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a b s t r a c t 

The human LINE-1 / L1 ORF2 protein is a multifunctional enzyme which plays a vital role in the life

cycle of the human L1 retrotransposon. The protein consists of an endonuclease domain, followed by a

central reverse transcriptase domain and a carboxy-terminal C-domain with unknown function. Here,

we explore the nucleic acid binding properties of the 180-amino acid carboxy-terminal segment (CTS)

of the human L1 ORF2p in vitro . In a series of experiments involving gel shift assay, we demonstrate

that the CTS of L1 ORF2p binds RNA in non-sequence-specific manner. Finally, we report that mutations

destroying the putative Zn-knuckle structure of the protein do not significantly affect the level of RNA

binding and discuss the possible functional role of the CTS in L1 retrotransposition. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Long Interspersed Nuclear Element-1 (LINE-1) or L1 elements are

active members of an autonomous family of non-LTR retrotrans-

posons and comprise up to 17% of the human genome. The major-

ity are inactive due to mutations, truncations and recombination, but

about one hundred copies are retrotransposition-competent [ 1 ]. 

Full-length human L1 elements are about 6 kb long and contain

two non-overlapping open reading frames (ORFs) encoding essential

proteins for its re-integration into the genome. The ORF1 encodes

a 40 kDa RNA-binding protein, which associates with L1 RNA [ 2 ]

and functions as a chaperone [ 3 , 4 ]. The product of ORF2 is a 149

kDa multifunctional polymerase with endonuclease [ 5 , 6 ], RNA- and

DNA-dependent DNA polymerase activities [ 7 , 8 ]. L1 ORF2p reverse

transcriptase (RT) is a highly processive polymerase unlike retroviral

RTs [ 9 ]. It seems that both proteins interact with their own L1 RNA in

a cis preference manner [ 10 ] forming ribonucleic acid particles (RNP)

that are probable intermediates of retrotransposition [ 11 –13 ]. It has

been proposed that the L1 ORF2 protein uses nicked DNA as a primer

to initiate cDNA synthesis on the RNA template in a target-primed

reverse transcription (TPRT) reaction [ 14 ] originally demonstrated for

the reverse transcriptase encoded by the non-LTR retrotransposon R2
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element from Bombyx mori [ 15 ]. 

The L1 ORF2 polypeptide forms an AP-like endonuclease (EN) do-

main at the N-terminus, then an RT domain followed by the cysteine-

rich carboxy-terminal part, the C-domain [ 16 ], which contains a pu-

tative CCHC zinc knuckle structure. The EN, RT and C-domain are

essential for successful L1 retrotransposition [ 17 ]. Thus, mutation of

the C-domain zinc finger severely affects the retrotransposition fre-

quency of L1 elements in the cell culture-based retrotransposition

assay [ 17 –19 ], reduction in the content of ORF2p in RNP and dra-

matic decrease in RT activity in L1 RNP as well as disperse nuclear

localization of L1 RNP [ 13 ]. However the function of the C-domain,

particularly the putative CCHC zinc knuckle structure remains un-

clear. Unlike retroviral RTs, where one third of their polypeptide chain

at the C-terminus is reserved with an RNaseH domain [ 20 ], the long

C-terminal portion of human L1 ORF2p bears neither sequence sim-

ilarities [ 21 , 22 ] nor activities [ 9 ] corresponding to RNase H. Thus, an

elucidation of C-domain function in L1 retrotransposition is of great

interest. 

We have previously demonstrated that human L1 RT (L1 ORF2p)

is a highly processive polymerase, able to incorporate hundreds of

nucleotides per template binding event [ 9 ]. At that time, we hypoth-

esized that L1 ORF2p C-domain, enriched with basic amino acid (aa)

residues, was able to provide a more stable interaction of the L1 RT

with L1 mRNA during DNA synthesis, and contributed to high proces-

sivity of L1 RT in vitro . 

In the research presented here, we have examined the nucleic acid

binding activity of a distal 180 aa C-terminal portion of L1 ORF2 pro-

tein, namely the carboxy-terminal segment (CTS). L1 ORF2p CTS was

expressed individually in bacteria followed by its purification and
f European Biochemical Societies. All rights reserved. 
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xamination of nucleic acid binding properties in a series of experi- 

ents involving gel shift assay with wild type CTS and its mutant form 

arrying aa substitutions disrupting CCHC zinc knuckle structure. We 

ave demonstrated that L1 ORF2p CTS has a high non-specific affinity 

o RNA in the nanomolar range. 

This data allowed us to suggest that the carboxy-terminal seg- 

ent provides high processivity for L1 ORF2p reverse transcriptase 

n comparison with that of retroviral RTs. Furthermore, non-specific 

NA-binding activity of L1 ORF2p CTS may contribute to both cis - 

reference of L1 ORF2 protein to its own RNA, and a move of non 

utonomous mobile elements. 

