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Abstract

Purpose Successful use of augmented reality for laparoscopic surgery requires that the surgeon has a thorough understanding
of the likely accuracy of any overlay. Whilst the accuracy of such systems can be estimated in the laboratory, it is difficult to
extend such methods to the in vivo clinical setting. Herein we describe a novel method that enables the surgeon to estimate in
vivo errors during use. We show that the method enables quantitative evaluation of in vivo data gathered with the SmartLiver
image guidance system.

Methods The SmartLiver system utilises an intuitive display to enable the surgeon to compare the positions of landmarks
visible in both a projected model and in the live video stream. From this the surgeon can estimate the system accuracy when
using the system to locate subsurface targets not visible in the live video. Visible landmarks may be either point or line features.
We test the validity of the algorithm using an anatomically representative liver phantom, applying simulated perturbations to
achieve clinically realistic overlay errors. We then apply the algorithm to in vivo data.

Results The phantom results show that using projected errors of surface features provides a reliable predictor of subsurface
target registration error for a representative human liver shape. Applying the algorithm to in vivo data gathered with the
SmartLiver image-guided surgery system shows that the system is capable of accuracies around 12 mm; however, achieving
this reliably remains a significant challenge.

Conclusion We present an in vivo quantitative evaluation of the SmartLiver image-guided surgery system, together with
a validation of the evaluation algorithm. This is the first quantitative in vivo analysis of an augmented reality system for
laparoscopic surgery.

Keywords Image-guided surgery - Augmented reality - Liver - Validation - Error measurement - Laparoscope

Introduction addressed by introducing external images to the procedure,

known as image-guided surgery (IGS). A recent review [5]

Laparoscopic surgery for liver resection is in general prefer-
able to open surgery, due to the significant reduction in
post-operative pain and scarring [7]. Currently only a minor-
ity of patients at specialist hospitals undergoes laparoscopic
resection. One reason for the low rate of laparoscopic resec-
tion is the difficulty surgeons have in identifying key anatomy
through a laparoscopic camera and monitor [4]. This can be
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describes the state of the art of laparoscopic IGS. In most
cases Augmented Reality (AR), where a model is overlaid
directly on the laparoscopic video, is avoided due to the dif-
ficulty in creating a well aligned overlay on a deforming and
mobile organ. One approach is to show a solid model derived
from pre-operative Computed Tomography (CT) next to the
surgical scene. Whilst the model may be orientated to match
the surgical scene, it is up to the surgeon to identify the final
correspondence between the model and the video. The first
reported use of an AR overlay in laparoscopic liver surgery
is reported by [10] making the case for the benefits of an AR
laparoscopic system. We developed the “SmartLiver” IGS
system to show the liver model overlaid on the video feed
from a laparoscope. This spares the surgeon some cognitive
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load; however, it raises questions in terms of perception and
interpretation of errors.

In any AR system, there will be misalignment between
the overlay and what is visible on the screen. Furthermore,
it must remain the responsibility of the surgeon to interpret
and act upon any apparent error. To enable this, we have
implemented advanced visualisation algorithms, to allow the
surgeon to rapidly identify AR overlay errors. Figure 1 shows
an in vivo overlay using our system. A key feature of the
overlay is that we have maintained a projected 2D outline of
the liver, which can be compared to the visible anatomy. The
outline enables an estimate of the accuracy of any overlaid
non-visible anatomy.

Background

One reason for the slow progress of laparoscopic IGS is a
lack of a realistic approach to the measurement and inter-
pretation of alignment errors. In contrast to orthopaedics
or neurosurgery, the anatomy of the abdomen is mobile, so
IGS wusing rigid registration may suffer significant localised
errors. It is theoretically possible to use deformable registra-
tion and motion models [17]; however, this adds complexity,
and makes it harder for the surgeon to interpret the sys-
tem’s performance. Breath hold or gating can also be used to
improve the apparent accuracy, at a cost in usability.

Collins et al. [9] investigate the effect of variation in sur-
face reconstruction protocol on rigid and non-rigid surface-
based registration. They show that a system using rigid
registration can be expected to have registration errors around
10 mm, while deformable registration can get down to
approximately 6 mm. These figures are also in agreement
with our results.

