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A B S T R A C T   

Foreign matter (FM) in mixed congee not only reduces the quality of the congee but may also harm consumers. 
However, the common computer vision methods with poor recognition ability for the homochromatic FM. This 
study used hyperspectral reflectance images with the pattern recognition model to detect homochromatic FM on 
the mixed congee surface. First, spectral features corresponding to homochromatic FM and background were 
extracted from hyperspectral images. Then, based on the optimal spectral preprocessing method, LDA, K-nearest 
neighbor, backpropagation artificial neural network, and support vector machine (SVM) were used to classify the 
spectral features. The results revealed that the SVM model input with raw spectra principal components 
exhibited optimal identification rates of 99.17%. Finally, most of the pixels for homochromatic FM were clas-
sified correctly by using the SVM model. To summarized, hyperspectral images combined with pattern recog-
nition are an effective method for recognizing homochromatic FM in mixed congee.   

1. Introduction 

In modern society, people are becoming increasingly conscious 
regarding their diet and nutrition. Various coarse grains are typically 
mixed to prepare healthy food. Mixed congee is fast becoming a common 
ingredient in kitchens because of its high nutritional value and cooking 
convenience (Xiao-Feng, Cheng-Xiang, Jian, Fu-Jun, Shu-Hong, & 
Sheng-Lin, 2019). The best-selling mixed congee on shopping websites is 
displayed in Fig. S1. However, such as stones, hulls, leaves, and pack-
aging plastics, inevitably mix with mixed congee during transportation 
and packaging. Foreign matter (FM) contamination is a vital quality 
index because the consumption of mixed congee contaminated with FM 
can cause physical harm and psychological distress to consumers. 
Consequently, FM contamination has become a prominent problem in 
food safety (Caporaso, Whitworth, & Fisk, 2018; Reinholds, Bartkevics, 
Silvis, van Ruth, & Esslinger, 2015). 

The computer vision (CV) method is typically used to identify FM 
during the industrial production of beans and rice. In this method, 
foreign objects are identified using color and shape differences between 
safe food and FM-contaminated food (Oliveira, Cerqueira, Barbon, & 
Barbin, 2021; Pearson, 2010). Image segmentation is performed to 
isolate FM. Although CV can identify FM accurately and effectively, it 

cannot provide accurate optical features of homochromatic FM. If the 
color and shape of FM are the same as that of mixed porridge, this will 
result in FM being incorrectly classified as mixed porridge. Therefore, it 
is difficult to identify FM using CV when the color and shape of FM are 
semblable with food. 

Previous studies have demonstrated that spectral features are sen-
sitive to the chemical components of agricultural products (Sheibani 
et al., 2014). Moreover, spectral techniques based on visible (VIS) 
(Herrero-Latorre, Barciela-García, García-Martín, & Peña-Crecente, 
2019; Monago-Maraña, Eskildsen, Galeano-Díaz, Muñoz de la Peña, & 
Wold, 2021; Shi et al., 2019), near-infrared (NIR) (Biancolillo, Firmani, 
Bucci, Magrì, & Marini, 2019; Firmani, De Luca, Bucci, Marini, & 
Biancolillo, 2019; Piarulli et al., 2020; Rodionova, Fernández Pierna, 
Baeten, & Pomerantsev, 2021), and mid-infrared (MIR) spectra (Aykas 
& Menevseoglu, 2021; Aykas & Rodriguez-Saona, 2016; Botelho, Reis, 
Oliveira, & Sena, 2015) have been successfully used for the qualitative 
analysis of the chemical composition of various agricultural products. 
The chemical composition of homochromatic FM and mixed congee 
differs considerably, and accordingly, the use of spectral features to 
discriminate FM with similar colors to those of mixed congee is 
reasonable. 

