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Machine deep learning accurately detects endoleak after

endovascular abdominal aortic aneurysm repair

Sage Hahn, BA,a Mark Perry, MD,b Christopher S. Morris, MD,c Safwan Wshah, PhD,d and

Daniel J. Bertges, MD,b Burlington, Vt
ABSTRACT
Objective: The objective of this study was to develop a machine deep learning algorithm for endoleak detection and
measurement of aneurysm diameter, area, and volume from computed tomography angiography (CTA).

Methods: Digital Imaging and Communications in Medicine files representing three-phase postoperative CTA images
(N ¼ 334) of 191 unique patients undergoing endovascular aneurysm repair for infrarenal abdominal aortic aneurysm
(AAA) with a variety of commercial devices were used to train a deep learning pipeline across four tasks. The RetinaNet
object-detection convolutional neural network (CNN) architecture was trained to predict bounding boxes around the
axial CTA slices that were then stitched together in two dimensions into a smaller region containing the aneurysm.
Multiclass endoleak detection and segmentation of the AAA, endograft, and endoleak were performed on this smaller
region. Segmentations on a single randomly selected contrast from each scan included 33 full and 68 partial segmen-
tations for endograft and AAA and 99 full segmentations for endoleak. A modified version of ResNet-50 CNN was used to
detect endoleak on individual axial slices. A three-dimensional U-Net CNN model was trained on the task of dense three-
dimensional segmentation and used to measure diameter and volume with a specially designed loss function. Wemade
use of fivefold cross-validation to evaluate model performance for each step, splitting training and testing data at each
fold, such that multiple scans from the same patient were preserved with the same fold. Algorithm predictions for
endoleak were compared with the radiology report and with a subset of CTA images independently read by two vascular
specialists.

Results: The localization portion of the network accurately predicted a region of interest containing the AAA in 99% of
cases. The best model of binary endoleak detection obtained an area under the receiver operating characteristic curve of
0.94 6 0.03 with an optimized accuracy of 0.89 6 0.03 on a balanced data set. An introduced postprocessing algorithm
for determining maximum diameter was used on both the predicted AAA segmentation and ground truth segmenta-
tion, predicting on average an absolute diameter error of 2.3 6 2.0 mm by 1.4 6 1.7 mm for each measurement,
respectively. The algorithm measured AAA and endograft volume accurately (Dice coefficient, 0.95 6 0.2) with an
absolute volume error of 10.1 6 9.1 mL. The algorithm measured endoleak volume less accurately, with a Dice score of
0.53 6 0.21 and an average absolute volume error of 1.2 6 1.9 mL.

Conclusions: This machine learning algorithm shows promise in augmenting a human’s ability to interpret post-
operative CTA images and may help improve surveillance after endovascular aneurysm repair. External validation on
larger data sets and prospective study are required before the algorithm can be clinically applicable. (JVSeVascular
Science 2020;1:5-12.)

Clinical Relevance: This manuscript describing the application of machine learning for endoleak has clinical relevance to
endovascular abdominal aortic aneurysm follow-up. The techniques described herein may be more broadly applied to
the diagnosis of aortic disease. In the future, vascular surgeons will benefit from integrating such artificial intelligence
algorithms into their practice.
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ARTICLE HIGHLIGHTS
d Type of Research: Basic science
d Key Findings: A machine deep learning algorithm
demonstrated acceptable accuracy in the detection
of endoleak on computed tomography scans.

