
Frontiers in Immunology | www.frontiersin.

Edited by:
Jeffrey C. Nolz,

Oregon Health and Science University,
United States

Reviewed by:
Georges Abboud,

University of Florida, United States
Umadevi S. Sajjan,

University of Michigan, United States
Valerie Koeken,

Radboud University Nijmegen Medical
Centre, Netherlands

*Correspondence:
Alexis M. Kalergis

akalergis@bio.puc.cl

Specialty section:
This article was submitted to

Immunological Memory,
a section of the journal

Frontiers in Immunology

Received: 21 July 2021
Accepted: 15 September 2021

Published: 04 October 2021

Citation:
Acevedo OA, Berrios RV,

Rodrı́guez-Guilarte L,
Lillo-Dapremont B and Kalergis AM

(2021) Molecular and Cellular
Mechanisms Modulating Trained
Immunity by Various Cell Types in
Response to Pathogen Encounter.

Front. Immunol. 12:745332.
doi: 10.3389/fimmu.2021.745332

REVIEW
published: 04 October 2021

doi: 10.3389/fimmu.2021.745332
Molecular and Cellular Mechanisms
Modulating Trained Immunity by
Various Cell Types in Response
to Pathogen Encounter
Orlando A. Acevedo1, Roslye V. Berrios1, Linmar Rodrı́guez-Guilarte1,
Bastián Lillo-Dapremont1 and Alexis M. Kalergis1,2*

1 Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiologı́a, Facultad de
Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, 2 Departamento de Endocrinologı́a, Facultad de
Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile

The induction of trained immunity represents an emerging concept defined as the ability of
innate immune cells to acquire a memory phenotype, which is a typical hallmark of the
adaptive response. Key points modulated during the establishment of trained immunity
include epigenetic, metabolic and functional changes in different innate-immune and non-
immune cells. Regarding to epigenetic changes, it has been described that long non-
coding RNAs (LncRNAs) act as molecular scaffolds to allow the assembly of chromatin-
remodeling complexes that catalyze epigenetic changes on chromatin. On the other hand,
relevant metabolic changes that occur during this process include increased glycolytic
rate and the accumulation of metabolites from the tricarboxylic acid (TCA) cycle, which
subsequently regulate the activity of histone-modifying enzymes that ultimately drive
epigenetic changes. Functional consequences of established trained immunity include
enhanced cytokine production, increased antigen presentation and augmented
antimicrobial responses. In this article, we will discuss the current knowledge regarding
the ability of different cell subsets to acquire a trained immune phenotype and the
molecular mechanisms involved in triggering such a response. This knowledge will be
helpful for the development of broad-spectrum therapies against infectious diseases
based on the modulation of epigenetic and metabolic cues regulating the development of
trained immunity.

Keywords: trained immunity, unspecific cross-protection, epigenetics, metabolic reprogramming, innate memory
INTRODUCTION

The immune system represents our main line of defense against infections and other diseases. For
centuries, this type of response has been divided into two large branches: innate and adaptive
immunity (1). The innate immune system represents the first barrier that aims to limit the ability of
pathogens to spread through our body (2, 3). This response involves various innate cells including
neutrophils, monocytes, macrophages, dendritic cells (DCs), Natural Killer cells (NK cells), as well
org October 2021 | Volume 12 | Article 7453321

https://www.frontiersin.org/articles/10.3389/fimmu.2021.745332/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.745332/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.745332/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.745332/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:akalergis@bio.puc.cl
https://doi.org/10.3389/fimmu.2021.745332
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.745332
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.745332&domain=pdf&date_stamp=2021-10-04


Acevedo et al. Mechanisms Involved in Trained Immunity
as non-immune cells, such as the epithelium (4). The adaptive
immune response corresponds to the second barrier of the
immune system. Unlike the innate system, the adaptive response
is antigen-specific and generates long-lasting protection, mainly
mediated by T and B lymphocytes (1). It has been shown that
effective memory immune responses rely on the interaction
between cells of the innate and adaptive immune cells (5, 6).
While activation of innate immunity provides the first line of
defense against infections, it also primes the adaptive immune
response via antigen presentation and cytokine production (7–10).