. Materials and methods 

pSM42, containing the ORF2 of the active human L1 element LRE1, 

as a gift from Prof. H. Kazazian. The numbering of the L1.2 sequence 

s that of Genbank: M80343 . 

A polypeptide sequence of the ORF2 protein from 1096 to 1275 aa 

as cloned as a fusion with thioredoxin (TRX). For this purpose, a 

.54 kb fragment of ORF2 corresponding to the 180 aa sequence was 

mplified with PCR using primers listed in Supplementary data SD1 ; 

nd ligated into pET32b (Novagen) within EcoRI and XhoI sites. The 

esulting plasmid pET-TRX-CTS coded for a fusion of TRX and a C- 

erminal 21.3 kDa polypeptide of L1 ORF2p, referred as rCTS. 

Additional materials and methods including protein expression 

nd purification, protein analysis, RNA and DNA template synthesis, 

lectrophoretic mobility shift assay and statistics are detailed in SD1 . 

. Results 

.1. Purification of recombinant carboxy-terminal segment of L1 ORF2p 

Human L1 ORF2p is 149 kDa multifunctional enzyme comprising 

f distinguished domains: EN and RT, both of which may contribute 

o nucleic acid binding activity ( Fig. 1 A). Therefore, we decided that 

ndividual domain characterization would be the preferred option. In 

his manner EN has been successfully expressed, purified and char- 

cterized [ 5 ]. The exact boundaries of the RT domain and C-domain 

re not yet defined, but the localization of the putative Zinc knuckle 

tructure is predicted. Therefore, the cystein-rich carboxy-terminal 

olypeptide sequence of L1 ORF2 was analyzed for prediction of RNA 

inding residues / motifs using the packages BindN [ 23 ] and RNABindR 

 24 ]. Results of this prediction demonstrated a cluster distribution of 

NA binding residues in the C-domain of the protein ( Fig. 1 B). Taking 

nto consideration both the aa distribution and the C-domain size, 

ne would suggest a subdomain organization of the C-domain. 

The distal C-terminal polypeptide sequence of the ORF2 protein 

1096–1275 aa) containing both the putative Zn-knuckle structure 

nd multiple predicted RNA binding residues was selected and re- 

erred to as CTS (carboxy-terminal segment) ( Fig. 1 C). L1 ORF2p CTS 

as inserted into pET32b plasmid DNA resulting in a fusion protein 

f ≈40 kDa. This recombinant protein, referred to as rCTS, is fusion 

rotein of CTS with TRX and flanked with 6 His tag. 

rCTS was expressed in soluble form and purified using metal affin- 

ty chromatography to near homogeneity ( Fig. 1 C) as detailed in 

upplementary material (SD1) . The integrity and the concentration 

f all recombinant proteins were verified by Silver staining gel and 

ierce BSA protein assay, respectively. 

.2. The CTS of L1 ORF2p is an RNA binding domain 

Wild type rCTS was used for studying CTS–nucleic acid (NA) inter- 

ctions. This C-terminal region of L1 ORF2p has a potential Zn-knuckle 

tructure as well as being rich in basic aa residues; about 14% of the 

otal aa are either lysines or arginines, and the overall pI value of CTS 

s 9.1. 
To examine the hypothesis that CTS is a nucleic acid binding do- 

main within L1 ORF2p, we performed an electrophoretic mobility 

shift assay (EMSA) using various templates, dsDNA and ssRNA. The 

complex rCTS:NA was observed only in the presence of RNA as tem- 

plate in physiological concentrations of monovalent cation and pH 

( Fig. 2 A) demonstrating that CTS has RNA binding activity. 

3.3. The CTS of L1 ORF2p has a high non-sequence specific affinity to 

RNA 

The binding affinity of CTS to ssRNA was analyzed by EMSA. In 

this experiment, a known amount of rCTS was titrated into a con- 

stant amount of tested RNA. To exclude a contribution of TRX or 6 

Histag into RNA binding, we performed a control EMSA reaction in 

the presence of the purified TRX-6Histag-Stag-6Histag at the same 

conditions ( Fig. 2 B). In order to assess the percentage of RNA bind- 

ing, band intensities were measured by densitometric scanning of 

unbound and bound RNA. The Kd value for binding of rCTS to RNA 

is apparently in the nanomolar range as could be visualized from 

the binding pattern on Fig. 2 B. Based on the amount of free RNA in 

each lane, the dissociation constant value for rCTS bound to RNA ap- 

pears in the range of 50–100 nM. We also examined RNA binding by 

rCTS applying the Hill binding model. The Hill coefficient was cal- 

culated by fitting a non-linear least squares regression model to the 

experimental data points using the GraphPad Prism 4 software ( Fig. 

