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Accurate malaria diagnosis is critical to prevent malaria fatalities, curb overuse of anti-
malarial drugs, and promote appropriate management of other causes of fever. While 
several diagnostic tests exist, the need for a rapid and highly accurate malaria assay 
remains. Microscopy and rapid diagnostic tests are the main diagnostic modalities avail-
able, yet they can demonstrate poor performance and accuracy. Automated microscopy 
platforms have the potential to significantly improve and standardize malaria diagnosis. 
Based on image recognition and machine learning algorithms, these systems maintain 
the benefits of light microscopy and provide improvements such as quicker scanning 
time, greater scanning area, and increased consistency brought by automation. While 
these applications have been in development for over a decade, recently several com-
mercial platforms have emerged. In this review, we discuss the most advanced computer 
vision malaria diagnostic technologies and investigate several of their features which 
are central to field use. Additionally, we discuss the technological and policy barriers to 
implementing these technologies in low-resource settings world-wide.
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BACKGROUND

Despite the availability of low-cost treatments, malaria caused 429,000 deaths in 2015 (1). While 
several diagnostic modalities exist for assessing malaria infection, a test with improved accuracy, bet-
ter ease of use and speed would greatly benefit patients and clinicians. Deficiencies in the quality of 
test parameters (sensitivity and specificity) lead to misdiagnosis and under-treatment. Furthermore, 
shortcomings in the convenience and availability of testing lead to proliferation of the disease and 
over-treatment yielding parasite resistance. To combat the dangers of empiric treatment, several 
governmental health organizations now require malaria testing prior to the use of anti-malarial 
drugs, prompting a rise in demand to 500 million malaria tests in 2012 (2).

Quality assured human microscopy is considered the gold standard for clinical malaria diagnosis 
by the World Health Organization due to its ready availability. However, it is plagued by inter-user 
variability and inconsistency: many microscopy technicians do not assess the standard number of 
high-power fields, are not well-trained to recognize all forms of malaria, and the quality of manual 
Giemsa slide production can be highly variable (3). When compared with PCR in an asymptomatic 
population, human microscopy grossly underestimates the prevalence of infection (4, 5). When 
compared with an expert microscopist or highly accurate rapid diagnostic test (RDT), typical field 
microscopists can have accuracies ranging from 45 to 60% (6, 7). Moreover, in many locations there 
is a lack of trained microscopy experts able to conduct and implement quality assurance (8).

Automated microscopy using computer vision technologies aims to obviate the need for human 
microscopists by providing a consistent and accurate diagnosis without human analysis. These 
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systems present a significant advantage over a human microsco-
pist by potentially removing the need for training for blood film 
interpretation (or preparation), reducing the turnaround time, 
and significantly improving diagnostic performance. Further-
more, automated microscopy would maintain the benefits of 
microscopy over RDT by providing full species determination 
and parasite quantitation.

Over the last 15 years, numerous efforts have been made by 
both academic and industry groups to produce a fully integrated 
and highly accurate malaria diagnostic automated microscopy 
platform (9–14). A complete automated microscopy platform for 
malaria diagnosis is comprised of three interdependent elements: 
sample preparation, digital microscopy with automated scan-
ning, and a computer vision algorithm to analyze the captured 
images. Previous reviews on automated microscopy for malaria 
have explored technical aspects relating to image analysis and 
acquisition. In this review, we analyze considerations involved 
in field application by investigating ease of sample preparation, 
portability, diagnostic parameters, accuracy, and limit of detec-
tion (LOD). Specifically, we discuss systems that are sufficiently 
developed for clinical use and have performed a trial on human 
malaria samples collected in the field.

SAMPLe PRePARATiON

The standard protocol for malaria microscopy uses Giemsa stain 
to identify parasites in peripheral blood films. While Giemsa 
staining produces a very clear malaria stain, the protocol is ardu-
ous, requiring smearing the blood correctly, a short immersion in 
methanol, followed by a longer immersion (usually 10–45 min) 
in Giemsa solution. The slide is then washed and dried, often 
requiring an hour or more to complete. Factors such as the pH of 
the water used and quality of Giemsa stain are critical (15).

