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INTRODUCTION 
 

The incidence and prevalence of end-stage renal disease 

(ESRD) has increased continually worldwide, and 

patients with ESRD are at higher risk of morbidity and 

mortality [1, 2]. Peritoneal dialysis (PD) is an 

established and cost-effective therapy for patients with 

ESRD [3, 4]. Although the mortality rates of patients 

receiving PD have decreased, their long-term survival 

remains poor [1, 5, 6]. Patients with a high risk of 

premature mortality who are undergoing PD should be 

managed with active treatment strategies to improve 

long-term survival. However, an early and accurate 

prediction of the risk of premature mortality in patients 

receiving PD is still difficult to achieve. 

 

Barrett et al. attempted to predict early death in patients 

treated with dialysis using a scoring system based on a 

logistic regression (LR) model, but the authors found it 

impossible to accurately predict early death [7]. 

Although LR models are the most widely used methods 

for predicting binary medical outcomes, they are 
generalized linear models that require an assumption of 

a linear relationship between the transformed response 

in terms of the link function and the explanatory 

variables, which is not always suitable for medical 
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ABSTRACT 
 

Premature all-cause mortality is high in patients receiving peritoneal dialysis (PD). The accurate and early 
prediction of mortality is critical and difficult. Three prediction models, the logistic regression (LR) model, 
artificial neural network (ANN) classic model and a new structured ANN model (ANN mixed model), were 
constructed and evaluated using a receiver operating characteristic (ROC) curve analysis. The permutation 
feature importance was used to interpret the important features in the ANN models. Eight hundred fifty-nine 
patients were enrolled in the study. The LR model performed slightly better than the other two ANN models on 
the test dataset; however, in the total dataset, the ANN models fit much better. The ANN mixed model showed 
the best prediction performance, with area under the ROC curves (AUROCs) of 0.8 and 0.79 for the 6-month and 
12-month datasets. Our study showed that age, diastolic blood pressure (DBP), and low-density lipoprotein 
cholesterol (LDL-c) levels were common risk factors for premature mortality in patients receiving PD. Our ANN 
mixed model had incomparable advantages in fitting the overall data characteristics, and age is a steady risk 
factor for premature mortality in patients undergoing PD. Otherwise, DBP and LDL-c levels should receive more 
attention for all-cause mortality during follow-up. 
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datasets [8–10]. Artificial neural networks (ANNs), a 

type of machine learning algorithm, have become 

popular and helpful models for medical predictions, 

including nephrology [11]. ANNs automatically 

recognize complex nonlinear relationships and have 

become relatively competitive with conventional 

regression and statistical models in terms of usefulness 

[12]. However, the structure of an ANN requires an 

elaborate organization and adjustment to obtain the best 

performance. 

 

Thus, the purpose of this study was to construct early 

prediction models based on the LR model and ANN 

model for all-cause premature mortality and compare 

the performance of the constructed models to select the 

most accurate models to predict the premature all-cause 

mortality in patients receiving PD. 

 

MATERIALS AND METHODS 
 

Study population 

 

Data from 1241 patients with ESRD who initially 

started PD between Jan 2006 and Dec 2019 at the First 

Affiliated Hospital of Wenzhou University were 

collected and reviewed. The inclusion criteria were as 

follows: 1. older than 18 years and 2. routine follow-up 

for more than twelve months in our PD center. The 

exclusion criteria were as follows: 1. a history of 

continuous hemodialysis for more than six months 

before continuous ambulatory peritoneal dialysis 

(CAPD) or a combination of continuous hemodialysis 

and CAPD, 2. a history of kidney transplantation, and 3. 

missing important data. Patients who met the above 

criteria were eventually enrolled in this study. The study 

protocol was reviewed and approved by the Ethics 

Committee of the First Affiliated Hospital of Wenzhou 

University before collecting any data. 