Acquiring the spectral data of the entire mixed congee sample pixel 
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by pixel is critical for the proposed method. Unlike conventional spectral 
technologies, such as VIS, NIR, and MIR, which rely on spot measure-
ment, hyperspectral imaging (HSI) technology combines conventional 
spectroscopy and imaging techniques to acquire the spectra for each 
pixel in the two-dimensional image of an object (Shan et al., 2018; 
Zhang, Li, Zhang, & Rodgers, 2016). In addition to the analysis of the 
chemical composition of the sample, accurate spectral and spatial data 
should be acquired from the sample surface (Zhang, Li, & Yang, 2017). 
HSI technology satisfies these requirements and has been successfully 
used to detect FM such as plastics, branches, and leaves in agricultural 
products (Serranti, Palmieri, Bonifazi, & Cózar, 2018; Torres, Sánchez, 
Cho, Garrido-Varo, & Pérez-Marín, 2019; Zhang, Li, Zhang, & Rodgers, 
2016; Zhu et al., 2020; ). Therefore, the spectral data of the entire mixed 
congee sample can be acquired pixel by pixel by using HSI technology to 
realize the recognition of homochromatic FM. 

A high-precision method was proposed in this study for automati-
cally distinguishing homochromatic FM from mixed congee. The spec-
tral features of mixed congee contaminated with homochromatic FM 
were acquired from the hyperspectral image to identify homochromatic 
FM from mixed congee automatically (Manfredi et al., 2018). The per-
formance of various pattern recognition models was compared using the 
proposed method (Rodionova et al., 2021). Finally, the output of the 
optimal pattern recognition model at each pixel was combined with 
digital image processing technology to discriminate the homochromatic 
FM from the mixed congee background. The purpose of this study was to 
enable the computer vision method to accurately distinguish FM that are 
similar in color to mixed congee. Through accurate homochromatic FM 
detection, the quality and safety in the mixed congee production process 
can be effectively controlled. 

2. Materials and methods 

2.1. Sample preparation 

Typically, mixed congee comprises glutinous rice, mung bean, red 
bean, millet, black rice, and barley. In this study, six types of FM, namely 
red plastic (color similar to that of red bean), green leaf (color similar to 
that of mung bean), stone (color similar to that of barley), white plastic 
(color similar to that of glutinous rice), black rubber (color similar to 
that of black rice), and hull (color similar to that of millet), were 
considered for research [Fig. 1(a)]. Plastic FM comprises common 
packaging materials. Green leaves are typically picked when mung 
beans are harvested. The type of stone is concrete. Hulls are collected 
from the field. Black rubber typically originates from conveyor rings. 
The aforementioned FM was selected for this study because such FM 

commonly mixes with and contaminates mixed congee during its 
transportation, processing, and packaging. Furthermore, the color of 
such FM is similar to that of the raw materials used for preparing mixed 
congee. The mixed congee sample contaminated with homochromatic 
FM is displayed in Fig. 1(b). Two types of samples were prepared for the 
experiments. The first is the independent ingredients sample containing 
the corresponding FM. Each of the six mixed congee ingredients was 
prepared separately with 50 g without mixing, and corresponding types 
of FM were added in a 50:1 ratio. Each ingredients group was simulta-
neously set in five parallel, and thirty samples were prepared for the 
study. The other is the mixed congee sample containing all the FM. Six 
mixed congee ingredients were prepared with 50 g each and fully mixed, 
and all types of FM were added according to the ratio of 50:1. 

2.2. Hyperspectral image acquisition 

A line-scanning HSI system with a VIS/NIR wavelength range of 
432–963 nm was used to acquire hyperspectral images of the prepared 
mixed congee samples in the reflectance mode. The hyperspectral im-
aging system consisted of a line-scanning spectrograph (ImSpector, 
VI0E, Spectra Imaging Ltd., Finland), a complementary metal-oxide 
semiconductor camera (BCi4-U-M− 20− LP, Vector International, 
Belgium), two 150-watt illuminators (Fiber-Lite PL900-A, Dolan-Jenner 
Industries Inc., USA), a conveyor (Zolix TS200AB, Zolix. Corp., China), 
an enclosure (ZJgrt, Great Ltd., China), data acquisition and pre-
processing software (Spectra Cube, Auto Vision Inc., USA), and a com-
puter (HPdx2390MT, Hewlett-Packard, China), as displayed in Fig. S2 
(a). The exposure time of the camera was 50 ms, and the speed of the 
conveyor was 0.9 mm/s. Detailed information regarding hyperspectral 
image collection is presented in our earlier study (Shi et al., 2017, 2018). 