d Take Home Message: This machine learning algo-
rithm shows promise in augmenting a human’s abil-
ity to interpret postoperative computed tomography
angiography images and may help improve surveil-
lance after endovascular aneurysm repair.
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Endoleaks, a well-recognized consequence of endovas-
cular aneurysm repair (EVAR), occur in up to 20% of
patients.1 Whereas the clinical significance of various
endoleak types has been debated, the presence of an
endoleak is a prognostic marker for poor late outcomes,
including abdominal aortic aneurysm (AAA) sac expan-
sion, secondary interventions, and late rupture.2-5 Surveil-
lance imaging is required after EVAR, and although
duplex ultrasound has surfaced as an alternative nonin-
vasive imaging modality, three-phase computed tomog-
raphy angiography (CTA) remains the “gold standard,”
particularly for early imaging and surrounding reinter-
ventions.1,6 Whereas CTA has good intraobserver and
interobserver variability for aneurysm diameter, other
parameters, such as diagnosis of endoleak and measure-
ment of AAA volume, have variable accuracy and have
received less attention in the literature.7,8 The diagnostic
accuracy of diameter changes in the identification of
AAA volume increase has been challenged with a report
of good specificity but poor sensitivity.9

In recent years, machine deep learning techniques
have been used in a variety of health care applications,
particularly within the medical imaging field.10 Whereas
success has been reported using segmentation tech-
niques to measure AAA diameter and volume, none
have applied sophisticated deep learning techniques to
the automated diagnosis of endoleak coupled with
these measures.11-16 Our objective was to develop a
deep learning algorithm for endoleak detection and
AAA diameter and volume that can augment the
human’s ability to read CTA images after EVAR to reduce
subjectivity and variability while increasing the accuracy
of the diagnosis.

METHODS
Digital Imaging and Communications in Medicine files

representing CTA images (N ¼ 334) of 191 unique, consec-
utive patients undergoing EVAR at the University of
Vermont Medical Center from 2006 to March 2018 with
commercially available devices were used to train a
deep learning-based pipeline across varied tasks. Three-
phase CTA with non-contrast-enhanced arterial and
venous phases with 1.5-mm slice thickness were obtained
as part of the established standard of care at periodic in-
tervals after EVAR and deidentified by converting them
into Neuroimaging Informatics Technology Initiative
(NIfTI) file format. Throughout the study period, CTA scans
were routinely obtained at 1 month and 1 year after EVAR.
In the past 5 years, select patients were followed up by
duplex ultrasound after the 1- or 2-year scan at the discre-
tion of the attending surgeon. The mean time between
EVAR and each CTA scan was 629 days. Although some
patients’ CTA data were used more than once, in such
cases, the patient’s imaging data were never split in a
case inwhich the algorithmwould be able to learn explic-
itly from the patient’s earlier scan.
The algorithm (Endo-Detecto) was developed in stages
to carry out four tasks: endoleak detection, maximum
AAA diameter, AAA volume, and endoleak volume. The
pipeline began with a localization network designed to
predict bounding boxes around the AAA on all axial
slices of the CTA scans using the RetinaNet, one-stage
detector styled, convolutional neural network (CNN)
architecture (Fig 1).17 Predicted two-dimensional bound-
ing boxes were then stitched together to represent a
smaller 128 � 128-voxel region of interest containing pri-
marily the AAA. This smaller region was used as input
for detection of endoleak and multiclass AAA segmenta-
tion. A ResNet-50 style CNN was trained at this stage to
output axial slice by slice predictions for the presence
of endoleak.18 Prediction generalization from slice by
slice was conducted by assigning the maximum individ-
ual slice prediction made across both venous and arterial
contrast phases to that set of scans. For the localization
and binary endoleak detection tasks, 760 contrast phase
scans were drawn from the available scans, which consti-
tuted all arterial and venous phase CTA scans with an
endoleak as well as a random mix of arterial and venous
phase scans from cases without endoleak with the pre-
contrast scan used for every case. The 334 scans were
evenly split by case and control and labeled as endoleak
yes or no. Next, the classification threshold (ie, that a
given prediction needs to be greater than in order to
be labeled yes for endoleak) was optimized as the value
that maximizes area under the curve receiver operating
characteristics on the training set. During training,
various data augmentation strategies, including random
rotations and flips, were applied to reduce overfitting. In
addition, various hyperparameters were investigated,
making use ultimately of the following training tech-
niques; snapshot ensembles >100 epochs with a starting
cyclic learning rate of 0.01 along with the built-in Keras
stochastic gradient descent optimizer were employed
to improve predictive performance. We made use of five-
fold cross-validation as a method of evaluating endoleak
detection performance, splitting training and testing
data at each fold by patient.
AAA-predicted bounding boxes were stitched