2 C). The best fit value for the Hill coefficient was 1.5, suggesting that 

more than one rCTS molecule bound to RNA under the experimental 

conditions. The apparent dissociation constant was calculated to be 

Kd = 63 nM. A discrete oligomerization of rCTS was observed when 

amounts of RNA and rCTS were increased in the reaction ( SD1 ). The 

size of RNA tested, the presence of more than one binding site on 

RNA molecule and protein–protein interactions could contribute to 

multiply non-specific binding. 

To study the RNA-binding specificity of rCTS, we replaced the 

3 ′ UTR L1 RNA in the binding assay with different RNA fragments 

in the size range of 100–500 nt, which were derived from the dif- 

ferent locations within the L1 3 ′ UTR and the pET32b plasmid DNA. 

We found that each of these RNA fragments had a CTS binding profile 

similar to that of the full length 3 ′ UTR of L1 RNA (data not shown). 

These results demonstrated that CTS has a high affinity to RNA and 

possesses a broad RNA-binding specificity. The minimal size of RNA 

bound to rCTS was 100 nt under given experimental conditions. 

Thus, the C-terminal sequence (1096–1275 aa) of L1 ORF2p binds 

to RNA with high affinity but without apparent sequence specificity 

in vitro . 

3.4. The Zn-knuckle structure does not affect the RNA binding affinity 

level of the CTS of L1 ORF2p 

To evaluate the contribution of the Zn-knuckle structure to the 

RNA binding affinity of CTS, four Cys in its aa sequence were replaced 

by Ser ( Fig. 1 C) using the GeneTailor mutagenesis system. This mutant 

form of CTS was expressed and purified as described above ( Fig. 1 C, 

SD1 ). We hypothesized that if Zn-knuckle structure affects RNA bind- 

ing, then no binding by rCTS-mut will be detected at the observed Kd 

for rCTS. The RNA binding of rCTS-mut was tested in EMSA under the 

same conditions as wild type rCTS and both purified rCTS-mut and 

rCTS at ∼70 nM were incubated with same amount of 380 nt RNA ( Fig. 

2 D). No significant loss in RNA binding activity was observed. These 

results demonstrated that the Zn-knuckle structure does not affect 

the RNA binding affinity level by CTS of L1 ORF2p. Unfortunately, we 

were not able to register any specific interactions of L1 ORF2p with 

L1 RNA, probably due to low sensitivity of the technique. 

ncbi-n:M80343
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Fig. 1. (A) Schematic representation of the full length polypeptide encoded by human L1 ORF2 (aa numbering according to GenBank sequence M80343 ). The endonuclease domain, 

(EN), reverse transcriptase, (RT), and the 180 aa carboxy-terminal segment (CTS) are shown. The putative Zn-knuckle structure is marked by a red pin within the CTS. (B)The 

results of the BindN [ 23 ] and RNABindR [ 24 ] prediction software for the 180 aa CTS polypeptide. The black and blue asterisks indicate predicted RNA-binding amino acid residues 

identified with the BindN and RNABindR, respectively. The putative Zn-knuckle sequence is in red. (C) Schematic diagrams of expression plasmids (left). SDS–PAGE of the purified 

recombinant fusion proteins containing CTS (rCTS, 40 kDa) visualized by silver staining (right). The Zn-knuckle sequence and aa substitutions are presented. The position of 6His 

tags is indicated. Theoredoxin, TRX, lysate, L, wild type of rCTS, WT, Zn finger mutant form of rCTS, Mut. 

Fig. 2. (A) Determination of rCTS binding specificity in physiological conditions using EMSA with various templates, dsDNA and ssRNA. The complex(es) rCTS:NA was observed 

only in the presence of RNA as template. (The molar ratio of protein:NA in reaction mix was similar.) (B) Determination of the binding affinity of rCTS to ssRNA. The concentration 

of rCTS was in the range 0–150 nM, whilst the amount of 380 nt RNA was constant at 30nM. The complexes RNA:protein and free probes are marked. An excess of purified TRX was 

used in a control EMSA reaction to eliminate any contribution of TRX into NA binding. pET32b (Novagen) was used to express TRX which consists of TRX-6Histag-Stag-6Histag. 

