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The observable phenotype is the manifestation of information that is passed

along different organization levels (transcriptional, translational, and metabolic) of a

biological system. The widespread use of various omic technologies (RNA-sequencing,

metabolomics, etc.) has provided plant genetics and breeders with a wealth of

information on pertinent intermediate molecular processes that may help explain

variation in conventional traits such as yield, seed quality, and fitness, among others.

A major challenge is effectively using these data to help predict the genetic merit of

new, unobserved individuals for conventional agronomic traits. Trait-specific genomic

relationship matrices (TGRMs) model the relationships between individuals using

genome-wide markers (SNPs) and place greater emphasis on markers that most relevant

to the trait compared to conventional genomic relationship matrices. Given that these

approaches define relationships based on putative causal loci, it is expected that these

approaches should improve predictions for related traits. In this study we evaluated

the use of TGRMs to accommodate information on intermediate molecular phenotypes

(referred to as endophenotypes) and to predict an agronomic trait, total lipid content,

in oat seed. Nine fatty acids were quantified in a panel of 336 oat lines. Marker

effects were estimated for each endophenotype, and were used to construct TGRMs.

A multikernel TRGM model (MK-TRGM-BLUP) was used to predict total seed lipid

content in an independent panel of 210 oat lines. The MK-TRGM-BLUP approach

significantly improved predictions for total lipid content when compared to a conventional

genomic BLUP (gBLUP) approach. Given that the MK-TGRM-BLUP approach leverages

information on the nine fatty acids to predict genetic values for total lipid content in

unobserved individuals, we compared the MK-TGRM-BLUP approach to a multi-trait

gBLUP (MT-gBLUP) approach that jointly fits phenotypes for fatty acids and total

lipid content. The MK-TGRM-BLUP approach significantly outperformed MT-gBLUP.

Collectively, these results highlight the utility of using TGRM to accommodate information

on endophenotypes and improve genomic prediction for a conventional agronomic trait.
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1. INTRODUCTION

The observable phenotype is the manifestation of numerous
biological process that occur across organizational levels (DNA,
transcript, protein, and metabolite) in the plant. In the last 20
years significant progress has been made to query phenotypes
at these levels and elucidate the molecular mechanisms (e.g.,
regulatory networks, biochemical pathways, and physiological
mechanisms) that shape variation in conventional traits like plant
architecture, disease resistance, productivity and fitness. Omics
technologies have provided a means to query the phenotypic
space at a molecular level and quantify these phenotypes
across organizational levels and query these mechanisms in
large populations that are typically required in genetic studies.
The term “endophenotype” has been coined to describe these
molecular phenotypes (Kremling et al., 2019). Nonetheless,
efficiently leveraging these resources to improve prediction of the
classical traits that are typically the focus of breeding programs
remains a significant challenge.

The widespread use of various omics technologies has

motivated many studies to develop approaches that integrate
these data types to predict complex traits (Rincent et al., 2018;

Morgante et al., 2020). Dense omics data can be used to

create relationship matrices, much like genomic relationship
matrices, that describe the relatedness among individuals based
on the endophenotypes. Best linear unbiased prediction (BLUP)

frameworks can then be used to predict complex traits using
these kernels. Using these frameworks, Morgante et al. (2020)
showed that BLUP models that included relationship matrices
derived from transciptome data, as well as transcriptome
and genome-wide marker data improved prediction accuracies
compared to models that used only genome-wide markers.
Several other studies have reported similar improvements in
prediction accuracies when omics-based kernels are used for
prediction, suggesting that these omics-based kernels capture
some component of the phenotype that is not explained by
genome-wide markers (environmental or non-additive genetic
variance) (Westhues et al., 2017; Rincent et al., 2018; Schrag
et al., 2018; Krause et al., 2019; Li et al., 2019; Rohde et al.,
2020; Zhou et al., 2020). Despite these promising studies,
these improv2gfgements seem to be dependent on the trait,
methodologies and datatype (Guo et al., 2016; Schrag et al., 2018;
Zhou et al., 2020). Moreover, these approaches require omics
phenotypes for all individuals, which would be a burden formany
plant breeding programs due to the cost of growing-out and
quantifying endophenotypes on these materials.

Information flows from the genotypic space to
endophenotypes and eventually to the focal trait. Given this
relationship, rather than using these data to create omics-based
relationship matrices, knowledge about quantitative trait loci
(QTL) that affect these endophenotypes can instead be directly
introduced into the prediction frameworks. Predictions for the
focal traits should be improved by allowing variance components
to be estimated separately for putative functional (causal loci
and markers in linkage with these loci) and non-functional
markers. This approach would also remove the requirement
to have endophenotypes measured on the population used for

prediction. Of course, this assumes that effects will be somewhat
consistent across populations and locations, and does not
account for genotype-by-environment effects. Several studies
have used domain/prior knowledge to partition genomicmarkers
into potentially functional (associated with endophenotypes or
proximal to causal genes) and non-functional sets (Gusev et al.,
2014; Speed and Balding, 2014; Edwards et al., 2016; MacLeod
et al., 2016; Xiang et al., 2019). The limitation with these
approaches is that they require a means to link endophenotypes
to the genome, whether that is through association or linkage
mapping or physical positions in the genome, thus favoring traits
with simple genetic architecture and large-effect QTL. Since
many traits of agronomic importance follow a complex genetic
architecture, this approach is somewhat limiting for research
programs in plant genetics.