Kang et al. [13] propose an AR laparoscopic system
that avoids some of the problems of soft tissue motion and
deformation between scan and surgery by only using intra-
operatively acquired ultrasound images. They report errors
of approximately 3 mm for their ultrasound only AR system.
The primary source of errors in such a system will be tracking
and calibration errors, again providing a useful comparison
with our system.

Hayashi et al. [12] present a novel registration method for
gastric surgery, using subsurface landmarks to progressively
improve the registration as and when they become visible dur-
ing resection. They report accuracies around 13 mm, which
is similar to our best achieved accuracy of 12 mm. Interest-
ingly they report that their surgeons believe the system would
become useful at accuracies of 10 mm, as the surgeon should
be able to mentally compensate for the residual registration
errors caused by deformation and motion.

Amir-Khalili et al. [1] propose displaying contours show-
ing uncertainty around the displayed targets. Alternatively,
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Pratt el al. [15] overlay a wire-frame of the organ surface.
In our experience, these approaches are too visually clut-
tered for liver surgery, hence our proposed use of outline
rendering. Communication of alignment errors gets harder
when deformable registration is used. Bano et al. [3] show
two results relevant to our study in their pre-clinical work on
using intra-operative C-arm to inform a non-rigid registra-
tion of the liver. Firstly, in their porcine model, deformation
due to insufflation is a significant source of registration error
(around 8 mm). Furthermore, the error measured at internal
vessels is significantly higher (by approximately 6 mm) than
the error measured at the liver surface.

Contributions of this Paper

Our proposed method for in vivo estimation of errors uses the
visible misalignment of the liver outline (Fig. 1) to infer the
misalignment of non-visible target anatomy. In this paper, we
define a measure of visible misalignment, re-projection error
(RPE), and test the assumption that RPE is a useful predictor
of the misalignment of subsurface targets, or target regis-
tration error (TRE). In part this can be estimated using the
relations between fiducial localisation error (FLE) and TRE
originally put forward by Fitzpatrick and West [11]; however,
two factors limit the applicability of their approach. Firstly,
the FLE of individual in vivo landmarks are not independent
random variables, as they will all be influenced by system-
atic errors in calibration and tracking of the laparoscope and
tissue motion. Independence of FLE is a key assumption of
[11] and derived works; therefore, use of these relationships
when the assumption is not true can significantly underesti-
mate TRE [19]. Secondly, in our calculation of RPE, errors
normal to the camera lens are effectively discarded, because
they cannot be estimated from a 2D image. This creates a
non-linear transformation from 3D misalignment errors to
2D RPE. Therefore, it is not clear that RPE can be safely
used as a proxy for FLE.

In our pre-clinical work, only point landmarks were used
for validation [21]; however, during our ongoing in vivo val-
idation we have found it extremely difficult to identify point
landmarks on the human liver. In general, the landmarks we
have been able to use are concentrated around the high cur-
vature points close to the falciform ligament. In contrast, it is
possible to identify line landmarks across the entire visible
edge of the liver. To enable validation of the system in vivo,
we have therefore developed a novel algorithm to measure
RPE using both point and line landmark features.

With this paper, we make three important and novel con-
tributions. We test the validity of using RPE derived from
point and landmark features to estimate subsurface TRE, in
so doing we enable the translation from pre-clinical to clinical
research. Secondly, the algorithm is applied to 9 in vivo cases,
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Fig. 1 The right liver lobe as seen through the laparoscopic camera,
left image. The right image shows the same scene augmented using the
SmartLiver system. The outline of the liver, shown as an orange line,
can be compared to the visible liver outline. The mismatch gives an

to our knowledge this is the first attempt at a quantitative eval-
uation of a liver AR IGS system on multiple patients. Lastly
we describe the ongoing development of the SmartLiver sys-
tem, including the use of a novel rendering engine to enable
in vivo visualisation of misalignment errors and an improved
user interface.