 

Data collection and preparation 
 

The following clinical characteristics were collected at 

the initiation of CAPD as predictor variables: 

demographic variables, including sex, age and 

complications such as chronic heart disease (CHD), 

diabetes mellitus (DM), and malignancy; and laboratory 

variables, including systolic blood pressure (SBP, 

mmHg), diastolic blood pressure (DBP, mmHg), total 

triglycerides (Tg), total cholesterol (Tc), low-density 

lipoprotein cholesterol (LDL-c), high-density 

lipoprotein cholesterol (HDL-c), serum albumin (g/dL), 

hemoglobin (g/dL), blood urea nitrogen (BUN, mg/dL), 

serum creatinine (Scr, µmol/L), serum phosphorus (P, 

mmol/l), intact parathyroid hormone (iPTH, pg/ml), and 

Kt/V. The causes of premature death were recorded 

during follow-up, and the primary endpoint of the study 

was all-cause mortality. We collected the data at the 

beginning of PD and during the follow-up period. Three 

datasets, namely, the 0-month, 6-month, and 12-month 

datasets, were collected, and the 0-month dataset (also 

called the total dataset) was used for training the 

prediction models. Missing values were imputed with 

values from the nearest three months. All included 

numerical variables were normalized by the Z-score. 

 

Construction of prediction models 

 

The TensorFlow platform (https://www.tensorflow.org/) 

was used for training the ANN models [13]. We 

constructed two different types of ANN models. One is 

called the ANN classic model, which was built using a 

single neural network with 12 hidden layers. The 

numerical variables and categorical variables were input 

into the neural network simultaneously (Supplementary 

Figure 1). The other is called the ANN mixed model. 

Two different sub-neural networks were built for the 

numerical variables and categorical variables with nine 

hidden layers and eleven hidden layers, respectively. 

The two sub-networks were then merged into a new 

neural network with two hidden layers for predicting the 

outcomes (Supplementary Figure 1). The hyper-

parameters of the ANN models were adjusted during the 

study. Finally, we set the following parameters for the 

ANN models: epoch = 3500, batch size = 220, iteration 

= 0.0001, and L1 and L2 regularization penalties. The 

multivariable logistic model was built using the Scikit-

learn platform [14]. 

 

We selected the 0-month dataset to train the ANN 

models and logistic models and construct an early 

prediction model. The full 0-month dataset was 

randomly divided into three datasets: a training dataset 

(63.2%), validation dataset (48%), and test dataset 

(20%). The training dataset was used to train the ANN 

models and logistic models. The validation dataset 

displayed 31.2% overlap with the training dataset and 

was used to control overfitting during training of the 

ANN model. The test dataset did not have any 

overlapping data with the training dataset, and the 

validation dataset was used to assess the performance of 

the ANN models and logistic models (Supplementary 

Figure 2). 

 

Evaluation of the performance of the ANN and 

logistic models 

 

We calculated the predictive outcomes of the ANN and 

logistic models using the test dataset and the 0-month, 

6-month, and 12-month datasets during the construction 
of every model. Then, the areas under the receiver 

operating characteristic (ROC) curves (AUROCs) were 

calculated to filter models with extremely poor 
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performance using a threshold of 0.6, and ROC curves 

were plotted to visualize the relationship between the 

true positive rate (TPR) and false positive rate (FPR) at 

different cutoff values. We also calculated the accuracy, 

F1 score, precision, and recall values at a fixed 

threshold value (0.2) to evaluate the performance of the 

selected models in predicting positive cases (dead 

patients) or negative cases (surviving patients) using the 

Scikit-learn application [15]. A phi coefficient analysis 

was performed to measure the association between the 

predicted and true outcomes [16]. The permutation 

feature importance, which is defined as the decrease in 

the score of a model when a single feature value is 

randomly shuffled [17], was calculated to evaluate the 

significance of the included variables. 

 

Statistical analysis 

 

The numerical data are presented as the means [standard 

deviations (SD)] or the medians [interquartile ranges 

(IQRs)], and differences between the groups were 

examined using variance analysis or the Kruskal-Wallis 

rank test. Categorical data are presented as counts with 

percentages (%), and differences between the groups 

were analyzed using Pearson’s chi-square test. 