An alternative to these set-based genomic prediction
approaches is to use estimated marker effects to construct
trait-specific genomic relationship matrices (TGRM). Unlike
the genomic relationship matrices defined by VanRaden (2008),
which assume that the trait is affected by many small effect loci
distributed throughout the genome, TGRMs differentially weight
markers according to their effects on the phenotype (Zhang
et al., 2010; Sun et al., 2012; de los Campos et al., 2013; Karaman
et al., 2018; Gianola et al., 2020; Turner-Hissong et al., 2020).
Given this differential weighting, TGRM should better reflect
the relationships between individuals at causal, or potentially
casual loci.

Zhang et al. (2010) used a two-step approach where marker
effects are predicted using Bayes B or Ridge Regression and
each marker is weighted by its corresponding genetic variance
(in Ridge Regression markers have the same variance) when
constructing the relationship matrices. The authors simulated
traits controlled by 50 QTL of varying effect sizes, and
showed that genomic predictions using the TGRM outperformed
conventional genomic prediction approaches that assume an
infinitesimal architecture (i.e., genomic BLUP and Ridge
Regression), but performed slightly worse than a genomic
prediction model that better accommodates large effect QTL
(i.e., Bayes B). The results from this early study highlighting
the potential benefits of using TGRMs has been supported by
several more recent studies (Su et al., 2014; Tiezzi and Maltecca,
2015; Ren et al., 2020). The advantages of these approaches
is that information on endophenotypes can be transferred
to new populations through marker effects, eliminating the
need to quantify endophenotypes in these populations as
required for approaches that directly use these data to develop
relationship matrices.

These statistical frameworks that use TGRM offer
opportunities to improve selection for conventional traits
by including genetic effects for related endophenotypes. In this
study, we evaluated the potential of TGRM to improve genomic
prediction of seed composition traits in oat. We measured
endophenotypes in a large diverse population, allowing
inferences on these endophenotypes to be leveraged to improve
predictions for related phenotypes in new populations. The
abundances of nine fatty acid methyl esters were quantified in
the mature seed of 336 oat lines using gas chromatography-mass
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spectrometry (GC-MS). These data were used to estimate
marker effects for TGRMs using five Bayesian regression
approaches: Bayesian ridge regression, Bayes A, Bayes B,
Bayes Cπ , and Bayesian LASSO. Two datasets were used for
validation. The first dataset consists of fatty acid abundances
measured on an independent population of 213 elite oat lines.
The second study quantified seed protein and lipid content
using near-infrared spectroscopy (NIRS) in 210 elite oat
lines. These datasets allow us to answer two questions: (1)
Are estimated marker effects consistent across populations?
(2) Can predictions for a trait be improved by using TGRM
for component traits (i.e., endophenotypes)? The utility of
these TGRM prediction frameworks is demonstrated through
comparisons with single-trait genomic best linear unbiased
prediction (gBLUP) and multi-trait gBLUP approaches (MT-
gBLUP). This work broadly tests if endophenotype relationships
are transferable between populations. Further, it assesses the
efficiency of endophenotyping for plant breeding: the cost
of such phenotyping will make it efficient only if knowledge
obtained from core populations can be transferred to multiple
breeding populations.

2. MATERIALS AND METHODS

2.1. Plant Materials
This study used three datasets. The first dataset was used to
infer marker effects for nine fatty acids. These data consist of
fatty acid phenotypes measured on an oat diversity panel of
375 lines derived from breeding programs in North America
and Europe. We refer to this panel as the “Diversity Panel.”
The Diversity Panel was grown in an augmented field design
in Ithaca, NY, in 2018. A total of 368 unreplicated entries
were randomly allocated to 18 blocks with 21–23 plots per
block. One primary check, “Corral,” and one of six secondary
checks were included in each of the blocks. These secondary
checks were replicated four times in total, while the primary
check was replicated 19 times (one block had two “Corral”
plots). A total of 336 lines with genotypic data were used for
downstream analyses.

The second dataset consists of fatty acid measurements on
227 lines from a second oat panel, and was used to validate
marker effects estimated in the Diversity Panel. This panel is
constructed from breeding materials and varieties that were
used to develop oat varieties for the northern Midwestern
United States, which will be referred to as the “Elite Panel”
throughout the remainder of this manuscript. The panel
was grown in three locations (Crookston, MN; Volga, SD;
and Madison, WI) using an augmented block design. Each
experiment included 220–224 unreplicated entries and three
check lines.

The third experiment measured total lipid content using
Near Infrared Spectroscopy (NIRS) in six trials for 210 lines
in the Elite Panel. The experiments followed an augmented
block design. Entry means were downloaded from the Triticeae
Toolbox (Blake et al., 2016). Links to each trial are provided in
Supplementary Table 1.

2.2. Genotyping and Marker Imputation
Single-nucleotide polymorphism (SNP) data were collected from
11 genotyping experiments for 539 lines (Campbell et al., 2020).
The glmnet approach was used to impute missing marker
data (Chan et al., 2016). Markers were excluded based on the
following criteria before performing imputation: allele frequency
< 0.02, proportion of missing data across individuals > 0.6,
and heterozygosity > 0.1. Individuals where more than 70% of
markers were missing or more than 10% of the markers were
heterozygous were removed. Genotypic data for individuals in
each study were extracted from these data, and markers with
a minor allele frequency < 0.05 were removed. This resulted
in a total of 62,002 markers used to estimate marker effects for
fatty acid traits in the Diversity Panel, 58,123 markers used for
prediction of fatty acid phenotypes in the Elite Panel, and 54,220
markers used to predict lipid content measured via NIRS in the
Elite Panel.