Materials and methods

SmartLiver surgery workflow using surface-based
registration

The SmartLiver system hardware consists of a workstation
PC and a Polaris Spectra' optical tracking system, mounted
on a custom built trolley with an un-interruptible power
supply. The PC runs custom software based on the Nif TK
software platform [8]. The PC includes an NVIDIA SDI cap-
ture card and an NVIDIA K6000 GPU. In theatre, the system
stands next to the laparoscopic stack, allowing the surgeon
to see an augmented reality overlay near their existing line
of sight.

Figure 2 shows the software flowchart and user inter-
face from start up to augmented reality overlay. Up until the
patient being ready for surgery, set-up time does not impact
on total theatre time. Once the patient is anaesthetised and
ready for surgery, time is critical, hence the need for a well-
defined work flow and simple user interface. The in vivo data
reported in this paper was gathered using earlier versions of
the user interface. Because the user interface was often dif-
ficult to use the quality of any registrations performed in
theatre is highly variable, as will be seen in the results.

! Northern Digital Inc. www.ndigital.com.

estimate of the accuracy of overlay for non-visible vessels, veins (blue
and purple) and arteries (red). Also visible is the gall bladder (yellow
outline) and a tumour (green)

Steps 6 and 7 in Fig. 2 define the transform from model
space to world space, henceforth denoted Tys2w . Once Tyow
is estimated the surgeon can refer to the augmented real-
ity display, to localise subsurface anatomy. Steps 6 and/or 7
can be repeated to give a new estimate of Ty if the liver
moves significantly. The visualisation (Fig. 1) shows visible
anatomy as a 2D outline and internal anatomy as a depth
fogged surface model. Visualisation is implemented using
the Visualisation Library.> The surgeon can use the mismatch
between the visible and projected outlines to make a rapid
assessment of the system accuracy. Analysis of registration
accuracy was performed after surgery, using data saved dur-
ing surgery. These data consist of video and tracking data
recorded throughout the procedure, calibration data for the
laparoscope, and any estimates of Tys2w from in-theatre reg-
istrations.

Estimation of re-projection error

Errors in augmented reality can be estimated in some appli-
cations where features are visible in both the video and in the
projected model. This approach was described in our previ-
ous publication [21] on pre-clinical and phantom data and is
extended here.

Landmark points on the CT derived model and on the
video data were manually identified by a surgeon who had
been trained in the use of our software. Point and line picking
on the model was done using NifTK [8], utilising MITK’s
[14] point set interaction plugin. We wrote a custom point and
line picking application for the video data, which now forms
part of the NifTK software suite. The software scans through
a recorded video file stopping every n frames where 7 is set
by the user, typically between 25 and 100 frames, depending

2 www.visualizationlibrary.org.

@ Springer


www.ndigital.com
www.visualizationlibrary.org

868 International Journal of Computer Assisted Radiology and Surgery (2018) 13:865-874

1: Patient model
loaded and checked
by the user.

2:  Tracking and
video data sources
started and status
checked.

3: Tracking collar
is attached to la-

paroscope,  before
covering with sterile
drapes.

4: Laparoscope is
calibrated using
method from [20].

5: Liver surface
patches  are  re-
constructed  using
[22].

6: The user manu-
ally aligns the model
to video, using on
screen buttons.

7: ICP registers re-
constructed surfaces
to model [21].

8: Overlay is ready,
individual anatomy
objects can  be
turned on/of.

Fig. 2 Flow diagram of the SmartLiver IGS software. The user runs through 7 tabbed screens, moving from system initialisation to registration
and overlay. To provide the clearest possible images, we have used a mixture of images from clinical use (panels 3, 4, and 8) and phantom testing

(panels 1, 2, 5,6, 7)

on the length of the recorded video. The software finds the
nearest (in time) tracking data to the video frame and checks
the timing difference. If the tracking data are from within 20
ms of the video frame the user is shown a pair of still images
from the left and right channels. If the timing difference in
greater than 20 ms the frame is skipped.

When presented with the two still images the user is able
to click on either of them to define visible landmarks. The
user can toggle between point and line selection mode. The
landmarks correspond to those selected on the patient model.
Landmarks not visible in a given frame are simply excluded.