2.3. Spectral data processing 

After hyperspectral imaging, the images of the mixed congee sample 
were digitized into pixels containing spectral data, and the homo-
chromatic FM was segmented from the mixed congee background based 
on the spectral features of the pixels. The HSI system was used to acquire 
the three-dimensional (3D) data cube of the mixed congee samples 
[Fig. S2(b)]. The x-axis and y-axis indicate the pixel location, and the 
λ-axis indicates the wavelength of each image. Thus, the 3D data cube 
contained spectral data and image data of the mixed congee samples. 
The individual pixel data were extracted from the 3D data cube. Next, all 
the signal values of the pixel were presented in a curve in the order of 
their wavelengths. The surface of the mixed congee sample was digitized 
accurately by using the pixels in Fig. S2(b), and the sample properties at 

Fig. 1. (a) Mixed congee comprising six raw materials with six types of FM; (b) six types of mixed congee raw materials mixed with homochromatic FM; and (c) 
mixed congee mixed with six types of FM. 
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each pixel were rapidly determined using its spectral information, which 
enabled the identification of FM areas and mixed congee background 
areas by using spectral features. 

The acquired hyperspectral images were corrected by applying 
Equation (1). White reference images were acquired from the white 
spectral data for a panel with 99% reflectance, and dark images were 
acquired by covering the lens of the camera completely. 

Rλ =
Iλ − Bλ

Wλ − Bλ
(1) 

where Iλ is the intensity of the raw image, Bλ is the intensity of the 
dark image, Wλ is the intensity of the white reference image, and Rλ is 
the intensity of the corrected image. 

Chemometric methods were used to facilitate the establishment of 
pattern recognition models (Biancolillo & Marini, 2018; Rodionova, 
Fernández Pierna, Baeten, & Pomerantsev, 2021; Zhang, Liu, He, & Li, 
2012; Ballabio and Davide, 2009). In addition to containing beneficial 
information, raw spectral data contain useless information and noise 
interference information, such as the baseline drift and high-frequency 
noise, due to the effect of nonsample information, such as environ-
mental information and machine operating conditions. Therefore, the 
preprocessing of raw spectral data is critical for removing useless in-
formation and improving the accuracy and stability of modeling (Shi 
et al., 2019). In this study, the best spectral preprocessing method was 
selected from among standard normal variable transformation, the 
Savitzky–Golay (SG) method, vector normalization, the first-derivative 
method, the second-derivative method, and multiple scatter correction. 

Hyperspectral datasets provide considerable data and rich band in-
formation. However, not every band is sensitive to FM. The correlation 
between the bands is too large and contains redundant information (Shi 
et al., 2012). Therefore, compressing the spectral data to eliminate 
insensitive and redundant bands for reducing the data dimension as well 
as reducing the complexity of operations and classification models are 
critical tasks. Principal component analysis (PCA) was used to eliminate 
the multicollinearity in the original data, and an orthogonal trans-
formation was used to replace the original variables (wavelengths) with 
fewer principal components (PCs) to maximize the representation of the 
original data (Jolliffe, 2002). The (SPA) is an emerging band extraction 
method. Each selected band has the smallest linear relationship with the 
previously selected band (Milanez, Araújo Nóbrega, Silva Nascimento, 
GalvãO, & Pontes, 2017). A band combination was selected to maximize 
the representation of the original data by minimizing the root mean 
square error (RMSE). 

The samples were divided into a calibration dataset and prediction 

dataset in a 2:1 ratio. The SPA and PCA were used to extract the spectral 
features of the FM and background pixels from the calibration dataset. 
The linear discriminant analysis (LDA) (Furlanetto et al., 2020), K- 
nearest neighbor (KNN) (Yahui, Xiaobo, Tingting, Jiyong, & Holmes, 
2017), backpropagation artificial neural network (BP-ANN) (Niu, Shao, 
Zhao, & Zhang, 2012), and support vector machine (SVM) algorithms 
(Bazi & Melgani, 2006; Chen, Zhao, Fang, & Wang, 2007) were used to 
construct pattern recognition models for identifying homochromatic FM 
in mixed congee. The raw spectra, SPA wavelength selection, and PCs of 
raw spectra were used as the model input variables. The calibration 
models were optimized using the spectral features of the prediction set. 
The optimal calibration model was validated using an independent 
testing dataset. The discrimination performance was evaluated accord-
ing to the percentage of samples that were correctly classified (Xiaobo 
et al., 2011). 