2.3. Metabolite Profiling for Fatty Acid
Methyl Esters (FAME)
The following protocol was used for all experiments that
measured fatty acid phenotypes. The methods are described in
detail in Campbell et al. (2020) and Carlson et al. (2019). Briefly,
dehulled seeds were homogenized, and 100 mg of pulverized
tissue was used to separate polar and non-polar compounds
using a biphasic extraction method. A set of quality control (QC)
samples was created by combining 60 µL of the upper organic
layer from each sample, as well as 60 µL of the lower aqueous
phase. A total of 600µL of the upper organic layer was transferred
to new glass vials and was dried under nitrogen gas overnight.
Organic fractions were re-suspended in 0.7 mL of 50% methanol
50% methyl tert-butyl ether and a 70 µL aliquot was transferred
to a 2 mL glass vial. Solvent was completely removed by nitrogen
evaporation at ambient temperature. To the dry sample, 100 µL
of toluene containing 2.5 mg/mL of internal standard, glyceryl
triheptadecanoate, and 200 µL of 3N methanolic HCl were
added. The mixture was incubated at 60◦C for 1 h, and 0.5 mL of
hexane and 700µL of water were added to the cooled sample. The
samples were vortexed, centrifuged at 2,000 rpm for 5min at 4◦C,
and the upper hexane layer was diluted 2× with 100% hexane.

One micro-liter of the upper hexane layer containing FAME
was injected into a TG-WAXMS column (30mm × 0.25
mm × 0.25 µm, Thermo Scientific) in a Trace1310 GC
(Thermo Scientific) coupled to a Thermo Scientific ISQ-LT mass
spectrometer. The injector temperature was 260◦C, and the split
ratio was 15:1. A constant flow rate of the carrier gas (He) was
controlled at 1.2 mL · min−1. The initial oven temperature was
200◦C and held for 1min, then increased to 260◦C at 10◦C·min−1

and held for 3 min. Detection was completed under electron
impact mode, with a scan range of 50–650 amu and scan rate
5 scans·s−1. Transfer line and source temperature were both
at 250◦C. Data processing was completed with Chromeleon 7
software (Thermo Scientific). QC sample were injected after
every 6 samples. Standard curves for C14:0, C16:1, C16:0, C18:0,
C18:1, C18:2, C18:3, C20:0, and C20:1 were established.
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2.4. Calculation of Best Linear Unbiased
Predictors for FAMEs
Best linear unbiased predictors (BLUPs) were calculated to
remove systematic effects for each fatty acid phenotype. Given
that both experiments that quantified fatty acids followed the
same type of experimental design (augmented block), the linear
mixed model is nearly identical and is given by

y = µ + DTH + check+ new : entry+ block+ batch+ e (1)

where check is a fixed effect for each of the check varieties; new
is an indicator variable where 0 indicates a check variety and
1 indicates an unreplicated entry, and is nested within entry;
DTH is a fixed covariate that provides days to heading for
each observation; block and batch are random effects to account
for field blocks and injection batch for GC-MS, respectively.
Heading dates were only available for the experiments performed
in Ithaca, so the linear model used to compute BLUPs for fatty
acid phenotypes in the Elite Panel did not include this term.
The terms µ and e represent the overall mean and the vector of
residuals, respectively. We assume entries are unrelated in this
step. The above model was fitted using the sommer package in R
(Covarrubias-Pazaran, 2016). Deregressed BLUPs for each entry i
and fatty acid jwere calculated following Edriss et al. (2017) using

ĝ∗ij =
ĝij

1−
PEVij

σ 2
gj

(2)

where ĝij is the BLUP for entry i and metabolite j, PEVij is the
prediction error variance, and σ

2
gj
is the total genetic variance.

2.5. Prediction of Marker Effects for Fatty
Acid Traits
Five Bayesian whole-genome regression approaches were used to
estimate marker effects for each of the fatty acid phenotypes. The
linear model for all approaches is identical. The methods differ
in how the priors for the marker effects are defined. The linear
model is

y = µ +

P∑

p=1

wpap + e (3)

where wp is a vector of allele dosages for marker p and ap is the
corresponding additive genetic effect, y is a vector of fatty acid
phenotypes (endophenotypes), and e is a vector of residuals. In
all cases, we assume e ∼ N(0, σ 2

e ). This linear model was fitted
using the BGLR package in R using 20,000 iterations for the Gibbs
sampler and the first 5,000 samples were discarded (Pérez and
de Los Campos, 2014). Every fifth sample was used to compute
the posterior means of marker effects.

The five Bayesian approaches use different prior distributions
for the marker effects and are described in detail in Meuwissen
et al. (2001) and Gianola (2013). Briefly, Bayesian Ridge
Regression (BRR) is analogous to genomic BLUP (gBLUP) and
samples marker effects from a Normal distribution. In Bayes
A, marker effects are sampled from a scaled-t density, allowing

differential shrinkage of marker effects. Scale-mixture densities
are used as priors for Bayes B and Bayes Cπ . Some effects are
sampled from a point mass at zero and others are sampled
from a scaled-t density, as is the case in Bayes B, or a Normal
distribution in Bayes Cπ . The mixing parameter specifies the
probability of a marker being sampled from either density and
is treated as an unknown in implementations of Bayes B and
Bayes Cπ used in this study (Pérez and de Los Campos, 2014).
Markers are sampled from a point mass at zero with a probability
π and a non-zero density with probability (1 − π). Thus, in
the extreme case where π = 0 Bayes B will behave like Bayes
A and Bayes Cπ will behave similar to BRR. Bayesian LASSO
(BL) samples marker effects from a LaPlace density. This prior
has thicker tails compared to the Normal density used in BRR,
but will shrink small-effect markers toward zero much stronger
than BRR. These frameworks provide ameans to estimate marker
effects for a range of traits with different genetic architectures,
which is consistent with what has been reported for fatty acid
traits in oat (Carlson et al., 2019) (Supplementary Figures 1–18).