Multivariable LR models based on the 0-month, 6-

month, and 12-month datasets were built to evaluate the 

effects of the included variables on the primary 

outcomes. All reported p-values are two-tailed, and p-

values less than 0.05 were considered to indicate a 

statistically significant difference. Python (version 3.8) 

[18] and R software (version 4.0.2, R Core Team) [19] 

and embedded packages were used to prepare the 

datasets, perform the analyses, and create the plots [20–

24]. P<0.05 was set as statistically significant. 

 

RESULTS 
 

Eight hundred fifty-nine patients who met the criteria 

were enrolled in the study, and 82 (9.54%) patients met 

the primary endpoint at a median follow-up time of 40.5 

[18.2, 59.8] months. According to our 0-month dataset, 

the variables diabetes, CHD, age, DBP, LDL-c levels, 

and serum albumin levels were significantly different 

between the patients with and without the primary 

endpoint (Table 1). Supplementary Figure 3 displays the 

comparisons of the included variables in the 0-month, 

6-month, and 12-month datasets. The plots of the three 

datasets showed similar differences in most of the 

included variables. 

 

Our three multivariable logistic models based on the three 

full datasets named model 0, model 1, and model 2 

showed that age (model 0: β (se) = 0.071 (0.013), p-value 

< 0.001; model 1: β (se) = 0.065 (0.013), p-value < 0.001; 

model 2: β (se) = 0.068 (0.013), p-value < 0.001) was a 

steadily significant risk factor for the primary outcome. In 

addition, the complication of CHD (model 0: β (se) 

=0.578 (0.272), p-value = 0.03; model 1: β (se) = 0.479 

(0.276), p-value = 0.08; model 2: β (se) = 0.462 (0.274), 

p-value = 0.09), serum albumin levels (model 0: β (se) = -

0.041 (0.029), p-value = 0.2; model 1: β (se) = -0.1 

(0.033), p-value = 0.003; model 2: β (se) = -0.117 (0.034), 

p-value = 0.001), and LDL-c levels (model 0: β (se) = 

0.514 (0.309), p-value = 0.1; model 1: β (se) = 0.87 

(0.412), p-value = 0.04; model 2: β (se) = 0.791 (0.36), p-

value = 0.03) were also significantly associated with the 

primary outcome in the different datasets (Table 2). 

 

We constructed 100 ANN classic models, 100 ANN 

mixed models, and 100 logistic models using the 0-

month dataset. The accuracy and loss function values 

per epoch are displayed in Supplementary Figure 4, and 

slight overfitting was observed in both the ANN classic 

model and ANN mixed model. ANN models with poor 

performance (i.e., AUROC values of less than 0.6) were 

filtered. According to the ROC curves, the logistic 

model showed better performance than the ANN 

models on the test dataset, but the ANN models fit more 

perfectly in the total dataset. Importantly, in the 6-

month and 12-month datasets, the ANN mixed model 

showed excellent performance compared with both the 

ANN classic model and logistic model, while the ANN 

classic model and logistic model showed similar 

performance outcomes (Figure 1). 

 

We calculated the accuracy, F1 score, precision, and 

recall of positive and negative predictions using a fixed 

threshold of 0.2 for the test datasets, total dataset (0-

month dataset), 6-month dataset, and 12-month dataset. 

The logistic model showed superior positive prediction 

in the test datasets compared with the ANN models 

(Figure 2A, 2B). However, the performance of the ANN 

models was significantly better than that of the logistic 

models when analyzing the total dataset (Figure 2C, 

2D). Furthermore, the ANN classic models fit the total 

dataset better than the ANN mixed models. The ANN 

mixed models performed excellently in predicting 

premature all-cause mortality compared with the 

logistic model and ANN classic model in our follow-up 

datasets (Figure 3). Notably, the positive prediction may 

be more important for clinical practice. The mean 

precision and recall for the positive prediction of the 

ANN mixed models were 0.44 (0.09) and 0.44 (0.1) in 

the 6-month dataset and 0.4 (0.07) and 0.39 (0.10) in the 

12-month dataset, respectively, but these values were 

significantly higher than those of the ANN classic 

models and logistic models (Table 3), consistent with 

the results of the ROC analysis. 
 

We identified age as an essential stable variable 

predicting death in patients treated with PD. The first 
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Table 1. Baseline characteristics of the included patients with CAPD. 