2.4. FM visualization 

The steps for recognizing homochromatic FM in mixed congee are 
illustrated in Fig. 2. First, homochromatic FM and background spectra 
were measured. A region of interest (ROI) was defined within the FM 
and background areas, and the mean spectral data of the FM and 
background areas were then extracted for further data analysis. Second, 
pattern recognition models for homochromatic FM segmentation were 
constructed. PCA and the SPA were used to extract the spectral features 
of the FM and background pixels from the calibration dataset. Moreover, 
the LDA, KNN, BP-ANN, and SVM algorithms were used to construct 
segment models by correlating the spectral features with the origins 
(homochromatic FM or background areas) of the pixels. Image classifi-
cation was conducted according to the following procedure. The optimal 
method was used to classify FM and mixed congee in the hyperspectral 
images. To evaluate the accuracy of the classification, truth ROIs from 
each type of FM were manually drawn on the image. The model output 
variable of the homochromatic FM area was set as 1, and the background 
area was set as 0. The output result was replaced with a binary image. 

2.5. Software 

Hyperspectral images of the mixed congee samples were collected 
using SpectralCube software (ImSpector, image, Auto Vision Inc., USA). 
All the hyperspectral image processing methods were performed in 
MATLAB 2016 (MathWorks, Natick, MA, USA). 

Fig. 2. Process flowchart for recognizing homochromatic FM in mixed congee.  
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3. Results and discussion 

3.1. Spectral analysis 

The ROIs for each type of FM and mixed congee were outlined using 
the ellipse and rectangular tool in ENVI and marked on the RGB image, 
as displayed in Fig. 3(a). The ROIs were then mapped onto the original 
hyperspectral images to extract the full spectra (432–963 nm), which 
were averaged to represent the mean spectrum of each ROI [Fig. 3(b)]. A 
total of 360 mean spectra from 30 samples (with 6 FM ROIs and 6 congee 
ROIs in each sample) were acquired. The normalized mean spectra 
(ranging from 0 to 1) indicated that considerable differences existed in 
the reflectance features of various types of FM and mixed congee in-
gredients [Fig. 3(b)]. Each mean spectrum of the FM and mixed congee 
samples was acquired by averaging the spectra of 30 samples within 
each category. The FM and mixed congee spectral curves revealed that 
the green leaf and mung beans exhibited a strong absorption peak at 
680–690 nm. The absorption intensity of the stone spectrum was uni-
form in each band. White plastic exhibited a weak absorption peak at 
690 nm. Black rubber strongly absorbed light and exhibited low 
reflectivity at all wavelengths. The spectral trend of the hull was similar 
to that of barley. Millet exhibited a strong absorption peak at 490 nm. 
Overall, the spectra of FM and mixed congee differed considerably. The 
spectral variation between FM and mixed congee indicated that spectral 
features can be used to distinguish FM from mixed congee. 

3.2. Spectral feature extraction 

According to the PCA results for the six types of FM and mixed 
congee ingredients in the full spectrum, the contribution rates of the 
first, second, and third principal components were 84.07%, 11.7%, and 
2.84%, respectively. The cumulative contribution rate of the three 
principal component variables was 98.61%. In Fig. S3, blue represents 
mixed congee ingredients and red represents FM, 12 classes could be 
generally separated using the first three PCs. The PC score map was 
consistent with the spectral features of FM. Fig. S4 displays the RMSEs 
and feature wavelengths obtained through SPA. Feature wavelength 
extraction was performed for accurately classifying FM and mixed 
congee with few feature wavelengths. As displayed in Fig. S4(a), when 
the number of feature wavelengths was 7, the RMSE was 0.045, which 
did not significantly different from the RMSE when the number of 
feature wavelengths was 3. Therefore, the first three feature wave-
lengths were selected as the optimal results according to their contri-
bution to the classification result [Fig. S4(b)]. The corresponding 
wavelengths of the 222nd, 167th, and 284th feature wavebands in this 

dataset were 617.29, 570.32, and 670.64 nm, respectively. 