2.6. Construction of Trait Specific Genomic
Relationship Matrices
Trait-specific genomic relationship matrices (TGRM) were
constructed using the estimated marker effects for each of the
nine fatty acid phenotypes in the Diversity Panel. For each fatty
acid phenotype, the TGRM are defined as

G∗
=

MDM′

P
(4)

whereM is an n× P scaled and centered matrix of allele dosages
with n being the number of individuals and P the number of
markers. D is an P × P diagonal matrix that contains the marker

weights. The weight for marker p is given by
a2p∑P
p=1 a

2
p
where ap is

the additive effect.

2.7. Genomic Prediction
2.7.1. Prediction of Fatty Acid Phenotypes in the Elite

Panel
To predict each fatty acid trait the following model was fitted

y = µ + Zuu+ Zes+ e (5)

where y is a vector of deregressed BLUPs for each line in
the six trials; Zu is an n × q incidence matrix that assigns
the q genomic values to n observations; u is a vector of
genomic values; and Ze is an n × e incidence matrix that
assigns observations to trials and s are the corresponding effects.
Both TGRM-BLUP and gBLUP follow the same model, what
separates the two methods are the assumptions on u. For TGRM-
BLUP, we assume u ∼ N(0, σ 2

g∗G
∗) where G∗ is the TGRM

defined above, and for gBLUP we assume u ∼ N(0, σ 2
g G)

where G is a genomic relationship matrix calculated using
VanRaden’s second definition (VanRaden, 2008). All models
were fitted using the BGLR package in R using the settings
mentioned above (Pérez and de Los Campos, 2014). Prediction
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accuracies were assessed using five-fold cross validation with
50 independent resampling runs. In each resampling run, the
dataset was randomly split into five-folds. The models were
trained on 80% of the data and predictions were made on the
remaining 20%. This process was repeated until each fold was
used as the testing set. Prediction accuracies were computed
using Pearson’s correlation between observed phenotypes and
predicted genomic values for lines in the testing set. Correlation
coefficients were averaged across folds. Comparisons were made
between gBLUP and TGRM-BLUP, and significant differences
in the two methods were declared if TGRM-BLUP increased
prediction accuracy in 90% of the resampling runs. We used
this approach to compare methods over a t-test for two
reasons: (1) in cross-validation each sample is drawn from
the same dataset and are not independent, which violates one
of the assumptions of the t-test; and (2) the magnitude of
the t-statistic is dependant on the sample size, which is the
number of resampling runs. Our approach is not dependent
on the sample size and should be a more robust alternative to
the t-test.

2.7.2. Prediction of Total Lipid Content in the Elite

Panel
Prediction of total lipid content was performed using multi-
kernel TGRM-BLUP (MK-TGRM-BLUP), multi-trait gBLUP,
and gBLUP approaches. The model for MK-TGRM-BLUP is
given by

y = µ +

T∑

t

Zuut + Zes+ e (6)

with all matrices and vectors defined as above; however, ut is a
vector of genomic breeding values computed using the TGRM for
fatty acid trait t. Prediction accuracy was assessed using Pearson’s
correlation between the predicted genomic estimated breeding
values and the BLUPs for each trial. Prediction accuracies from
themodel above were compared to gBLUP to determine if TGRM
affected genomic predictions.

The multi-trait BLUP model is

Y = µ + ZUU+ e (7)

here Y is a n × T matrix of phenotypes and U is a n × T matrix
of genomic breeding values. BLUPs were averaged across the six
trials and were used to construct Y. These data were also used to
fit MK-TGRM-BLUP models that were compared to multi-trait

gBLUP and are given by y = µ +
∑T

t Zuut + e. Prediction
accuracy was assessed in the Elite Panel using five-fold cross
validation. Since 12 lines were included in both the Diversity and
Elite panels, and had phenotypes for both fatty acid and NIRS
traits, these lines were always included in the training data. The
testing set included lines that only had NIRS phenotypes. All
models were fitted using the BGLR package as described earlier
(Pérez and de Los Campos, 2014).

3. RESULTS

Nine fatty acid phenotypes were quantified in a panel of 336
diverse oat lines (referred to hereafter as the Diversity Panel)
using targeted GC-MS (Supplementary File 1). Generally, the
fatty acid phenotypes were highly correlated at both the genetic
and phenotypic levels and correlation patterns were reflective
of the biochemical relationships between compounds (Figure 1).
For instance, we observed strong positive correlations among
C18-type and C20-type fatty acids. Moreover, shorter chain fatty
acids (e.g., C14 and C16) which are synthesized in the early
steps of fatty acid biosynthesis also exhibited strong positive
correlations (Ohlrogge and Jaworski, 1997; Brown et al., 2009;
Li-Beisson et al., 2013). There were exceptions to these patterns,
specifically for C16:1 and C18:3. These fatty acids showed much
lower positive correlations with all other fatty acid phenotypes.
Narrow-sense heritability estimates were moderate to high and
ranged from 0.38 to 0.69, with the lowest and highest h2 observed
for C18:3 and C18:0, respectively. Collectively, these results
suggest that these lipid phenotypes are genetically interrelated
and are under additive genetic control.