Characteristics 
All-cause premature mortality 

p-value 
No Yes 

Case (n) 777 82  

Age (years, median [IQR]) 48.0 [38.0, 58.0] 63.0 [54.0, 70.0] <0.001 

Male (n, %) 432 (55.6) 51 (62.2) 0.3 

SBP (mmHg, median [IQR]) 145.0 [132.0, 159.0] 148.0 [133.2, 164.0] 0.2 

DBP (mmHg, median [IQR]) 88.0 [78.0, 97.0] 79.0 [71.0, 91.5] <0.001 

Tg (mmol/L, median [IQR]) 1.6 [1.2, 2.1] 1.6 [1.2, 2.1] 0.9 

Tc (mmol/L, median [IQR]) 4.6 [3.9, 5.4] 4.8 [4.1, 5.5] 0.3 

LDL-c (mmol/L, median [IQR]) 2.5 [2.0, 3.1] 2.8 [2.2, 3.4] 0.01 

HDL-c (mmol/L, median [IQR]) 1.0 [0.9, 1.2] 1.0 [0.8, 1.2] 0.05 

Serum albumin (g/L, median [IQR]) 37.1 [33.5, 40.4] 35.1 [32.0, 39.0] 0.004 

Hemoglobin (g/L, median [IQR]) 95.0 [82.0, 108.0] 93.0 [81.2, 104.0] 0.2 

BUN (mmol/L, median [IQR]) 19.1 [13.9, 24.6] 18.8 [12.9, 24.8] 0.9 

SCR (μmol/L, median [IQR]) 646.0 [326.0, 888.0] 526.5 [306.2, 773.5] 0.05 

Serum calcium (mmol/L, median [IQR]) 2.2 [2.0, 2.3] 2.1 [2.0, 2.2] 0.3 

Serum phosphorus (mmol/L, median 

[IQR]) 
1.6 [1.3, 1.8] 1.5 [1.3, 1.8] 0.3 

iPTH (pg/mL, median [IQR]) 212.6 [108.4, 371.9] 181.6 [82.0, 309.4] 0.07 

Kt/V (median [IQR]) 1.9 [1.7, 2.2] 1.8 [1.6, 2.1] 0.1 

Diabetes (n, %) 176 (22.7) 37 (45.1) <0.001 

Hypertension (n, %) 619 (94.8) 78 (98.7) 0.2 

Chronic heart disease (n, %) 178 (22.9) 38 (46.3) <0.001 

Malignancy (n, %) 53 (6.8) 10 (12.2) 0.1 

Follow-up time (month, median [IQR]) 38.0 [16.0, 66.0] 40.5 [18.2, 59.8] 0.9 

SBP: systolic blood pressure; DBP: diastolic blood pressure; Tg: triglycerides; Tc: total cholesterol; LDL-c: low-density 
lipoprotein cholesterol; HDL-c: high-density lipoprotein cholesterol; BUN: urea nitrogen; SCR: serum creatinine; iPTH: intact 
parathyroid hormone. 

 

Table 2. Multivariable logistic regression models for the three full datasets. 