3.3. Build calibration models 

A total of 180 spectra each of FM and mixed congee were extracted 
from the hyperspectral images. The spectra of the FM were categorized 
in the foreground category, whereas the spectra of mixed congee were 
categorized in the background category. Foreground samples were 
defined as “positives (P)” and background samples were defined as 
“negatives (N)”. The spectral data of the foreground and background 
samples and their categories were used to construct an FM area segment 
model, as described in Section 2.4. Table 1 presents the prediction re-
sults of the LDA models constructed using each preprocessing spectrum. 
The recognition rates of these models vary greatly. The LDA model 
constructed using the SG smoothing exhibited the highest recognition 
accuracy. The correct identification rates (Ir) of the calibration and 
prediction sets were 93.88% and 94.17%, respectively, for the afore-
mentioned model. Therefore, the SG smoothing was selected as the 
preprocessing method in the subsequent data processing. 

The LDA, KNN, BP-ANN, and SVM algorithms were used to construct 
segmentation models of the FM area. The full-band spectrum, feature- 
band spectrum, and PC variables after SG preprocessing were the 
input variables of the pattern recognition models. The BP-ANN model 
was set as follows: the number of output layer units was as 2 (FM and 
mixed congee), the hyperbolic tangent function was set as the transfer 
function of the model, the initial weight was set as 0.9, the momentum 
factor and learning factor were set as 0.1, the convergence error was set 
as 0.0002, and the number of training iterations was set as 2000. In the 

Fig. 3. (a) Regions of interest (ROIs) defined on the hyperspectral image; (b) Normalized mean spectra of the ROIs.  

Table 1 
Accuracy of the linear discriminant analysis models under various preprocessing 
methods (%).  

Methods PCs Calibration set Validation set 

MSCa 3  57.08  59.17 
2ND b 4  57.08  62.50 
1ST c 3  63.75  65.83 
VN d 3  73.75  73.33 
SNVT e 6  90.42  91.67 
SG f 8  93.88  94.17  

a Multiplicative scatter correction; 
b 2nd derivative; 
c 1st derivative; 
d Vector normalization; 
e Standard normalized variate transform; 
f Savitzky-Golay. 
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SVM model, the regularization parameter of the optimal radial-basis 
kernel function was determined to be 2.33 by using the cross- 
validation method. 

The capability of the optimal calibration modes for the segmentation 
of unknown samples was tested using an independent testing set. In 
total, 60 spectra each of FM and mixed congee was extracted from the 
hyperspectral images and used to construct the testing dataset. The re-
sults of the calibration models are summarized in Table 2. The recog-
nition rate of PCA variable model was higher than that of SPA 
wavelength selection model, which indicated that the PCA variables 
represented more raw spectral information than SPA wavelength se-
lection. The lowest recognition rate was achieved through raw spectra 
modeling, which revealed that the raw spectra contained considerable 
redundant information. Furthermore, the SVM model exhibited the best 
classification results. Under SVM modeling based on the PCA variables, 
the accuracy of the calibration set, prediction set, and test set were 
98.33%, 99.17%, and 97.50% respectively, which could be attributed to 
the higher nonlinear intensity changes in the fused data than in the 
linear data. The SVM model is superior to other models in processing 
nonlinear data. Thus, the SVM model based on PCA variables achieved a 
high capability for the separation of an unknown sample. The recogni-
tion results based on PCA variables also indicated that the spectral 
features corresponding to the foreground or background samples were 
successfully characterized using the optimized identification model. 

3.4. Image classification 

A 150 × 150-pixel hyperspectral image was selected [Fig. 4(a)]. The 
truth ROIs for each FM category were selected and marked with various 
colors, as displayed in Fig. 4(b). On the initial classification map [Fig. 4 
(c)], the majority of the pixels within each class were correctly classified. 
After conducting morphological image processing by using an average 
filter (kernel = 3 × 3 pixels), most of the noise was removed [Fig. 4(d)]. 
Most misclassifications occurred between green leaf and mung bean. 
Many pixels of mung bean were misclassified as green leaf, which could 
be attributed to the similar chemical composition of green leaves and 
mung beans. 