Furthermore, adaptive immunity can enhance the
antimicrobial machinery of innate cells, making them more
effective at clearing pathogenic microorganisms (11, 12). An
additional layer of complexity is added to this network of
interactions after recent findings showing the ability of innate
cells to adopt a memory phenotype upon encountering different
kinds of stimuli derived from pathogens (13, 14). During the last
decade, such observations led to the establishment of the concept
of “trained immunity”, which modified the traditional conception
of memory responses that only used to apply to adaptive
immunity (15). This new evidence suggested that innate-
immune cells can adopt a memory-like phenotype through
different epigenetic, metabolic and functional changes (16, 17).
Furthermore, it has been proposed that non-immune cells can
develop some of the features of this memory-like phenotype (18–
20). Trained immunity can be triggered by a wide range of stimuli,
including the bacteria Bacillus Calmette Guerin (BCG), b-glucan
(a fungal cell wall component) and sex-related hormones, such as
b-estradiol (19, 21, 22). Notably, the capacity to induce trained
immunity is not only restricted to microbial-derived signals and
hormones, as other endogenous ligands such as oxidized low-
density lipoproteins (oxLDL) can also contribute to initiating this
type of response (23). In the current article, we will summarize the
mechanism underlying the development of trained immunity, the
cells able to develop this response, and their contribution to
controlling infectious diseases.
MECHANISMS UNDERLYING THE
ESTABLISHMENT OF TRAINED IMMUNITY

Epigenetic changes on histones that interact with the DNA are
one of the fundamental factors for the establishment of trained
immunity (24). These epigenetic modifications include changes
in histone methylation, which may promote or repress gene
transcription (25). Recent studies underscore the contribution of
long non-coding RNAs (LncRNAs) in triggering trained
immunity due to their ability to promote chromatin remodeling
by a direct interaction with chromatin while allowing the assembly
of histone-modifying enzymes (26). The 3D arrangement of
chromatin and proteins associated during this process occurs in
discrete regions of enriched chromosomal contacts known as
topologically associated domains (TADs) (27). Within TADs,
genes with related functions are brought into proximity through
the formation of chromosomal loops, which facilitate clustered
regulation of gene transcription (27). A recent study described a
Frontiers in Immunology | www.frontiersin.org 2
novel class of LncRNAs, known as Immune-gene Priming
LncRNAs (IPLs) involved in accumulating H3K4me3 at the
promoters of trained immune genes (26). Bioinformatic analyses
revealed the presence of a single LncRNA associated with TADs in
which trained immune transcripts interacted with the histone
H3Lys4 methyltransferase (MLL1) to direct local H3K4me3
accumulation (26). The IPL found in this study corresponds to
UMLILO (upstream master LncRNA of the inflammatory
chemokine locus) and was shown to regulate gene expression in
TADs containing the genes encoding for IL8, CXCL1, CXCL2, and
CXCL3 on human monocytes (26). This study also described two
other important points. First, in mice, the TAD that contains these
chemokines lacks UMLILO, therefore the expression of these
genes cannot be trained (26). Of note, the insertion of UMLILO
in the TAD of murine macrophages comprising these chemokines
resulted in the training of such genes. These observations support
the notion that LncRNA-mediated regulation is essential in
establishing trained immunity (26). Secondly, genetic ablation of
UMLILO in human monocytes abrogates the induction of trained
immunity in these cells, further supporting the critical role of
LncRNA in promoting innate immune training (26). In
conclusion, targeting LncRNA appears as an attractive target for
modulating the establishment of trained immunity and regulating
inflammation (26).