3.1. Construction of Trait-Specific Genomic
Relationship Matrices (TGRMs)
Given that a significant portion of phenotypic variation in
these lipid phenotypes could be explained by additive genetic
effects, we sought to leverage these effects to better predict lipid-
related traits in an independent population. We constructed
trait-specific genomic relationship matrices (TGRMs), which
differentially weight markers based on their additive genetic
effects on the phenotype. Since the genetic architectures of the
fatty acid phenotypes differ, we used five Bayesian whole-genome
regression approaches to estimate marker effects: Bayesian ridge
regression (BRR), Bayes A, Bayes B, Bayes Cπ , and Bayesian
LASSO (BL; Supplementary Figures 1–18). These approaches
sample marker effects from various prior densities and can
accommodate a wide range of genetic architectures (see section
2). We evaluated whether the signal captured by these TGRMs
are transferable across populations by predicting the same fatty
acid phenotypes measured in an independent population (Elite
Panel) and environment. Predictive ability was assessed using
five-fold cross validation with 50 independent resampling runs.
Genomic BLUP (gBLUP) using VanRaden’s second GRM was
used as a baseline model. The TGRM-BLUP approaches were
deemed to significantly improve prediction accuracies if the
TGRM out-performed gBLUP in 90% of the resampling runs
(Table 1, Figure 2).

With the exception of C18:1 and C18:3, prediction accuracies
were significantly improved by using a TGRM, indicating
that the signal captured by TGRMs is relevant in this second
independent population (Table 1, Figure 2). Comparisons
between TGRM approaches showed small, often non-significant
differences between methods used to estimate marker effects
(Figure 2, Supplementary Table 2). On average, Bayes B showed
higher predictive abilities for more traits compared to other
methods. For instance, Bayes B significantly outperformed
at least one approach for six of the nine fatty acid traits
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FIGURE 1 | Correlation and heritability for nine fatty acid traits. Genomic correlation between fatty acid phenotypes is shown in the upper triangle of the matrix, while

the lower triangle shows the phenotypic correlations. Narrow-sense heritability estimates (h2) are provided along the diagonal. All values were estimated using a

multi-trait BLUP model using phenotypes recorded in the Diversity Panel. The size of each circle is proportional to the magnitude of the estimate.

TABLE 1 | Proportion of resampling runs where BLUP using trait-specific genomic relationship matrices (TGRM-BLUP) outperformed genomic BLUP (gBLUP).

Method C14:0 C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 C20:0 C20:1

BRR 0.96 1.00 0.92 1.00 0.48 1.00 0.62 1.00 0.68

Bayes A 0.82 1.00 0.80 1.00 0.38 0.98 0.28 1.00 0.54

Bayes B 1.00 1.00 0.96 1.00 0.54 1.00 0.58 1.00 0.92

Bayes Cπ 1.00 1.00 0.96 1.00 0.58 0.98 0.62 1.00 0.86

BL 0.74 1.00 0.94 1.00 0.52 0.98 0.50 1.00 0.74

Marker effects were estimated using five Bayesian whole-genome regression approaches for each of the nine fatty acid traits in the Diversity Panel (336 lines). Predicted marker effects

were used to construct TGRMs for each trait. The predictive ability of TGRM-BLUP was assessed using nine fatty acid phenotypes measured in a population of 213 oat lines (Elite Panel).

Five-fold cross validation was performed with 50 independent resampling runs. TGRM-BLUP was deemed to significantly improve genomic predictions in a TGRM-BLUP approach that

outperformed gBLUP in 90% or more of the resampling runs, and are indicated by boldfaced text. BRR, Bayesian ridge regression; BL, Bayesian LASSO.

(Supplementary Table 2). Bayes Cπ also showed significantly
higher predictive abilities relative to other approaches, and
significantly outperformed at least one TGRM approach for four
of the nine traits (Supplementary Table 2). Bayesian LASSO
generally showed the lowest predictive ability among the TGRM
approaches and did not outperform any approach for any trait.
Collectively, these results show that the predicted marker effects
are transferable across populations and can improve genomic
prediction for endophenotypes for such seed traits as total
lipid content. Moreover, the Bayesian whole-genome regression

approaches that use a scale mixture prior may better capture
genetic signal for traits with different genetic architectures,
and may be a robust approach to estimate marker effects and
create TGRMs.

3.2. Using TGRMs to Predict Total Lipid
Content
The previous analyses showed that TGRMs can be used
to improve genomic prediction for fatty acid traits in an
independent population. While these outcomes provide support
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FIGURE 2 | Prediction accuracies for fatty acid traits using TGRM-BLUP and gBLUP. Five Bayesian whole-genome regression approaches (Bayes A, Bayes B, Bayes

Cπ , BRR, and BL) were used to estimate marker effects for each fatty acid trait in the Diversity Panel. These marker effects were used to construct trait-specific

genomic relationship matrices (TGRM) and were used to predict fatty acid abundances in the Elite Panel. Prediction accuracy was assessed using five-fold cross

validation with 50 resampling runs. The correlation between predicted genomic breeding values in the testing population and the observed phenotypes is shown in