Variables 
Model 0 Model 1 Model 2 

β (se) p-value β (se) p-value β (se) p-value 

Age 0.071 (0.013) <0.001* 0.065 (0.013) <0.001* 0.068 (0.013) <0.001* 

CHD 0.578 (0.272) 0.03* 0.479 (0.276) 0.08 0.462 (0.274) 0.09 

DBP -0.014 (0.012) 0.2 -0.028 (0.015) 0.07 -0.026 (0.016) 0.1 

Diabetes 0.355 (0.294) 0.2 0.051 (0.305) 0.9 -0.023 (0.315) 0.9 

Malignancy 0.342 (0.416) 0.4 0.272 (0.416) 0.5 0.308 (0.411) 0.5 

Albumin -0.041 (0.029) 0.2 -0.1 (0.033) 0.003* -0.117 (0.034) 0.001* 

BUN 0 (0.024) 1 0.006 (0.028) 0.8 -0.015 (0.031) 0.6 

Ca 0.854 (0.682) 0.2 1.469 (0.876) 0.09 1.379 (0.87) 0.1 

SCR -0.001 (0.001) 0.2 -0.001 (0.001) 0.2 0 (0.001) 0.4 

Hb -0.014 (0.008) 0.09 -0.015 (0.009) 0.09 -0.013 (0.009) 0.2 

HDL-c -0.457 (0.562) 0.4 -0.162 (0.632) 0.8 0.345 (0.264) 0.2 

LDL-c 0.514 (0.309) 0.1 0.87 (0.412) 0.04* 0.791 (0.36) 0.03* 

P 0.478 (0.423) 0.3 0.343 (0.49) 0.5 0.488 (0.51) 0.3 

iPTH 0.054 (0.158) 0.7 0.061 (0.172) 0.7 0.12 (0.178) 0.5 



 

www.aging-us.com 14174 AGING 

Tc -0.134 (0.272) 0.6 -0.532 (0.364) 0.1 -0.554 (0.289) 0.06 

Tg -0.177 (0.192) 0.4 0.2 (0.216) 0.4 0.282 (0.173) 0.1 

SBP 0.012 (0.007) 0.1 0.014 (0.009) 0.1 0.015 (0.009) 0.1 

Sex 0.293 (0.291) 0.3 0.421 (0.318) 0.2 0.56 (0.321) 0.08 

Kt/V -0.259 (0.313) 0.4 0 (0.376) 1 0.124 (0.395) 0.8 

Model 0: 0-month datasets; Model 1: 6-month datasets; Model 2: 12-month datasets; iPTH: intact parathyroid hormone; SBP: 
systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; BMI: body mass index; RAAS: renin–
angiotensin–aldosterone system agents; CCBs: calcium channel blockers. 

 

 
 

Figure 1. ROC curves of selected models for predicting the primary outcome in different datasets. The dark solid lines indicate 

the median curve of the three types of models (ANN mixed model, ANN classic model, and logistic model). (A) Performance of selected 
models in the test dataset, (B) Performance of selected models in the total dataset, (C) Performance of selected models in the 6-month 
dataset, (D) Performance of selected models in the 12-month dataset. 
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Figure 2. Post hoc test of performance. (A) Performance of the models for the negative prediction in the test dataset; (B) performance 
of the models for the positive prediction in the test dataset; (C) performance of the models for the negative prediction in the total dataset; 
and (D) performance of the models for the positive prediction in the total dataset. The short bar indicates the difference in the mean value 
with a 95% confidence interval. 

 

 
 

Figure 3. Distribution of the performance outcomes of the models for the 6-month and 12-month datasets. (A) Performance of 

the models for the negative prediction in the 6-month dataset, (B) Performance of the models for the positive prediction in the 6-month 
dataset, (C) Performance of the models for the negative prediction in the 12-month dataset, (D) Performance of the models for the positive 
prediction in the 12-month dataset. 
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Table 3. Performance of the models in the follow-up datasets. 

Performance 

Negative prediction 

p-value 

Positive prediction 

p-value ANN mixed 

model 

ANN classic 

model 

Logistic 

model 

ANN mixed 

model 

ANN classic 

model 

Logistic 

model 

6-month         

Accuracy 0.89 (0.07) 0.85 (0.03) 
0.80 

(0.02) 
<0.001 0.89 (0.07) 0.85 (0.03) 

0.80 

(0.02) 
<0.001 

F1 score 0.93 (0.08) 0.92 (0.02) 
0.89 

(0.01) 
<0.001 0.43 (0.07) 0.05 (0.04) 

0.09 

(0.02) 
<0.001 

Precision 0.93 (0.08) 0.90 (0.00) 
0.90 

(0.00) 
<0.001 0.44 (0.09) 0.06 (0.04) 

0.08 

(0.02) 
<0.001 

Recall 0.93 (0.08) 0.93 (0.03) 
0.87 

(0.02) 
<0.001 0.44 (0.10) 0.05 (0.04) 

0.11 

(0.03) 
<0.001 

12-month         

Accuracy 0.88 (0.07) 0.85 (0.03) 
0.80 

(0.02) 
<0.001 0.88 (0.07) 0.85 (0.03) 