The development of trained immunity also involves metabolic
changes that ultimately lead to enhanced cytokine responses (28).
Studies performed in mice highlight the ability of C. albicans
infection in conferring protection against S. aureus (21, 29, 30). In
vitro studies showed that trained immunity induced by C.
albicans is mediated by the cell wall component b-glucan,
which induces monocyte epigenetic remodeling and functional
reprogramming (21, 30). In this case, trained monocytes
accumulate the metabolite fumarate produced during the
tricarboxylic acid cycle (TCA) (31). Fumarate then binds and
inhibits histone demethylase 5 (KDM5) activity involved in the
demethylation of H3K4 (32). Under this scenario, fumarate
accumulation increases H3K4 tri-methylation in the promoters of
genes encoding pro-inflammatory cytokines TNF-a and IL-6 (32).
Different studies have been carried out to understand the interplay
between metabolites and histone-modifying enzymes involved in
establishing trained immunity. One example is acetyl-CoA, which is
fundamental for the activity of histone acetyltransferases (HATs)
(33, 34). Evidence showed that increased activity of metabolic
pathways leading to acetyl-CoA production leads to an increased
frequency of acetylation marks on histone tails (35). In mammalian
cells, these changes are dependent on adenosine triphosphate
(ATP)-citrate lyase (ACLY), which converts citrate into acetyl-
CoA (36). Therefore, substrates that can be converted into citrate,
such as glucose, fatty acids or glutamine, can ultimately lead to
ACLY-dependent acetylation of histones (33). Another metabolite
modulating trained immunity is itaconate, a derivative from the
TCA cycle recognized by the ability to form adducts with
glutathione (GSH) (37). Oxidized GSH inhibits the activity of S-
adenosyl methionine synthetase, MAT1A involved in the synthesis
of s-adenosyl methionine (SAM), the primary substrate of histone
methyltransferases (HMTs) which are also modulators of trained
October 2021 | Volume 12 | Article 745332
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immunity (38, 39). In the worm C. elegans, low SAM concentration
restricts H3K4me3 accumulation at immune-responsive promoters,
limiting the expression of genes necessary for the innate immune
response against bacterial infection (40).

Another essential change observed in b-glucan- and BCG-
trained cells is the increased ratio of nicotinamide adenine
dinucleotide (NAD+) over the reduced form (NADH) (41).
NAD+ is a required cofactor for the activity of de-acetylating
enzymes known as sirtuins (SIRTs) (42). These enzymes catalyze
the removal of lysine acetyl groups from different proteins,
including histones (42). By removing acetyl groups, lysine
residues of histones recover their positive charge and become
more tightly bound to DNA leading to inhibition of gene
transcription (43). During the establishment of trained immunity,
a higher ratio ofNAD+ overNADHpromotes the activity of SIRTs,
which subsequently influence inflammatory responses (44). In vivo
studies showed that mice lacking SIRT2 displayed enhanced pro-
inflammatory responses in a model of colitis induced by dextran
sulfate sodium (DSS) as compared to wild-type mice (44). In this
case, SIRT2 deficiency leads to the increased polarization of
macrophages toward a pro-inflammatory phenotype (44). Thus,
therapies targeting SIRT2 on macrophages could be explored to
treat colitis (44). In addition, activity of Sirtuins also represses the
expression of genes involved in glycolytic metabolism, including
the transcriptional regulator HIF1a, a pivotal modulator for the
induction of trained immunity (41). Studies related to other
factors that trigger trained immunity showed that administration
of BCG vaccine on healthy human volunteers up-regulates the
productionof IL-6 bymonocytes andneutrophils upon exposure to
S. aureus (45, 46).However, it is still not fully understood how these
complex interactions take place in different immune and non-
immune cells. The following sections will focus on the currently
known drivers of trained immunity on different innate-immune
and other non-immune cells and their contribution during
infectious diseases.
TRAINED IMMUNITY IN NEUTROPHILS

Circulating human neutrophils are the most prominent immune
cells present in the blood (47). These cells are characterized by
their short lifespan (6–10 h) and their rapid recruitment
following BCG or Mycobacterium tuberculosis (M. tuberculosis)
infection (48, 49). In vitro studies indicate that neutrophils
derived from BCG-vaccinated individuals showed a trained
immunity phenotype (46, 50). It has been suggested that such
phenotype on neutrophils relies on the ability of BCG to train
hematopoietic bone marrow stem cells precursors (HSCPs),
which subsequently can differentiate into neutrophils (19). In
addition, intravenous rather than subcutaneous immunization of
mice with BCG results in trained immunity on neutrophils. Such
differences may be explained by the access of BCG to the bone
marrow through blood circulation (19). Trained immunity
induced by BCG on neutrophils is characterized by increased
expression of CD11b and Interleukin-8 (IL-8) following re-
stimulation with unrelated BCG stimuli, such as S. aureus or
Frontiers in Immunology | www.frontiersin.org 3
lipopolysaccharide (LPS) (46). Since both markers were involved
in neutrophil activation and chemotaxis, respectively (51), these
data suggest that trained immunity induced by BCG on
neutrophils promotes neutrophil recruitment and activation,
which is also essential for bacterial clearance (52).

