge the importance of batch
effects and its potential influences on deconvolution out-
comes, our results indicate that such potential effects do not
lead to radical negative implications. This is mainly because
CellR uses reference single cell data solely for characteriz-
ing the markers of each cell-type and does not try to corre-
late the bulk data and the reference data. Therefore, even in
case of existing batch effects, it will not lead to changes in
the representative markers of cell-types. Therefore, CellR is
unlikely to be severely affected by batch effects.

We recognize that there are several areas of future im-
provements that can be incorporated into CellR. First, al-
though our method does not require prior information
on specific gene markers, it is possible that well-validated
and well-characterized prior information can improve per-
formance. Therefore, we will explore different weighting
schemes that allows CellR to take into account the con-
tribution of user-defined gene markers in data analysis. In-
deed, some software tools already compiled such a list of
gene markers for specific cell types, and we may be able to di-
rectly use these as prior knowledge to improve CellR’s per-
formance. Second, as noted by Kong et al. (56) that the ad-
dition of cell-type proportions as covariates can affect the
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number of DE genes in bulk data, we envision to take into
account such latent knowledge to further reveal the role of
cell-specific signals which contribute to the disease progres-
sion in silico. Moreover, we note that CellR is designed in a
way that the bulk RNA-seq samples and the reference single
cell data are generated from the same tissue and any incon-
sistency between these two may lead to incorrect outcomes.

In conclusion, we developed CellR, a novel computa-
tional method to enumerate bulk-tissue RNA-Seq data, in-
fer the cellular compositions and estimate cell type-specific
gene expression profiles. Through analysis on simulated
data sets and several real data sets on various diseases, our
observations corroborate how transcriptional signatures of
complex diseases such as schizophrenia, Alzheimer’s dis-
ease, and Huntington’s disease and type 2 diabetes are en-
riched in specific cell-types identified by CellR. Compar-
ative analysis demonstrated better performance of CellR
against competing approaches that rely on a few known cell-
specific gene markers. We acknowledge that CellR, given
it clustering-based nature, can be influenced by the accu-
racy of clustering analysis and therefore is not guaranteed to
yield the perfect partitioning specifically in highly complex
datasets. We expect that CellR can be used to re-analyze
many previously published bulk RNA-Seq data and infer
more refined biological insights into the cell type-specific
contribution of gene expression to disease phenotypes.

DATA AVAILABILITY

The bulk RNA-seq data on HD was generated by Labadorf
et al. (41) and is available in GEO under accession num-
ber GSE64810. The scRNA-seq data on cerebellum were
generated by Lake et al. (37) and were downloaded from
gene expression omnibus (GEO) under accession num-
ber GSE97942. The scRNA-seq data on pancreas by
Segerstolpe et al. (38) were downloaded from ArrayExpress
(EBI, https://www.ebi.ac.uk/arrayexpress/) under accession
number E-MTAB-5061. The RNA-seq data on AD and
other neurological disorders were downloaded from AMP-
AD knowledge portal under Synapse ID: syn3163039:
Study data were provided by the following sources: The
Mayo Clinic Alzheimer’s Disease Genetic Studies, led by
Dr. Nilufer Taner and Dr. Steven G. Younkin, Mayo
Clinic, Jacksonville, FL using samples from the Mayo
Clinic Study of Aging, the Mayo Clinic Alzheimer’s Dis-
ease Research Center, and the Mayo Clinic Brain Bank.
Data collection was supported through funding by NIA
grants P50 AG016574, R01 AG032990, U01 AG046139,
R01 AG018023, U01 AG006576, U01 AG006786, R01
AG025711, R01 AG017216, R01 AG003949, NINDS grant
R01 NS080820, CurePSP Foundation, and support from
Mayo Foundation. Study data include samples collected
through the Sun Health Research Institute Brain and Body
Donation Program of Sun City, Arizona. The Brain and
Body Donation Program is supported by the National Insti-
tute of Neurological Disorders and Stroke (U24 NS072026
National Brain and Tissue Resource for Parkinson’s Dis-
ease and Related Disorders), the National Institute on Ag-
ing (P30 AG19610 Arizona Alzheimer’s Disease Core Cen-
ter), the Arizona Department of Health Services (contract
211002, Arizona Alzheimer’s Research Center), the Ari-

zona Biomedical Research Commission (contracts 4001,
0011, 05–901 and 1001 to the Arizona Parkinson’s Disease
Consortium) and the Michael J. Fox Foundation for Parkin-
son’s Research.

DATA AVAILABILITY

A detailed description of the method along with a step-by-
step execution procedure on an example data set is provided
in https://github.com/adoostparast/CellR.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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