Many automated microscopy systems have built their platforms 
around Giemsa staining (16–18). While this approach adapts to 
the current laboratory standard, it poses significant challenges for 
the algorithm construction as technicians use different staining 
protocols and reagents, yielding disparate images. One system, 
studied by Delahunt et al. (19), used Giemsa slides prepared at 
seven different locations to create a varied library of images to 
train the machine-learning based algorithm, aiming to reduce the 
impact of variable stain quality. This approach enables the reten-
tion of current low-cost staining techniques, but poses greater 
challenges in algorithm development and its accuracy will remain 
somewhat dependent on the quality of the technician-prepared 
blood film.

In contrast, several systems have used fluorescent stains to 
yield greater diagnostic accuracy due to lower stain variability 
and higher contrast intensity. The use of a fluorescent dye also 
provides for a quicker sample preparation process, as live fluores-
cent stains can occur in less than 1 min (versus the much longer 
process described above). The Cellscope, developed by Partek 
(20), uses a UV-excited fluorescent stain. Alternatively Vink 
et al. used Acridine Orange, a quick acting, and already proven 
fluorescent stain (21). Indeed, Guy et al. (22) provide an extensive 
assessment of fluorescent dye staining of Plasmodium falciparum 
by assessing 22 fluorescent nucleic acid specific dyes, as well as 

their capability for co-stain with Giemsa. They determined Syber 
Green 1 to be the superior overall fluorescent stain in terms of 
both co-staining and intensity. The SYTO family of dyes also 
excelled in its capacity to stain cultured malaria positive red 
blood cells (RBCs). Additional fluorescent-based systems have 
used a dye combination to achieve accurate staining such as the 
Parasight system which makes use of multiple dyes in the 370 and 
475 nm excitation imaging ranges (23–25).

Notably when using fluorescent staining, custom design slide 
carriers were also required for each of these units to accommo-
date the live intra-vital staining process. Carrier types include 
both one-step microfluidic cartridges that internally stain whole 
blood samples, as well multi-step units where the blood mixed 
with a diluent, transferred via pipette, and then automatically 
dispersed. While microfluidic cartridges provide an advantage by 
potentially creating a one-step staining process, they significantly 
increase design and manufacturing cost.

PORTABiLiTY

When assessing the viability of the automated microscopy 
malaria diagnostic systems, portability remains a significant fac-
tor. Diagnosis needs to be accessible near the patient, ideally at 
the point of care, as rapid identification, and treatment is critical 
to successful disease management (26, 27). Such access has been 
made feasible in recent years for remote populations where 
malaria is often prevalent, through the advent of RDTs. Indeed, 
RDTs are extremely useful in remote locations as they do not 
require electricity, are handheld, and require minimal training. 
Microscopy requires lab space for staining, a large electricity-
powered microscope, and trained personnel. However, it remains 
a staple of diagnosis in large clinic settings, where the throughput 
of patients is high and species and parasite burden quantification 
matter. The use of portable battery-powered digital microscopes 
would obviate the need for technicians and some lab space, but 
simplified sample preparation such as self-staining slides are 
required to take to more remote areas at scale.

Potential power sources for an automated microscopy system 
include battery packs or solar energy. The Cyscope, which is an 
upright microscope, uses a rechargeable battery pack. Currently, 
there are no automated malaria microscopes with a portable 
power source. However, precedence for such devices exists; sev-
eral CD4+ T cell devices used in the treatment of HIV such as the 
BD FACSPresto and Alere Pima can be powered by battery packs 
that last for approximately 6 h.

To reduce the power demands and add mobility to automated 
microscopes, several studies have focused on portable malaria 
diagnostic microscopes using mobile phone systems. An early 
system used a 20× wide field microscope with a white LED light 
source to illuminate brightfield images on Giemsa stain slides 
(28). Recent studies have updated the methodology by using 
polarized white light microscopy. Pirnstill and Coté have shown 
the ability to visualize Giemsa stained blood smears at a 40× 
objective with an iPhone (29). A second, already commercialized, 
system for smartphone microscopy is the X-rapid system, which 
is an LED and 10× lens attachment to a typical smart phone (30). 
The volume scanned is set by the user by the number of high 
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power fields, RBCs, or WBCs. Additional data will be required to 
assess whether these systems could replace RDTs or high quality 
microscopy in the future.