(A). Panel (B) shows the percent improvement relative to genomic BLUP (gBLUP) for each trait. BL, Bayesian LASSO; BRR, Bayesian ridge regression; r, Pearson’s

correlation coefficient.

for the use of TGRMs in breeding programs, the quantification
of these compounds may not be feasible in breeding programs
due to the high cost of GC-MS. Seed compositional traits
measured via indirect methods, e.g., near-infrared spectroscopy
(NIRS), is a more feasible approach to quantify total seed
lipids in a large breeding program (Melchinger et al., 1986;
Rosales et al., 2011; Diepenbrock and Gore, 2015). With
this in mind, we used the TGRMs for each of the nine
fatty acid traits to predict total seed lipid content measured
through NIRS using a multi-kernel genomic prediction model
(MK-TGRM-BLUP). Prediction accuracies for each multi-
kernel model were compared to gBLUP and the TRGM
methods were determined to significantly improve prediction

accuracies if it outperformed gBLUP in at least 90% of
sampling runs.

All MK-TGRM-BLUP approaches significantly increased
prediction accuracies compared to gBLUP (Figure 3).
Improvements in prediction accuracies ranged from 11.8 to
13.8%. Differences between MK-TGRM-BLUP approaches were
minimal and non-significant. In contrast to the predictions
for fatty acid traits, BRR showed slightly higher prediction
accuracies on average (r = 0.481) compared to other approaches,
while Bayes A showed the lowest prediction accuracy among the
MK-TGRM-BLUP approaches (r = 0.473).

Given that the MK-TGRM-BLUP leverages information on
related traits to improve prediction accuracies, we also compared
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FIGURE 3 | Comparison of prediction accuracies for multi-kernel trait-specific BLUP models (MK-TGRM-BLUP) and a genomic BLUP approach (gBLUP). The

multi-kernel models used TGRMs constructed from estimated marker effects for the nine fatty acid traits. Prediction accuracy was assessed using five-fold cross

validation with 50 resampling runs. The correlation between predicted genomic breeding values in the testing population and the observed phenotypes at each

location is shown in (A). Panel (B) shows the percent improvement relative to gBLUP for each MK-TGRM-BLUP approach. BL, Bayesian LASSO; BRR, Bayesian

ridge regression; r, Pearson’s correlation coefficient.

FIGURE 4 | Comparison of prediction accuracies for multi-kernel trait-specific BLUP models (MK-TGRM-BLUP) and a multi-trait gBLUP approach (MT-gBLUP). The

multi-trait gBLUP model used phenotypes for the nine fatty acid traits and total lipid content measured via near-infrared spectroscopy (NIRS) to predict total lipid

content. Prediction accuracy was assessed using five-fold cross validation with 50 resampling runs. Since there is a small overlap between lines in the diversity panel,

which have fatty acid phenotypes, and lines in the Elite Panel, these common lines were always included in the training set. The testing set is then 20% of the lines

that only have NIRS phenotypes. The correlation between predicted genomic breeding values in the testing population and the average of observed phenotypes

across locations is shown in (A). Panel (B) shows the percent improvement relative to MT-gBLUP for each MK-TGRM-BLUP approach. BL, Bayesian LASSO; BRR,

Bayesian ridge regression; r, Pearson’s correlation coefficient.

the MK-TGRM-BLUP approach to a multitrait gBLUP (MT-
gBLUP) model that jointly modeled all nine fatty acid traits in the
Diversity Panel and total lipid content in the Elite Panel. Thus,
MT-gBLUP contains all the data that was used to compute the
TGRM for fatty acids used in the MK-TGRM-BLUP model. A
total of 12 lines in the Elite Panel had phenotypes for individual

fatty acids and their sum. Five-fold cross validation was used
for the remaining 198 lines in the Elite Panel with phenotypes
for total lipid content. All TGRM-BLUP approaches showed
significant improvements in prediction accuracies over the MT-
gBLUP approach (Figure 4). Prediction accuracies were highest
on average for BRR (r = 0.578), which showed a 14.41%
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FIGURE 5 | Prediction accuracies for two multi-kernel trait-specific BLUP

models (MK-TGRM-BLUP) that use TGRM for the three most abundant and

three least abundant fatty acids. Estimated marker effects for the most

abundant fatty acids (C16:0, C18:1, and C18:2) were used to create the three

TGRM and were used in a multi-kernel gBLUP framework to predict total lipid

content. A similar approach was used with the three least abundant fatty acids

(C14:0, C16:1, and C20:0). Predictions for each MK-TGRM-BLUP approach

were compared to a multi-trait gBLUP approach. Five-fold cross validation

was performed using 50 resampling runs. BL, Bayesian LASSO; BRR,

Bayesian ridge regression; r, Pearson’s correlation coefficient.

increase in prediction accuracy over MT-gBLUP. Collectively,
these results suggest that the use of a TGRM approach can
significantly improve prediction accuracies over conventional
genomic prediction approaches, even when information on
related phenotypes is included in the prediction model.

Finally, we asked whether it was necessary to quantify
and construct TGRM for all fatty acids, or whether similar
improvements in prediction accuracy could be achieved by
using kernels for the most abundant fatty acids. In both
panels, C16:0, C18:1, and C18:2 were the most abundant fatty
acids, while C14:0 C16:1 and C20:0 were present at much
lower levels (Supplementary Figure 20). TwoMK-TGRM-BLUP
models were constructed using kernels for the top three
most abundant fatty acids and the three least abundant fatty
acids. These MK-TGRM-BLUP approaches were compared to
the MT-gBLUP model described above using five-fold cross
validation. Both MK-TGRM-BLUP approaches outperformed

MT-gBLUP in all resampling runs, indicating that including
genetic signal for a subset of fatty acid traits is sufficient to
significantly improve prediction for total lipid content (Figure 5).
Comparisons between the twoMK-TGRM-BLUP approaches did
not show any significant differences in prediction accuracies,
which may be due to QTL that are shared between fatty acids
(Supplementary Figures 2, 3, 5, 6, 8).