0.80 

(0.02) 
<0.001 

F1 score 0.93 (0.08) 0.92 (0.02) 
0.89 

(0.01) 
<0.001 0.39 (0.07) 0.05 (0.03) 

0.09 

(0.03) 
<0.001 

Precision 0.93 (0.08) 0.90 (0.00) 
0.90 

(0.00) 
<0.001 0.40 (0.07) 0.07 (0.04) 

0.08 

(0.02) 
<0.001 

Recall 0.93 (0.08) 0.93 (0.03) 
0.88 

(0.02) 
<0.001 0.39 (0.10) 0.05 (0.04) 

0.10 

(0.04) 
<0.001 

Values are presented as the means (SDs). 

three critical features in our ANN mixed model were 

age, DBP, and LDL-c levels. Furthermore, the features 

may exert negative effects (worse than noise) on the 

ANN classic models, indicating that the ANN classic 

model performed poorly on the 6-month and 12-month 

datasets (Figure 4). 

 

DISCUSSION 
 

According to our baseline dataset, the traditional risk 

factors age, diabetes, albumin level and cardiovascular 

disease were significantly different between the 

surviving patients and patients who experienced 

premature mortality, consistent with the findings of 

previous studies [25, 26]. Furthermore, DBP and LDL-c 

levels were also significantly different between the two 

groups. Our multivariable LR models based on the 

baseline, 6-month and 12-month datasets further 

confirmed that an older age combined with cardio-

vascular disease, lower serum albumin levels, and 

higher LDL-c levels were independent risk factors for 

premature mortality in patients receiving PD. 

 

Different performance outcomes of the LR models and 

ANN models for the test dataset and whole dataset were 

observed in our study. This difference may be attributed 

to the different algorithms used by LR and ANN. LR is 

a linear classification method, and its cost function is 

convex. Thus, it is guaranteed to find the global cost 

minimum [27, 28]. Although the ANN model is a 

nonlinear classification model and can fit perfectly to 

the training dataset, the cost function of a neural 

network is generally neither convex nor concave, and it 

easily falls into a local optimum [29]. Thus, the ANN 

model displayed an inferior performance compared to 

the LR model when analyzing a small sample but fit 

better in a large-scale population. 

 

Papadrakakis et al. found that the performance of the 

ANN model can be significantly improved by adjusting 

the network structure and hyperparameters of the model 

[30]. Our study developed a new structure for the ANN 

model, which was called the ANN mixed model. Our 

external validation of the follow-up dataset showed the 

predictive performance increased significantly using the 

ANN mixed model to analyze the 6-month and 12-

month datasets than using the LR model and ANN 

classic model. Thus, we considered that the ANN mixed 

model has a higher efficiency of generalization 

performance. However, the mean precision and recall 

for the positive prediction of the ANN mixed models in 

the 6-month and 12-month datasets was approximately 

40%, suggesting that our model might be insufficient to 

detect positive cases in an external dataset. One reason 

is the imbalanced category of premature all-cause 

mortality in our cohort, which significantly increased 

the difficulty of identifying the positive cases. 

Furthermore, the validation of the 6-month and 12-

month datasets included patients who had been 

receiving treatment, and the treatment significantly 
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affects the clinical characteristics of patients receiving 

PD, which potentially affected the prediction accuracy 

of our model.  

 

The classic studies constructing prediction models or 

identifying risk factors mostly included categorical 

and continuous variables simultaneously [25, 31–33]. 

Our study showed that the ANN classic and LR 

models, which were similar to the classic studies, 

were inaccurate in the 6-month and 12-month 

datasets. Burrett et al. considered that differences in 

the populations studied may have contributed to the

 

 
 

Figure 4. Permutation feature importance for the ANN models in the total dataset (0-month), 6-month dataset and  
12-month dataset. Higher positive values indicated greater importance of the model, and negative values may indicate that the feature is 
worse than noise. 



 

www.aging-us.com 14178 AGING 

loss of predictive power for the prognostic score [7]. 