DeviCe LiMiT Of DeTeCTiON

Studies have shown that the LOD for microscopy and RDTs 
range between 100 and 500 parasites/μL of blood depending 
on the technician and brand of RDT (31, 32). On the other end 
of the spectrum, PCR assays have been reported to have LOD’s 
in the range of 1–5 parasites/μL (33, 34). Improving the LOD 
for malaria diagnostic assays has been set as a primary goal by 
the WHO for next generation of malaria diagnostic systems. In 
a recent evidence review group, it was suggested that a system 
able to detect infections of 2 parasites/μL is highly desirable 
to identify asymptomatic patients (35). Furthermore, in the 
context of population screening in areas with low prevalence, 
evaluations have shown that test with an LOD of 1–2 parasites/μL 
could potentially double detection rates compared with RDTs 
or microscopy (4, 5). Recent studies have confirmed the need 
for detecting very low levels of infection, showing that that in 
certain populations between 20 and 50% all infections could be 
sub-microscopic (36, 37).

An important value proposition of computer vision systems is 
the potential to significantly lower the LOD. The LOD is a func-
tion of the total volume of blood scanned, since in malaria cases 
with low parasitemia, infected RBCs are rare. While a standard 
microscopist aims to scan approximately 10,000 erythrocytes at 
high resolution on a thin smear, automated microscopes have the 
potential to scan an entire blood film (~2 μL which is ~10,000,00 
RBCs) with speed determined by image magnification, acquisi-
tion, and processing speeds. One of the earliest computer vision 
automated microscopists, the World Health Technology autoana-
lyzer (16) reported on a prototype system with an estimated lim-
ited of detection of 140 parasites/μL. These results were produced 
using a platform that scanned with a 40× objective and recorded 
800 high powered fields in 5 min. Recently, a Global Good Fund 
prototype showed an LOD in the range of 100 parasites/μL for  
P. falciparum while scanning 0.2 μL of blood.

While these two platforms use giemsa smear preparations, 
platforms based on fluorescent stains are also able to provide low 
LODs. A platform designed by Vink et al. using a live intra-vital 
cartridge stain is capable of analyzing 0.47 μL of blood, potentially 
analyzing 2.5 million RBCs, and yielding a projected LOD of 10 
parasites/μL within 15  min (21). A second fluorescent system, 
the Parasight malaria detection device, showed an LOD of under 
100 parasites/μL (25). Limits of detection on these devices should 
reduce with further algorithm development, though the LOD will 
eventually be limited by the noise floor caused by artifacts from 
film preparation and staining.

DeviCe PARAMeTeRS  
AND PeRfORMANCe

Standard microscopy for malaria diagnosis provides species dif-
ferentiation, parasite density, and identification of gametocytes, at 

a range of accuracy dependent on the quality of the film, and the 
microscope and the proficiency of the microscopist (38–41). All 
three of these pieces of data are helpful to make accurate clinical 
treatment decisions (42, 43). Specifically, different species are 
treated with different anti-malarial drugs, while high parasite 
densities can indicate the need for emergency treatment and 
hospitalization, and the presence of gametocytes is important 
when looking to understand drug effects and transmission 
patterns. Besides microscopy, all other modalities cannot pro-
vide all of these parameters. RDTs provide diagnosis through 
detection of parasite-derived antigens with overall performance 
generally better for P. falciparum than P. vivax (44, 45). P. ovale or  
P. malariae are moderately differentiated by some RDTs. No RDTs 
can provide parasite density or identification of gametocytes. 
PCR-based technologies provide highly accurate diagnosis and 
species differentiation, and can be quantitative, but cannot iden-
tify gametocytes.

A computer vision system should be able to offer these three 
features. However, given the rarity of some malaria type cells, 
assembling the proper database to train the algorithm is chal-
lenging. For example, while P. falciparum and P. vivax are found 
in numerous locations throughout the world, P. ovale comprises 
approximately 5% of all cases (46), and P. malariae is even 
scarcer (47). Extensive and targeted data collections are therefore 
required to construct a computer vision platform that can provide 
classification for all types of malaria. An additional feature that 
automated microscopy and human microscopy may offer that 
these other options lack is the ability to catch basic hematologic 
abnormalities such as severe sickling, high numbers of blast cells, 
or an abnormal white cell differential.