together into a three-dimensional (3-D) region of



Fig 1. Overview of the pipeline illustrating use of three modified convolutional neural networks (CNNs). AAA,
Abdominal aortic aneurysm; CTA, computed tomography angiography; 3D, three-dimensional.

Fig 2. Distribution of computed tomography (CT) scans
across patients.
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interest. A 3D U-Net CNN, with residual connections,
was trained on the task of segmenting AAA and endog-
raft within the cropped 3D AAA volumes. As generating
full dense segmentations is time intensive (w1 hour per
scan), the 3D U-Net architecture was modified with a
specially designed multiclass Dice loss capable of
accepting partial 3D segmentations according to the
following formula:

Loss ¼
ci˛jclasses j 2�

P
TrueiXPrediP

Trueiþ
P

PrediXSeen

jclasses j

where classes refer to the different input classes (AAA
and endograft), seen refers to a binary mask indicating
whether that voxel was seen while performing partial
segmentation, and Truei and Predi refer to the ground
truth label and predicted label for class i.
We performed manual aortic aneurysm dense segmen-

tation on 101 scans (33 complete, 68 partial segmenta-
tion) to train the segmentation task where scans are
defined as one contrast series. Partial segmentations
are composed of three to five manually labeled slices
within each view (axial, sagittal, coronal), requiring on
average 10 minutes. Complete segmentations included
labeling of every slice. For the diameter task, 168 contrast
scans (both arterial and venous per CTA scan) were used
because the non-contrast-enhanced scans were lower
resolution. We further made use of the 33 fully
segmented scans in reporting cross-validated network
performance on the prediction of AAA and endograft
volume. Minor postprocessing was applied on the
outputted predictions from the 3D U-Net, automatically
fixing outliers in predicted class on the basis of surround-
ing voxel classes. Another algorithm was then applied to
extract maximal anterior-posterior diameters from
outputted network predictions.
The gold standard for endoleak detection and
maximum aneurysm diameter in the axial plane was
the official radiology report, obtained from electronic
medical records of each patient. In addition, a subset of
100 CTA images were independently read for endoleak
and diameter by an interventional radiologist and a
vascular surgeon (C.M., D.B.). Interobserver and human
to machine AAA diameter measurement variability was
evaluated by Bland-Altman analysis. Precision was tested
by calculating the coefficient of repeatability, which rep-
resents the value below which the absolute difference
between two repeated test results may be expected to
lie with a probability of 95%.
The study followed the principles outlined in the Decla-

ration of Helsinki. The University of Vermont Institutional
Review Board has approved the research protocol with a
waiver of informed consent.



Fig 3. Endoleak confusion matrix depicting true and false
positives and negatives.

Fig 4. Receiver operating characteristic curve for binary
classification of endoleak.

Table. Results of segmentation of aneurysm and endograft

Category
Dice

coefficient, %
Intersection over

union, %
Absolute volume,

mL
Volume, %
change

AAA 91 6 5 84 6 9 4.5 6 3.4 5.6 6 3

Endograft 95 6 3 90 6 5 5.2 6 6.7 4.7 6 6

AAA and endograft 95 6 2 91 6 4 6.3 6 5.6 3.3 6 3

AAA, Abdominal aortic aneurysm.
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RESULTS
AAA localization. The number of scans varied for each

patient, ranging from 1 to 12 over time, and is shown in
Fig 2. The RetinaNet-based localization network had an
accuracy of 98.7% in capturing the AAA within the
region of interest on the CTA image. We base this
estimation of accuracy on manual review and correc-
tion of 314 previously unseen scans that were supplied
to the localization network. These scans were
composed of 91,575 axial slices, of which 412 (0.4%)
required minor manual operator revision, defined as
small changes made to a bounding box or to a slice
missed before or after the predicted aneurysm region.
These revisions may be caught by automated padding.
We observed only two predicted slices with a more
significant bounding box error. A significant number of
AAA predictions were missed altogether on only four
full scans.