RNA markers, M. (C) Examination of the RNA binding by rCTS using the Hill model. The data are plotted as the fraction of bound RNA versus molar concentration of rCTS. The Hill 

coefficient and Kd were calculated by fitting a non-linear least squares regression model to the experimental data points using the GraphPad Prism 4 software. The Hill coefficient 

was 1.5, the apparent Kd was 63 nM. (D) Evaluation of contribution of Zn-knuckle structure on the RNA binding properties of CTS. EMSA was performed with wt and mutant form 

of rCTS ( ∼70 nM) in the presence of the same amount of 380 nt RNA. 
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. Discussion 

In the present work, we have further elucidated the properties of 

he carboxy-terminal segment of the L1 ORF2 protein. In a series of 

xperiments involving gel shift assay with a recombinant CTS and dif- 

erent nucleic acid templates, we demonstrated that the C-terminal 

80 residues of L1 ORF2p are sufficient for a strong interaction with 

NA in vitro, in an apparently non-specific manner. This RNA binding 

as cooperative and saturable, with an apparent dissociation con- 

tant of the low nanomolar range ( Fig. 2 B and C). Several factors 

ould contribute to this observation: the size of the RNA molecule, a 

on-specific RNA binding activity of rCTS and / or protein–protein in- 

eractions. Importantly, comparable high affinity has been observed 

or mouse L1 ORF1 protein, which binds RNA with nanomolar affinity 

nd little regard for nucleotide sequence in physiological concentra- 

ions of monovalent cation [ 4 ]. 

The high affinity of L1 ORF2p CTS to RNA suggests that it may 

lay an important role in cDNA synthesis, nucleic acid interactions 

nd in the formation of L1 RNP. We have previously demonstrated 

hat L1 ORF2p reverse transcriptase alone is able to polymerize hun- 

reds of nucleotides per template binding event and hypothesized 

hat the unique positively charged C-domain of L1 ORF2 protein may 

e responsible for this phenomenon [ 9 ]. Such an intrinsic domain can 

rovide a tight, but flexible binding with template, promoting long 

hain DNA synthesis without accessory proteins [ 25 ]. RNA-binding 

roperties of CTS make it an attractive candidate for the role of an in- 

ramolecular processivity factor of L1 RT. Moreover, the RNA binding 

ctivity of L1 ORF2p CTS may also protect L1 RNA, stabilize L1 RNA- 

arget primer complex and facilitate the first steps in TPRT during 

ntegration of L1 element into host genome. 

At the same time our data suggest that the RNA-binding C- 

erminus of L1 ORF2p is liable for the cis -preference of the protein 

o its own RNA [ 10 , 26 ], as well as formation of an L1 ribonucleo- 

rotein particle [ 11 , 13 ]. Apparently, the newly translated L1 ORF2 

rotein immediately binds to a native template with its high affin- 

ty C-terminal tail. One could not exclude that, not only non-specific 

inding occurs but also specific interactions of L1 ORF2p with cis -sites 

f L1 template. However, in our experiments with the L1 3 ′ UTR RNA 

ragment, such binding either masked by non-specific interaction or 

is -sites are not presented. It is also possible that CTS within the full 

ength ORF2p can bind L1 RNA in a sequence-specific manner. 

Finally, non-specific RNA-binding activity of L1 ORF2p CTS is most 

ikely involved in a move of non-autonomous mobile elements, such 

s Alu and SVAs. These elements lack RT-encoded sequences and uti- 

ize RT activities provided by autonomous retrotransposons for their 

ransposition. It is believed that Alu and SVA elements are mobi- 

ized by the L1 retrotransposition machinery via the TPRT mechanism 

 27 , 28 ]. The RNA-binding CTS of L1 ORF2p may directly participate 

n this process, capturing distant transcripts of non-autonomous ele- 

ents for subsequent reverse transcription and insertion in the host 

enome. 

We found no evidence for contribution of the Zn-knuckle struc- 

ure in RNA recognition and binding. This is possible explained by the 

on-specific nature of electrostatic interactions between the basic 

esidues of CTS involved and the RNA phosphate groups. Therefore, 

utations in the CTS destroying the Zn-knuckle structure, did not 

ignificantly affect the affinity level to RNA because non-specific in- 

eractions occurred even in the absence of the Zn-knuckle structure. 

Taking into consideration our data and the results of the cell 

ulture-based retrotransposition assay where mutation of the zinc 

nuckle structure resulted in considerably decrease of L1 retrotrans- 

osition rates [ 17 –19 ], diffuse nuclear localization of L1 RNP, reduced 

ontent of ORF2p in RNP and consequently a decrease in RT activity in 

1 RNP [ 13 ], we would speculate that this structure may be primarily 

esponsible for the specific protein–protein and cis -sites interactions 
s well as L1 RNP formation. 
In conclusion, our report demonstrates for the first time RNA bind- 

ing features of the CTS domain of the human L1 ORF2 protein. We hy- 

pothesise that the observed non-specific binding to RNA by the CTS 

domain is due to electrostatic interactions between the positively 

charged amino acid residues within this domain and the phosphate 

groups of the RNA. Without knowing the exact structure of the CTS, 

it is difficult to explain its interaction with RNA in a non-sequence 

specific manner and lack of binding with dsDNA. Thus, it would be 

very interesting to clarify the architecture of CTS, and the nature of 

its interaction with nucleic acids. 
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