4. DISCUSSION

Omics technologies provide an easy and effective way to measure
thousands of endophenotypes in large mapping populations.
Many research groups are using these approaches to improve
prediction for complex traits (Guo et al., 2016; Westhues et al.,
2017; Rincent et al., 2018; Schrag et al., 2018; Li et al., 2019; Xiang
et al., 2019; Rohde et al., 2020; Zhou et al., 2020). While several
studies have reported improvements in prediction accuracies
when these data were used to create relationship matrices, the
results are often mixed and inconsistent (Guo et al., 2016;
Schrag et al., 2018; Zhou et al., 2020). More importantly, such
approaches can be costly to implement in a breeding program
since individuals in the testing population require records for
endophenotypes. TGRMs offer an alternative approach to use
relevant information on endophenotypes to improve prediction
for conventional traits.

In this study, we show that data on endophenotypes can
be used to create TGRMs that majorly improve prediction for
related higher level focal traits. The TGRM improved prediction
accuracies for most traits by as much as 15%. The greatest
improvements among fatty acid traits was observed for C16:0
when marker effects were estimated using Bayes Cπ . C16:0
showed moderate to high heritabilities in the Diversity and
Elite Panels (h2 = 0.68 and 0.64, respectively), and it seemed
to be affected by at least one large-effect QTL in both panels
(Supplementary Figures 2, 11). Thus, predictions for this trait
can be improved by placing greater emphasis on putative causal
markers when defining the genomic relationships among lines.
These results are in agreement with other studies that evaluated
TGRMs (Tiezzi and Maltecca, 2015; Karaman et al., 2018; Ren
et al., 2020). Improvements over gBLUP were most pronounced
for high heritability traits that were regulated by a few large-
effect QTL, which is expected given that such traits are far
from the infinitesimal model assumed by gBLUP (Tiezzi and
Maltecca, 2015; Karaman et al., 2018; Ren et al., 2020). This likely
explains the improvements in prediction accuracies observed
for C16:0 with TGRM-BLUP. Ren et al. (2020) used several
TGRM-BLUP approaches to predict both simulated and real
traits in three species. Marker weights were estimated using
methods with priors that impose local or global shrinkage, and
several types of TGRM were constructed using these weights.
The authors reported the greatest improvements in prediction
accuracies for simulated traits with moderate heritability and
200 QTL when TGRM were constructed using weights estimated
using Bayes Cπ . The authors did not estimate marker effects
using Bayes B; however, both Bayes B and Bayes Cπ use scale
mixture densities to accommodate large-effect QTL (Gianola,

Frontiers in Genetics | www.frontiersin.org 9 March 2021 | Volume 12 | Article 643733

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Campbell et al. Trait-Specific Relationship Matrices

2013). With these approaches, estimates for small-effect QTL
are shrunk heavily toward zero, while effects for markers
that are in linkage disequilibrium with large-effect QTL are
shrunk less. These approaches are more effective to estimate
marker effects and construct TGRMs for traits that exhibit
oligogenic architectures compared to methods that impose
uniform shrinkage.

Predictions for two fatty acid traits, C18:1 and C18:3,
were not significantly improved with TGRM-BLUP. C18:3
had the lowest heritability in the Diversity and Elite Panels
(h2 = 0.38 and 0.42, respectively) and exhibited a much
more complex genetic architecture compared to other fatty acids
(Figure 1, Supplementary Figures 7, 16). On average, prediction
accuracies were improved by −0.73 to 1.0% over gBLUP, but
only outperformed gBLUP in 28 to 62% of the resampling runs.
These are not unexpected findings given that other studies that
simulated traits with complex architectures and low heritabilities
also failed to see much of an improvement with TGRM-BLUP
(Tiezzi andMaltecca, 2015; Karaman et al., 2018; Ren et al., 2020).
Compared to C18:3, heritability estimates were much higher
for C18:1 and a large-effect QTL was detected in both panels
on chromosome 3D, which explained about 6% of variation in
C18:1 in the Diversity Panel, but predictions were not improved
with TGRM-BLUP (Figure 1, Supplementary Figures 5, 14).
Although the minor allele at this locus was common in the
Diversity Panel (MAF = 0.40), the top marker was rare in the
Elite Panel and was below theMAF threshold (MAF< 0.05) used
when computing the TGRM.

Compared to other approaches that have created relationship
matrices using endophenotype values, the TGRM approach
should be more feasible to implement in a breeding program
since predictions on the testing population can be performed
without records for endophenotypes. Pertinent genetic
information are passed between populations through marker
effects for the endophenotypes. Of course, this assumes that
relevant markers are still segregating in the testing population;
therefore, it is important to carefully select a population to
estimate marker effects. Fatty acid phenotypes were initially
measured in the Diversity Panel which consists primarily of
breedingmaterials from European andNorth American breeding
programs, while the Elite Panel used for genomic prediction is
comprised of materials used in oat breeding programs in the
Upper Midwestern United States. Thus, the panel that was used
to estimate marker effects is diverse and related to the materials
used for prediction (Supplementary Figure 21).