Binary endoleak classifier. As computed across fivefold
cross-validation, the binary classification portion of the
pipeline correctly identified the presence of an endoleak
in 147 of 167 scans. Absence of endoleak was correctly
reported in 151 of 167 scans. The resulting sensitivity and
specificity for endoleak detection were 90% and 88%,
respectively, with an accuracy of 89% (Fig 3). The positive
and negative predictive values were 89% and 91%,
respectively. The area under the receiver operating
characteristic curves per validation fold were between
0.89 and 0.97, with an average of 0.94 6 0.03 (Fig 4). The
distribution of endoleaks was as follows: type I, n ¼ 15;
types I and II, n ¼ 1; type II, n ¼ 141; types II and III, n ¼ 2
and 3; type III, n ¼ 1; and indeterminate.

Segmentation. As determined by cross-validated per-
formance on 33 fully segmented scans, the algorithm
accurately segmented the AAA with a Dice coefficient of
91% 6 5% and intersection over union of 84% 6 9%
(Table). The accuracy of endograft segmentation was
higher with a Dice coefficient of 95% 6 3% and inter-
section over union of 90% 6 5%.

AAA diameter. We compared the deep learning algo-
rithm prediction of maximum diameter in two directions
with 84 official radiology reports that listed bothmaximal
AAA diameters and with the average of two expert
readers. In comparing the average of two readers
with the deep learning algorithm, the coefficient of
repeatability was 13.72 (Fig 5, A). In comparing the radi-
ology report with the deep learning algorithm, the



Fig 5. Bland-Altman plots of abdominal aortic aneurysm (AAA) diameter measurements (sum of both maximal
measurements M1 þ M2) comparing deep learning (DL) algorithm with (A) average (Avg) of two expert human
readers and (B) the radiology report (84 cases) and (C) comparing algorithm on ground truth vs predicted seg-
mentation (22 cases). CR, Coefficient of repeatability; SD, standard deviation.
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Fig 5. (Continued).
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coefficient of repeatability was 15.06 (Fig 5, B). Last, we
compared the 33 fully segmented scans between the al-
gorithm for extracting maximal diameter on human
ground truth and the same algorithm on predicted
segmentation, with a coefficient of repeatability of 5.42
(Fig 5, C).

AAA volume. We computed 3D segmentation network
performance on the 33 fully segmented scans with five-
fold cross-validation, in which all partial segmentations
were included within the training set within all folds. The
network obtained a Dice coefficient of 91% 6 5% for AAA
volume with a 4.5 6 3.4 mm3 absolute volume error. The
network obtained a Dice coefficient of 91% 6 5% for
predicting endograft volume with a 5.2 6 6.7 mm3 ab-
solute volume error.

Endoleak volume. The algorithm’s ability to measure
endoleak volume was less accurate, with Dice coefficient
of 0.53 6 0.2 and an average error of 1.2 6 1.9 mL.