We have written another application to determine RPE
using the landmark points, the camera calibration, the camera
tracking data, and Tysow. For each frame of video where
landmark points have been picked, the error in pixels between
the picked landmark and its projected location on the model
is calculated. Landmarks that do not project onto the screens
visible area are excluded from the analysis.

Representing errors in pixels is problematic for two rea-
sons. Firstly, it has no physical meaning, the surgeon is
interested in how the system errors compare with anatomy,
for example the smallest vessel size that can be safely cut
through and cauterised (approx 3 mm). Secondly, it makes
no account of the distance of the object from the camera.

@ Springer

If the geometric error (in mm) remains the same, the pixel
error will increase as the camera gets closer to the object. To
counter this problem, we “re-project” the on-screen errors
onto a plane parallel to the camera frame at the distance of the
corresponding model feature. The distance between the two
points on this plane can be measured in millimetres. Because
the on-screen point is back projected onto a plane passing
through the corresponding model point, there is no error in
the direction normal to the camera plane (the z direction).
The above approach was used on phantom and pre-clinical
data using landmark points [21]. However, we found it was
difficult to identify corresponding landmark points for in vivo
data. Specifically, it was very difficult to find point features
away from the centre of the liver (near the falciform liga-
ment). In contrast, line features, such as the liver edges, can
be identified across the entire liver and used by the surgeon to
assess accuracy. Therefore, the methodology was extended
to allow the use of line features on the liver surface. The user
defines lines as a set of discrete vertices on both the model
and the video. When calculating errors, the lines on the video
images are treated as a set of discrete vertices, whilst linear
interpolation between vertices is used on the model. Figure
3 shows examples of line and point features identified on
phantom and in vivo data. The question of how to measure
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RPE using lines is more ambiguous than for points. We use
the following algorithm:

1. Define uniquely identifiable points and lines (points con-
nected by straight segments) on the CT derived liver
surface model.

2. Foragiven video frame, mark any visible points and lines.
Partial lines may be used, i.e. there is no requirement that
the whole line is visible on the video frame.

3. Each line vertex on the image is re-projected along a ray
through the camera’s origin.

4. Transform model features to the camera lens’ coordinate
system using T)/ow and the world to camera transform.

5. For eachray, find the closest point (x) on the correspond-
ing model line.

6. Define a plane (p) parallel to the camera image plane
passing though (x).

7. Compute the distance between point x and the intersec-
tion of the ray with plane p.

8. The mean distance for all vertices of the re-projected line
is the RPE for that feature.

Experiment 1: correlation of TRE and RPE on a liver
phantom

The assumption that RPE can be used to estimate TRE is
fundamental to the utility of our proposed IGS system. We
test this assumption here. To estimate the system’s accuracy
in localising subsurface landmarks a custom made silicone
phantom was utilised,’ see Fig. 4.

The shape of the phantom was taken from a CT scan of
an adult male liver. The external appearance was designed to
be representative of a healthy adult liver to enable testing of
computer vision algorithms on the phantom [21]. The outer
part of the liver phantom is made from flexible silicone and
can be repeatably mounted on a set of 9 rigid pins inserted
into a moulded epoxy base, see Fig. 4. This configuration
enables future work on deformable registration, by utilising
bases with different pin geometry.

For this paper, we treat the 9 positioning pins as subsur-
face targets, so the accuracy of a given estimate of Tysow can
be assessed by removing the flexible liver phantom and mea-
suring the pin head locations. This method depends on the
repeatability of the positioning of the flexible liver phantom
on the base, which was checked by taking 2 CT scans, with
the liver phantom removed and replaced between each scan.
The CT scans were then aligned using the pin head positions
and the alignment of the liver phantom surfaces compared
visually. No significant misalignment was observed.