Studies using mice vaccinated with BCG via the intranasal
route showed that neutrophils accumulate in the lungs as early as
1 to 3 days post-inoculation of BCG (29). Interestingly, these
recruited neutrophils showed the ability to kill M. tuberculosis,
supporting a role of BCG in promoting neutrophil antimicrobial
responses (49). Furthermore, studies in the mouse model showed
that neutrophil depletion before BCG vaccination resulted in
increased bacterial loads compared to isotype control-treated
mice (50). These data suggest that neutrophils play a significant
role in reducing themycobacterial burden and are necessary for the
protection conferred by BCG vaccination (50). Further studies are
needed to determine if trained immunity on neutrophils modulates
the production of chemokines important to attract other immune
cells, which might complement neutrophil-mediated responses.

In vitro studies of human-derived neutrophils indicate that
BCG vaccination increases reactive oxygen species (ROS)
production by these cells upon C. albicans stimulation as
compared to neutrophils from non-vaccinated individuals (46).
In addition, neutrophils derived from BCG-vaccinated subjects
showed a higher production of lactate and enhanced killing
activity against C. albicans in comparison to neutrophils from
the non-vaccinated subjects (46). These data suggest that the
development of trained immunity induced by BCG is associated
with increased glycolytic activity and favors neutrophil-mediated
killing of C. albicans and M. tuberculosis (46, 50). These results
raise new questions, such as the way trained neutrophils may
affect the function of other cell types. The contribution of non-
trained neutrophils modulating the function of neighboring cells,
such as macrophages and T lymphocytes has been documented
(53, 54). Therefore, it would be essential to examine whether
BCG-trained neutrophils may regulate the responses displayed
by these immune cells. Neutrophils have been shown to train
macrophages to acquire a long-lasting enhanced protective
phenotype against infection (54). Furthermore, it is reported
that neutrophils can activate T cells through antigen presentation
(55). However, further studies at the single-cell level are needed
to elucidate whether the transcriptional landscape of trained
neutrophils is present on a particular subset of neutrophils or
involves this entire cell population.
TRAINED IMMUNITY IN
MONOCYTES AND MACROPHAGES:
GENERAL FEATURES

Monocytes are part of other subset of myeloid cells responsible
for producing pro-inflammatory cytokines during an infection
(56). These cells circulate in the bloodstream for up to 3 to 5 days,
from where they then differentiate into macrophages (57).
Monocytes and macrophages are mononuclear phagocytes that
mediate fundamental innate immune processes such as pathogen
October 2021 | Volume 12 | Article 745332
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clearance, inflammatory cytokine production, and tissue repair
(58, 59). The ability of monocytes and macrophages to adopt a
trained immunity phenotype is an active matter of study (60).
Epigenetic changes, such as H3K4me3 were elevated in promoters
of genes encoding for pro-inflammatory cytokines after
stimulation of monocytes with BCG or b-glucan (61, 62). This
notion is supported by the observation that inhibition of histone
methyltransferases using 5′-Deoxy-5′-methylthioadenosine
(MTA) suppressed monocyte training by C. albicans or b-glucan.
These data provide additional basis for the role of histone
methylation in the training of monocytes (63). H3K4me3 is
significantly increased at the Toll-like receptor 4 (TLR4) level in
circulatingmonocytes collected after BCGvaccination as compared
tovaluesobtained frommonocytes isolatedbeforeBCGvaccination
(64). In addition to the activation of the Toll-like receptor (TLR)
signaling pathway (63), immune training by b-glucan is dependent
on the Dectin-1/Raf-1 pathway (65). The interaction between
monocytes and b-glucan through Dectin-1 activates the spleen
tyrosine kinase and the caspase recruitment domain-containing
protein 9 (Syk/CARD9), resulting in the activation of the
transcription factor NF-kB (61, 66). The inhibition of Dectin-1 by
laminarin in purified peripheral blood monocytes from healthy
donors suppressedb-glucan-induced trained immunity (63). These
findings suggest that Dectin-1 is a significant driver of trained
immunity in monocytes (63).
METABOLIC PATHWAYS INVOLVED
IN THE TRAINING OF MONOCYTES
AND MACROPHAGES