DISCUSSION
We report the novel application of three CNNs for the

detection of endoleak on CTA images after EVAR. CNNs
are a subclass of deep neural networks most commonly
applied to the analysis of images. CNNs were designed to
resemble the connectivity of neurons as found in the an-
imal visual cortex, in which individual neurons respond to
stimuli within one region of the visual field and different
neurons overlap to cover the entire area. Deep learning
approaches have overwhelmingly outperformed state
of the art in many traditional computer vision tasks,
such as image classification and object detection.19 Spe-
cific deep network architectures, like the CNN, have been
used for classification and segmentation with great suc-
cess, obtaining state-of-the-art results in classic vision
problems. These deep neural network configurations
have been shown to learn useful distributed feature rep-
resentations for many complex, high-dimensional data
sets and to construct sophisticated domain-specific fea-
tures without relying on precise human-crafted input
representations.20,21 The Endo-Detecto algorithm accu-
rately diagnosed the presence or absence of an endoleak
on post-EVAR CTA images, reaching the level of a human
reader. Whereas CTA has high accuracy for the diagnosis
of endoleak with a reported sensitivity of 83% and spec-
ificity approaching 100%, relatively little attention has
been devoted to the physician variability in endoleak
diagnosis.7,22 One small study reported sensitivities of
81% to 85% in the detection of type II endoleak using
two untrained observers.8 The algorithm readily identi-
fied the region of the AAA and segmented the aneurysm
from the device reliably with minimal human optimiza-
tion. The algorithmmeasured AAA diameter comparably
to both the radiology report and two independent
readers. Unlike radiology reports, which sometimes
omitted diameter values, the algorithm automatically re-
ports two diameter measurements and can be set to
report as many as needed. The variability in AAA volume
was within the 5% range generally acceptable in clinical
practice. The ability to measure endoleak volume was
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not sufficiently accurate and will require further training
and optimization.
A machine learning algorithmic approach to the inter-

pretation of computed tomography (CT) scans after
EVAR has several possible clinical applications. First,
several studies have advocated for the addition of AAA
volume to the clinical follow-up and decision-making
for endoleak treatment.23 Relatively small changes in
diameter can be associated with substantial changes in
volume.24 Second, patients are subjected to many CT
scans, both for lifelong postoperative surveillance and
for other indications. Review of prior imaging for com-
parison purposes can be expedited using a machine
learning algorithm, thus improving the speed, ease, and
rigor of follow-up. Comparisons of endoleak, AAA diam-
eter, and AAA volume can be quickly tabulated for refer-
ence. Third, the volumeof type II endoleak and source and
diameter of the feeding artery have been reported to have
prognostic value.25-28 However, parameters such as the
volume of endoleak are currently not readily available
from CT scans. In an effort to reduce radiation exposure
and intravenous administration of iodinated contrastme-
dia, some radiologists have suggested a staged approach
to imaging with a review of the non-contrast-enhanced
scan before conducting an arterial and venous phase.
For patients with a decrease in diameter and volume,
the contrast phase of the scan could be avoided in appro-
priately selected EVAR follow-up cases. However, at this
time, this protocol is not practical because of the need
for real-time reading by the radiologist and communica-
tionwith thephysician ordering the image. Anautomated
programcould solve thisproblembyenabling radiologists
to focus their time and workflow. Finally, automation of
endoleak volumewould also be useful in clinical research
to further refine the natural history of this common prob-
lem. Expanding the algorithm’s capability to other
anatomic parameters, such as the detection of thrombus
position and coupling it with patient data, may allow
endoleak prediction in the future.
Limitations to this work include that it was a single-

center study without validation across a larger series of
CTA studies. Further work is needed to train and to test
the algorithm on edge cases. For example, we excluded
CT images with prior embolization in this analysis. The al-
gorithmmust also be tested across a greater variety of de-
vices as some have specific characteristics thatmay affect
the interpretation.29 We did not design the algorithm to
determine the type of endoleak or to distinguish
thrombus as others have reported.15 Further work is
needed to identify characteristics that predict the source
and origin of the endoleak. Finally, institutional imaging
protocols, imaging parameters, and CT scannermanufac-
turers vary with respect to routine three-phase imaging
factors, slice thickness, intravascular iodinated contrast
media volume, and other technical specifications that
must be considered in validating the algorithm.
CONCLUSIONS
This machine learning algorithm shows promise in aug-

menting a human’s ability to interpret postoperative CTA
images and may help improve post-EVAR surveillance.
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