To verify the accuracy of the FM-separation model, six types of FM 
were randomly placed on the surface of mixed congee for recognition 
(Fig. S5). The computer vision method and hyperspectral method were 
used to separate FM. The HSV color mode matches people’s perceptions 
of colors. “H” stands for chromaticity, “S” stands for saturation, and “V” 
stands for brightness. Fig. S5(b) depicts the separated images for each 
channel. As displayed in Fig. S5(c), from the perspective of chromaticity, 
distinguishing FM from colorful mixed congee was difficult. From the 
perspective of saturation, with the exception of red plastic, whose 
chromaticity value is marginally higher than that of red beans, dis-
tinguishing other types of FM from the mixed congee ingredients with 
the same color as the FM was difficult. From the perspective of bright-
ness, separating high-brightness glutinous rice and white plastic from 
mixed congee was effortless; however, separating white plastic from 
glutinous rice was difficult due to the similarity in their brightness. 
These results revealed that establishing a threshold to distinguish FM 
from mixed congee is difficult, and all 30 samples were misjudged. The 
detection rate for the six types of FM was 0%. Fig. S5(e) reveals that after 
FM separation by using hyperspectral features, only FM appeared in the 
foreground region and mixed congee was successfully identified as the 
background. However, many misjudged noise points occurred. The re-
sults obtained after the morphological expansion and corrosion noise 
reduction operations are also illustrated in Fig. S5(e). These results 
indicated that hyperspectral features could differentiate FM from mixed 
congee even when the colors of mixed congee were similar to those of 
FM. 

4. Conclusion 

A novel method is proposed in this study to separate homochromatic 
FM from mixed congee using hyperspectral imaging technology. Various 
congee and FM with colors and shapes similar to those of congee were 
employed to collect hyperspectral image data. The spectral features of 
congee and FM were extracted from the hyperspectral images and 
employed to construct calibration models for separating FM from congee 
and mixed congee. With the aid of calibration models, each pixel of a 
mixed congee hyperspectral image was identified according to its 
spectral features. An accuracy of more than 97% was achieved in clas-
sifying six types each of FM and mixed congee by using an SVM classi-
fication model based on PCA variables. Compared with the conventional 
computer vision method, the proposed method more effectively identi-
fied homochromatic FM to that of congee and is therefore of practical 
importance. 
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Table 2 
Results of the calibration models for FM separation.  

Spectra 
treatment 

Raw 
spectra 

SPA 
wavelength 
selection 

PCA 
variables   

LDA Calibration 
set 

Ir(%) 90.28 91.67 93.88  

Validation 
set 

Ir(%) 89.17 90.00 94.17  

Testing set Ir(%) 88.34 93.33 92.50   
TP a 54 56 57   
FN b 6 4 3   
TN c 52 56 54   
FP d 8 4 6 

KNN Calibration 
set 

Ir(%) 88.83 89.44 92.50  

Validation 
set 

Ir(%) 86.39 88.33 91.67  

Testing set Ir(%) 85.83 90.00 90.83   
TP 52 55 57   
FN 8 5 3   
TN 51 53 52   
FP 9 7 8 

BP-ANN Calibration 
set 

Ir(%) 93.33 94.72 97.50  

Validation 
set 

Ir(%) 88.89 90.00 90.83  

Testing set Ir(%) 92.50 94.17 95.00   
TP 57 58 59   
FN 3 2 1   
TN 54 55 55   
FP 6 5 5 

SVM Calibration 
set 

Ir(%) 94.44 95.83 98.33  

Validation 
set 

Ir(%) 95.00 96.11 99.17  

Testing 
result 

Ir(%) 92.50 97.50 97.50   

TP 57 59 59   
FN 3 1 1   
TN 54 58 58   
FP 6 2 2  

a True positive; 
b false negative; 
c True negative; 
d False positive. 
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Nascimento, Danielle, Galvão, Roberto Kawakami Harrop, & Pontes, Márcio José 
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