The model to world transform, Tjsow, could be found
by using a separate tracked pointer to locate the pin heads

3 www.healthcuts.co.uk.

in world space; however, we do not use this method as it
gives an inaccurate measure of the overlay errors observed
in the SmartLiver system. Use of a separate pointer results
in errors in the hand-eye and left to right lens calibration of
the stereo laparoscope showing up as a linear offset. The
SmartLiver system avoids the need for a highly accurate
hand-eye calibration by performing all localisation and over-
lay in the coordinate system of the laparoscope lens. The liver
model is located relative to the laparoscope lens position at
some time zero. The model is placed in world coordinates
using the hand-eye transform and tracking data. The model
is subsequently projected on to the screen using the same
hand-eye transform. Provided the laparoscope motion is lim-
ited between time zero and the time of AR projection the
inaccuracies in the hand-eye calibration largely cancel out.
As a clinical laparoscope is constrained by the trocar, we
have found this to be the case during pre-clinical and clinical
evaluation of the system.

To get a more relevant error measure 7y w is found using
stereo triangulation as follows. The pin head positions are
manually defined in multiple stereo image pairs taken from
a video sequence of the uncovered pin heads. The 3D posi-
tion of the pin relative to the left camera lens is triangulated
using the pixel location in each stereo pair, the two cameras’
intrinsic matrices and right to left lens transform. The tri-
angulated points are placed in world coordinates using the
hand-eye and tracking transforms. The result is a point cloud
in world space for each pin head. The pin heads defined in
the model are registered to the centroids of these point clouds
by minimising fiducial registration error (FRE) a per Arun et
al. [2]. RPE for this ideal model to world transform (denoted
Tyoaw(i)) will not be zero, as errors due to tracking, cali-
bration, and point picking will still be present; however, the
RPE will be approximately minimised, giving the surgeon the
best possible estimate of the position of the subsurface tar-
gets. Therefore, Tyr2w ;) is assigned a zero TRE. Any other
model to world transform for the phantom data set can be
described in terms of its TRE relative to Ty ow ).

The experiment we performed consisted of:

1. Identify landmark points and lines in the CT model of
the liver phantom.

2. Record a tracked video sequence of the surface of the
liver phantom.

3. Remove the silicone phantom, record a tracked video
sequence of the subsurface pins.

4. Identify landmark points in both videos, plus lines in the
surface videos.

5. Measure the RPE of landmarks (pin heads and surface
points and lines) using Tyow i)-

The RPE thus found will be substantially lower than that
observed for in vivo data due to the absence of numerous
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Fig.3 Example projection using the surface features on the phantom (left) and on in vivo data. The on-screen features (shown in yellow) are defined
on the recorded video images. The projected features (in white) are projected from the model using the estimated Tysow

Fig.4 Thesilicone liver phantom used for validation. The exterior (left)
is representative in appearance and geometry of an adult male liver. The
internal pins (centre, highlighted in red) secure the liver phantom and
act as subsurface landmarks for the measurement of TRE. The right-

error sources encountered in vivo, most significantly errors
due to liver motion and deformation, but also the difficulty
in achieving the optimum rigid body registration. Though
the sources of error are varied, we make the assumption that
their combined effect can be modelled using perturbations
of Tyawy. To create sufficient data to test for correlation
between RPE and TRE, we generated 20,000 random per-
turbations of Tys2w (), and measured the root mean square
(RMS) values of RPE and TRE at each.

Random perturbations were defined by 6 independent ran-
dom variables, 3 translations and 3 rotations. All rotations
were about the centroid of the liver phantom. Translations
were randomly sampled from a zero mean normal distribu-
tion of standard deviation 1.0 mm. Rotations were randomly
sampled from a zero mean normal distribution of standard
deviation 1.2°. The scaling (1.2° per mm) was set so that
a translation or rotation of 1 standard deviation results in
the same mean absolute displacement across the liver phan-
tom. Rotations and translations were then scaled (using the
same scalar for all six vectors) to give a defined normalised
Euclidean distance from Tys2w ;). Sampling in this way gen-
erates perturbations uniformly distributed along each of the 6
degrees of freedom. 1000 random perturbations were gener-
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hand image shows the relative positions of the subsurface targets and
surface landmarks. The 9 targets are shown in red, the 6 peripheral sur-
face point landmarks are shown in yellow, the 2 central landmarks in
green and the 9 line features in blue

ated at each integer value of normalised Euclidean distances
from 1 to 20 in. The range of normalised Euclidean distances
was set to provide a usable distribution of results at clinically
representative RPE.