Where routine Giemsa-stained slides are used, variations in 
staining (and in film thickness) can add further challenges which 
must be dealt with in distinguishing parasite and hematological 
features. This requires large libraries of films to be developed 
incorporating the full cross-section of such variation. This is 
dealt with in some systems using alternative staining techniques 
(fluorescence) or by the use of self-spreading and self-staining 
slides, but this has not been achieved with Romanowski-type 
stains (of which Giemsa is the most common). The problem of 
slide quality is a handicap of systems aimed at reading routine 
malaria blood films using classical smears, and the advantages of 
low-sample preparation cost and reduced workflow change are 
weighed against the laboratory skills and capacity required.

DiSCUSSiON

Computer vision malaria diagnostic systems have moved from 
early stage research applications to mature commercial platforms 
that are now available in diagnostic laboratories. Initial novel 
microscopy applications using fluorescent dyes that did not 
provide a final diagnosis (such as QBC and Cyscope) succeeded 
in reaching the market, yet did not achieve wide acceptance, 
potentially since the human microscopist was still needed for 
verification. Moreover, they are not stand-alone systems and 
still require several pieces of ancillary equipment for operation. 
The automated microscopy computer vision systems discussed 
in this review (see Table  1 for summary), remove the human 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


TABLe 1 | Summary of advance computer vision systems discussed in this review.

wHT Automatic vision-based system Autoscope Parasight Automated diagnostic app

Developer Hydas World Health Philips Group Global Good Sight Diagnostics X-Rapid
Portable No No No No Yes
Stain type Giemsa Fluorescent Giemsa Fluorescent Giemsa
Automated scanning No Yes Yes Yes No
Scanning time 5 min 15 min 20 min 4 min Depends
Commercially available No No No Yes Yes
Publication Prescott et al. (16) Vink et al. (21) Delahunt et al. (19) Eshel et al. (25) NA
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microscopist from the process and sometimes offer greatly sim-
plified sample preparation.

The systems mentioned here are designed around either exist-
ing (giemsa smear) or novel sample preparation setups (cartridge 
and fluorescent stain) which produce differing target perfor-
mance parameters. The stated consensus among all the systems 
is to achieve an LOD under 150 parasites/μL. This LOD would 
parallel the performance of the above average field microscopist 
and would offer the advantage of having a consistent automated 
technology that is available without issues of fatigue or retrain-
ing. Achieving detection at <5  p/μL remains challenging due 
to the small amount of blood analyzed by all of these platforms 
(<1  μL) and the presence of parasite like objects in the blood 
including Howell–Jolly bodies, platelets on RBCs, and staining 
debris. Critical to confirming the performance of these systems 
will be large scale multi-site studies to validate the technologies 
in a range of epidemiological settings.

A commercial computer vision malaria diagnostic device 
would also benefit from additional assays to create a multiplexed 
platform. Computer vision systems for Tuberculosis have previ-
ously been developed (48–50). The TBDx system by applied visual 
sciences uses proprietary algorithms to detect and count acid 
fast bacilli at 40× magnification. Digital cytology systems have 
been extensively used in screening for cervical cancer (51, 52).  
Combining these particular tests into a unified platform would 
provide a particularly attractive device in developing world 
settings where these diseases are highly prevalent and poorly 
diagnosed.

Widespread adoption of digital microscopy and computer-
aided will require adequate demonstration of excellent perfor-
mance, regulatory acceptability, and significant ease of use. Some 
devices, such as Parasight and X-Rapid have already found a 
commercial market. Automated microscopy has the additional 
advantage of often providing images to clinicians, disambiguating 
what might otherwise feel like a black box diagnostic technique. 
With the case of malaria, the use of manual microscopy has 
retained a place despite frequent poor performance partly due 
to habit and tradition, but largely because it offers transparency 
and clinically relevant information that other techniques lack. If 
emerging digital systems can overcome the failings of manual 
systems while retaining their benefits, they should be able to grow 
the microscopy market.
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