Surprisingly, the MK-TGRM-BLUP approach showed
significant improvements in prediction accuracy over gBLUP
and a multi-trait gBLUP model for total lipid content. Total lipid
content exhibited a much more complex genetic architecture
compared to the fatty acid traits; therefore, we expected the
TGRM approaches to perform equally as well or slightly better
than gBLUP (Supplementary Figure 19). Prediction accuracies
were improved by 11.8 to 13.8% relative to gBLUP and 11.9 to
14.4% relative to MT-gBLUP. The MT-gBLUP approach jointly
fits fatty acids and total lipid content, and should be able to use
the signal contained in the fatty acid phenotypes to improve
predictions for total lipid content. One explanation for the

increased performance of MK-TGRM-BLUP over MT-gBLUP
is that the former is a more parsimonious model. Since an
unstructured covariance matrix was used for MT-gBLUP, all
variances and covariances must be estimated. MK-TGRM-BLUP
on the other hand does not estimate covariances between
the traits, rather information on related traits is provided
through the kernels. A second possibility is that the MT-gBLUP
model assumes an infinitesimal architecture for all traits.
While this may be the case for total lipid content and some
fatty acid traits, several fatty acids showed a much simpler
architecture (Supplementary Figures 1–19). The MT-gBLUP
approach may shrink these large-effect QTL for endophenotypes
with simpler genetic architectures. Nonetheless, these results
demonstrate that TGRM for related endophenotypes can be
leveraged to improve prediction for lower-cost traits to assess
seed quality traits in breeding programs. Moreover, we show
that information on a subset of fatty acids can be leveraged
to significantly improve predictions for total lipid content
relative to the MT-gBLUP approach. The majority of total lipid
content in oat is due to triglycerides, which consist of three
fatty acids bound to glycerol (Leonova et al., 2008). Leonova
et al. (2008) reported that C16:0, C18:1, and C18:2 were the
most predominant fatty acids found in the oat seed, which
is supported by our results in both the Diversity and Elite
panels (Supplementary Figure 20). Since these fatty acids
should be most relevant to total lipid content, this prompted
us to evaluate whether information on these endophenotypes
was sufficient to improve prediction for total lipid content.
MK-TGRM-BLUP models that included information for these
fatty acids significantly outperformed MT-gBLUP for predicting
total lipid content, suggesting that the most predominant fatty
acids can be quantified and used to predict total lipid content.
Surprisingly, prediction accuracies for these MK-TGRM-BLUP
models that used kernels for the most abundant fatty acids
showed equivalent prediction accuracies with MK-TGRM-BLUP
approaches that used kernels for the three least abundant
fatty acids. Several QTL were shared between fatty acids.
For instance, a QTL was identified on chromosome 6A for
C16:0, C18:2, and C16:1 (Supplementary Figures 2, 3, 6).
A second shared QTL was identified on chromosome 3D
for C18:1 and C20:0, suggesting that these loci may have
pleiotropic effects on low and high abundant fatty acid traits
(Supplementary Figures 5, 8).

One major assumption of the approaches used in this study
is that the focal trait is influenced by a relatively small number
of endophenotypes that are known beforehand. For some traits,
such as seed lipid content, selecting which endophenotypes to
include in the model is somewhat straightforward, as we know
the focal trait is essentially a summary of all lipids in the tissue,
and marker effects can be predicted for the important lipids.
Information on these traits can be introduced using a multi-
kernel prediction model, but this is not feasible when tens
or hundreds of endophentoypes possibly affect the focal trait.
High dimensionality would particularly be a problem for traits
like yield, which are influenced by many molecular processes.
Selecting a small subset of relevant endophenotypes for such
traits from dense omics data can be challenging. In these cases, it
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may be appropriate to use a combination of dimension-reduction
and variable selection methods to select relevant phenotypes
or linear combinations of phenotypes. Methods like principal
component analysis or factor analysis have been used extensively
to cope with high-dimensional traits (Runcie and Mukherjee,
2013; Wang and Stephens, 2018; Carlson et al., 2019; Sakamoto
et al., 2019; Yu et al., 2019; Campbell et al., 2020; Rice et al.,
2020; Runcie et al., 2020). These approaches can be used to
create derived traits that capture (co)variance in the original
data, and marker effects can be easily estimated using GWAS
or whole-genome regression approaches. Thus, TGRMs can be
constructed from marker effects for these derived phenotypes. A
second limitation of our approach, which is shared with other
BLUPmethods, is that computations and storage of TGRMmany
be unfeasible with very large populations (> 100k individuals)
(Aguilar et al., 2011; Misztal et al., 2020). The storage of GRMs
scale quadratically with the number of individuals, and inversion
of GRMs increase cubically. Although populations of this size
are rare in public plant breeding programs, genomic studies in
animals and humans routinely involve genetic data for > 100k
individuals. In such cases indirect approaches can be used to
overcome these computational issues and use BLUP frameworks
for genetic evaluations in large populations (see Misztal et al.,
2020 for review).

In conclusion, this study highlights the utility of TGRMs
for related endophenotypes to predict complex traits in crops.
Since the frameworks presented in this study do not require
endophenotypes for selection candidates, these methods should
be tractable to employ in breeding programs. Endophenotypes
and their corresponding marker effects can be quantified in
a large, diverse, discovery population, enabling them to be

collectively leveraged to improve prediction accuracies for
conventional traits in related populations.
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