At each perturbed transform (denoted Th2w (p)), TRE and
RPE were calculated for each available landmark. RMS val-
ues for each measure over multiple landmarks were then
calculated and reported. RMS TRE was calculated using Eq.
1, where X; is the position vector for each of the nine targets
(pin heads) in world coordinates.

9
1
TRERMs = | 3 D (Xi = Tyawp Xi)? M

i=1

Three measures of RMS RPE were calculated using different
subsets of the surface features shown in Fig. 4. The first uses
all 8 available surface point landmarks, the second only uses
the 2 point landmarks near the falciform ligament to represent
the sort of point features that can be located in vivo. The last
measure of RMS RPE uses these 2 point landmarks together
with 9 line features, predominantly along the front edge of
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the liver phantom, representative of the line features that can
be located in vivo.

Experiment 2: evaluation of in vivo data

For in vivo data, there exists no ideal transform as the posi-
tion of subsurface landmarks remains unknown. However, we
were able to collect substantial amounts of in vivo clinical
data, following as closely as possible the protocol described
in section “SmartLiver surgery workflow using surface-based
registration”. To date we have evaluated the accuracy on nine
clinical procedures. In each case landmark points were iden-
tified in the CT-derived liver model and in several hundred
frames of video per patient.

Where available, any model to world transforms, Txow,
determined by manual alignment in theatre were used to mea-
sure RMS RPE on surface landmarks. Where sufficient point
landmarks were available it was also possible to estimate
Thow based on triangulation and registration of surface land-
mark points. Such landmark-based registration is used by
similar liver IGS systems [6,12], so it makes a useful com-
parison with our system.

In most cases, we also recorded ex vivo laparoscope cali-
bration data, either of a cross-hair [20] or in earlier cases of a
chessboard calibration grid [23]. These calibration data were
used to assess the accuracy of the system in theatre in the
absence of tissue motion. Chessboard corners or cross-hair
centres were manually identified in the video data for tens
of frames per data set. These feature were triangulated to
world coordinates, and these used to measure re-projection
error using the method described in section “Estimation of
re-projection error”. Using this method will include errors
in picking the points in the video frames, allowing a more
direct comparison with the in vivo accuracy, in contrast to
reporting the calibration residual errors.

Results

Experiment 1: correlation of TRE and RPE on a liver
phantom

Video of the liver phantom surface was recorded, imaging
the surface point and line landmarks. A total of 2296 stereo
images were recorded (2 x 540 x 1920 pixels). The laparo-
scope was moved steadily by hand to try and image each
landmark, at an average speed (measured at the lens) of
approximately 30 mm/s. A total of 68 images were manu-
ally annotated with the positions of point and line landmarks
by an experienced research scientist, to give a total of 76
point landmarks and 104 line landmarks. The flexible sili-
cone liver phantom was then removed from its base. A total
of 2460 stereo pairs of the securing pin heads were recorded,

with the laparoscope again moved steadily around the phan-
tom at a speed of approximately 35 mm/s. A total of 44 frames
were manually annotated, giving 87 samples of the pin head
positions.

The pin heads picked in the CT model and the pin heads
triangulated from the video form two sets of ordered fiducial
points, allowing Tp2w ;) to be found by minimising FRE as
per [2]. The residual FRE was 2.55 mm, suggesting an error
in localising each pin head of around 2.89 mm using equation
10 from [11]. The RMS RPE at Ty2w ;) was 2.15 mm

Figure 5 plots the distribution of RMS TRE versus RMS
RPE and FRE. Each of the 20,000 registrations were binned
according to their RMS RPE in 1 mm bins centred around
integer values from 1 to 30mm, for each bin the mean
and standard deviation of RMS TRE is plotted. Correlation
between RMS TRE and RMS RPE or FRE was measured
using Pearson’s correlation coefficient (), and the mean stan-
dard deviation (o) over all bins. Figure 5a plots RMS TRE
versus RMS RPE and FRE when evaluated on the pin heads
themselves. Both RMS RPE and FRE correlate very well
with RMS TRE, an unsurprising result given that the mea-
surements are all made on the same features, but confirmation
that RPE can be used as a proxy for TRE in the ideal case.