We assumed that the significance of the scalar was 

different between categorical variables and continuous 

variables. The simultaneous inclusion of categorical 

and continuous variables in an identical vector space 

for fitting a model may increase overfitting and 

adversely affect the generalization performance. 

Based on our results, the construction of separate 

vector spaces for categorical and continuous variables 

in a model significantly improved the generalization 

performance. 

 

An ANN is a black-box model, and it does not easily 

display the relationship between features and outcomes 

[34]. We used a permutation feature importance 

analysis, which is used for interpreting the importance 

of variables in a model [35–37], to identify the 

important characteristics contributing to premature 

death. Importantly, age, DBP, and LDL-c levels were 

the top three important variables in the ANN mixed 

model. The LR models based on the 6-month and 12-

month datasets also showed that DBP and LDL-c levels 

were independent risk factors for premature all-cause 

death. Sakacı et al. also found that age is an independent 

risk factor for mortality in patients undergoing dialysis 

[38]. Although age is an unmodifiable variable, some 

age-related variables, such as nutritional status, can still 

be improved by better management [39]. Previous 

studies have mainly focused on the significance of SBP 

in patients with ESRD [40]. Our research identified 

DBP as a crucial risk factor for predicting death in 

patients undergoing PD and one of the most valuable 

variables in the ANN model. Lip et al. observed a 

reverse J-shaped relationship between DBP and death 

from cardiovascular events. Cardiovascular death was 

also the primary factor contributing to premature 

mortality in our patients receiving PD [31, 41]. 

Therefore, DBP should receive more attention in 

patients receiving PD during clinical practice. Lowering 

LDL-c levels can significantly improve the prognosis of 

patients with chronic kidney disease (CKD) stage 1-4, 

but researchers have not clearly determined whether it 

can improve the prognosis of patients with CKD5 or 

CKD5d [42–44]. Strict lipid control may also cause 

malnutrition in patients receiving dialysis, which is an 

important factor contributing to the death of patients 

receiving dialysis [45, 46]. LDL-c levels were closely 

related to the premature mortality of patients treated 

with PD in our study. As the life span of patients treated 

with dialysis increases, the effect of dyslipidemia on 

patients receiving PD cannot be ignored. Therefore, 

further studies of the role of lipids in patients 

undergoing PD are still necessary. 
 

Our research had some limitations. First, the study is 

based on a single center and a relatively insufficient 

sample size, which may contribute to overfitting and 

affect generalization performance. Although L1 and L2 

regularization were used during ANN training and 

follow-up datasets were used for external validation, the 

initial PD data must still be collected from other centers 

for external verification. Second, a few patients 

receiving PD withdrew during follow-up, and these 

patients may have died at home or in other departments 

but were not categorized into the premature mortality 

group, resulting in an endpoint determination bias 

affecting the accuracy of our model. Third, the 

proportion of patients with premature all-cause 

mortality is small in our cohort, leading to a significant 

imbalance in classification, which affects the detection 

power of our model. 
 

In summary, our study compared the value of traditional 

logistic models and ANNs in predicting all-cause 

mortality in patients treated with PD and showed that 

ANNs had incomparable advantages in fitting the 

overall data characteristics. Thus, a highly precise ANN 

model for the early prediction of premature all-cause 

mortality in patients receiving PD was established. Our 

study also showed the importance of DBP and LDL-c 

levels in predicting the premature all-cause mortality of 

patients receiving PD; thus, these factors should receive 

more attention during follow-up. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 

 

Supplementary Figure 1. Schematic diagram of the two types of neural networks. 
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Supplementary Figure 2. Diagram of the dataset segmentation process during model training. The 0-month dataset (also called 
the total dataset) was used for training the ANN and logistic models and separated into three datasets for model training. Training dataset: 
blue plus purple; validation dataset: purple plus orange; test dataset: green. 

 

 
 

Supplementary Figure 3. The different mean values of numerical variables between surviving and non-surviving patients. The 

short bar indicates the SD. *, **, and *** indicate p-values less than 0.05, 0.01, and 0.001, respectively. 
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Supplementary Figure 4. Changes in the accuracy and loss function values during the training process. (A) ANN classic models; 

(B) ANN mixed models. 