Figure 5b plots RMS TRE versus RMS RPE when RPE
is calculated using surface landmark features only, whilst
the RMS TRE is measured at the subsurface pin heads. The
first (red) line shows the result for when all (8) surface point
landmarks are used for measuring RPE, similarly to our pre-
clinical results ([21]). In this case, RMS RPE provides a good
predictor of RMS TRE with a Pearson’s correlation coeffi-
cient of 0.79. This suggests that in cases where surface point
landmarks are available over a significant area they provide
a useful indicator of subsurface accuracy. The second (blue)
line shows a more clinically realistic situation in which only
those point landmarks near the falciform ligament are used
to calculate RPE. In this case, the correlation coefficient is
significantly reduced (to 0.44), and what correlation there
is predominantly occurs above RMS RPE of 15 mm, mak-
ing this measurement of questionable clinical use. The third
(green) line in Fig. 5b shows how correlation can be improved
by incorporating surface line features, which can be identi-
fied in vivo.

Experiment 2: evaluation of in vivo data

Data from nine patients have been analysed. Acquisitions
were made during surgery with the laparoscope being slowly
moved by hand. Acquisition time and speed varied, but typi-
cally consisted of 1-3 minutes of video with the laparoscope
lens moving at around 10-20 mm/s. The number of point
and line features used varied between patients. The mini-
mum number of points was 3 and the maximum was 7. The
minimum number of lines was 5 and the maximum was 9.
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—— RMS RPE at pins, r = 0.91, 0 = 2.05
—— FRE at pins, r = 1.00, 0 = 0.53
—— TRE = RPE (for reference)

30 1
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15 1

10 1

RMS Target Reg. Error (mm)

0 T T T T T
0 5 10 15 20 25 30

RMS Reproj. and Fid. Reg. Error at Pins (mm)
(a)

Fig.5 RMS RPE measured on visible features versus RMS TRE mea-
sured at the pin heads for the phantom. a shows the RMS RPE measured
using 9 subsurface pin heads (i.e. with the silicone liver phantom

An average 469 frames of video data were manually anno-
tated per patient, with a minimum of 80 and a maximum of
1909* frames. Annotation of the video and CT was done by
an experienced laparoscopic surgeon. In all cases RPE was
measured on a static calibration pattern, on a set of triangu-
lated in vivo point landmarks, and a set of in vivo lines and
points registered using point-based registration. The result-
ing RMS RPE is recorded in the first three numerical columns
of Table 1.

The last three numerical columns in Table 1 show the
results of registrations performed using the SmartLiver sys-
tem’s user interface. In four cases, registration was performed
during surgery, (Manual Live Alignment), in three differ-
ent cases manual alignment was performed after surgery
on recorded data (Manual Retro. Alignment). Registration
using the surface-based Iterative Closest Point (ICP) algo-
rithm was performed once, using surface patches grabbed
during surgery. Due to the small sample sizes, we have not
performed any statistical comparison of the different regis-
tration methods.

As in our pre-clinical work [21], it is useful to analyse the
in vivo results in terms of what error sources contribute to
the overall error. The bottom 10 rows of Table 1 show which
error sources contribute to each result.

4 Excluding two outliers the minimum number of frames used is 210,
and the maximum 462.
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—— All Points, r = 0.79, ¢ = 3.55

—— Central Points, r = 0.44, 0 = 4.80
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—— TRE = RPE (for reference)

254

201

15~

10 A

RMS Target Reg. Error (mm)

0 T T T T T

0 5 10 15 20 25 30
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(b)

removed fromits base.) b shows the RMS RPE measured using 3 subsets
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Discussion

Several tentative conclusions can be drawn from Table 1. The
combination of dynamic and static deformation and laparo-
scope tracking and calibration errors is at least 10 mm. This
is the best case accuracy for a laparoscopic IGS utilising
optical tracking and a rigid model. There is a slight improve-
ment in RMS RPE for retrospective manual alignment versus
in theatre manual alignment, probably due the time pres-
sure and ergonomic compromise present during surgery. The
best RMS RPE was found using the surface-based ICP; how-
ever, there remain significant challenges to make this process
robust.

In vivo results indicate that it is possible to achieve appar-
ent accuracies (RPE) of around 12 mm, which correspond to
mean subsurface accuracies around 15 mm (green line in Fig.
5b) with a rigid registration system. Whether such accuracy
is clinically useful is currently unknown. The SmartLiver
IGS system is at present the only laparoscopic liver surgery
system where an augmented reality overlay is attempted rou-
tinely. Clinical evaluation is ongoing to try and link accuracy
achieved to clinical outcome. Clinical evaluation will also
enable an analysis of the most useful way to report errors,
i.e. here we report RMS errors, whereas it may be more rel-
evant to focus on the extreme values. Anecdotally, surgeons
were generally impressed with the overlays achieved, giving
encouragement that the system may be useful at its current
accuracy level.

Our long-term aim is to develop a clinical guidance sys-
tem which can reliably achieve accuracies better than 5 mm,
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Table 1 Average RMS RPE errors measured for the human clinical data, classified by what error sources contribute to each error measurement

Registration method

Calib. Error Triang. Points Point-Based Reg. Manual Live Align. Manual Retro. Align. ICP Retro. Align.

Average RMS RPE 7.5 10.2 16.3

Standard deviation (Samples) 5.2(9) 3309 3.9(9)

Contributing errors
Laparoscope tracking v v v
Laparoscope calibration v v v
Picking points in video v v v
Picking points in CT - - v
Ordered point-based registration — - v
Manual registration - - -
Operating room conditions - - -
ICP surface-based registration - - -
Static deformation (insuflation) — - v
Dynamic deformation (breathing) — v v

25.0 19.4 12.3
8.8 (4) 7.4 (3) — (1)
v v v
v v v
v v v
v v v

- - v
v v -

v _ -

- - v
v v v
v v v

Cells containing ticks indicate that a given error source (rows) contributes to total error for a given registration method (columns)

in order to allow the surgeon to navigate around vessels
of that size. However, this target was set in the absence
of an agreed method to measure accuracy, so is somewhat
arbitrary. Nonetheless, the results presented here indicate
that accuracies better than 10 mm can only be achieved by
deformable registration. Deformable registration and breath-
ing motion compensation [16] of the liver has been shown to
be technically possible by several groups [9,17]. This raises
the question of how the surgeon interprets alignment errors
when the model has been computationally deformed. Fur-
ther work could compare TRE and RPE over a wider range
of liver shapes and incorporating deformable registration.
Our proposed approach of using the 2D projected organ out-
line should continue to allow a rapid in vivo assessment of
error.

Our phantom results, Fig. 5, indicate that the addition of
line landmark features results in a smaller RPE for the same
TRE. This is likely due to the greater degree of freedom in
matching two lines. In this instance, this has helped bring
the RPE values closer to TRE; however, this result may be
specific to the geometry tested. Further work is required to
determine whether this is true in a more general case.

Based on the phantom results, positive correlation between
RPE measured at the surface and TRE at subsurface land-
marks breaks down below RMS RPE of around 6 mm when
using points and lines and 10 mm when using central points
only. The main cause of this is likely to be the geometric rela-
tionship between the position of surface landmarks and the
subsurface targets. In theory, the same rules that govern the
design of fiducial markers and tracked instruments [11,19,24]
can inform the ideal choice of in vivo surface landmarks to

use for error estimation. We have begun work [18] looking at
the what surface features provide the best registration, which
could be extended so that the overlay only shows portions
of the liver edge to maximise correlation between apparent
RPE and TRE.

Conclusion

We have described some aspects of the in vivo clinical use of
the SmartLiver AR IGS system. We have highlighted some
of the many challenges involved in the transition from pre-
clinical to clinical research in IGS. Not least of these is the
need for a clear and well-validated method to determine the
in vivo accuracy. The algorithm we have presented, tested,
and used should enable the evaluation of the IGS system
on a larger patient cohort, potentially showing a correlation
between overlay accuracy and clinical outcomes.
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