Different metabolic pathways are involved in the regulation and
development of trained immunity in monocytes (32, 67, 68).
Trained monocytes show high glucose consumption, high lactate
production, and a high ratio of nicotinamide dinucleotide and
reduced adenine (NADH), reflecting a change in metabolism with
increased glycolysis (68). These changes depend on signaling
through Akt, mTOR (mammalian target of rapamycin), and HIF-
1a (hypoxia-inducible factor 1a) (60). In this sense, priming of
Frontiers in Immunology | www.frontiersin.org 4
monocytes with BCG increases the phosphorylation of Akt (68).
Inhibition of Akt by Wortmannin during the first 24 hours of
training with BCG prevents the increase in the production of
cytokines by re-stimulation with LPS (Table 1) (67, 68).
Inhibition of mTOR by rapamycin leads to similar effects
inhibiting the production of TNF-a and IL-6 following re-
stimulation of cells with LPS (60) and pre-treatment of cells with
ascorbate that inhibits the HIF-1a pathway (Table 1) (60).
Treatment of cells with metformin or 2-deoxy-glucose abrogates
enhanced cytokine production by inhibiting hexokinase-2 (37).
Furthermore, inhibition of glycolytic pathways inhibited epigenetic
modifications in the promoters of genes encoding IL-6 and TNF-a
(Table 1) (67). The increased glycolysis observed in trained
monocytes promotes the accumulation of fumarate, which
inhibits histone demethylase 5 KDM5. Therefore favoring
H3K4me3 on the promoters of pro-inflammatory cytokines
TNFa and IL-6 (32). Other metabolic pathways involved in the
development of trained immunity include the synthesis of
cholesterol, which can be inhibited by statins (Table 1) (30),
which then prevent the enrichment of H3K4me3 in the
promoters of genes that encode IL-6 and TNF-a (32, 67, 68). In
conclusion, several metabolic pathways could be targeted to
increase trained immunity and enhance the mechanisms of
immune defense against infections.

During the differentiation of monocytes into macrophages,
training induced by b-glucan increases the expression of genes
involved in metabolic and inflammatory pathways, and such
changes are dependent on cAMP signaling. In this line, cAMP
inhibitors including 2 ′, 5′-dideoxyadenosine and propranolol can
prevent the increased production of IL-6 and TNF-a induced by b-
glucan training (69). Additionally, monocytes and macrophages
exposed to b-glucan showed a trained immune phenotype
dependent on the metabolism of glutathione, a relevant
antioxidant molecule involved in detoxifying free radicals (70).
Along these lines, plasma concentration of IL-1b from BCG-
vaccinated individuals are positively associated with serum
glutathione concentrations (71). Furthermore, trained immunity
also up-regulates the expression of genes involved in glutathione
metabolism, suggesting an increase in glutathione synthesis and a
higher glutathione recycling rate (71). Finally, single nucleotide
TABLE 1 | Inhibitors of different signaling, metabolic and epigenetic changes are involved in inducing trained immunity against infectious diseases.

Inhibitors of signaling pathways

Cell type Inhibitor Function Reference

Monocytes Rapamycin mTOR inhibitor (23)
Wortmannin Akt inhibitor
Ascorbate HIF-1a inhibitor
Metformin AMPK inhibition

Inhibitors of metabolic pathways
Cell type Inhibitor Function Reference
Monocytes 2-Deoxy Glucose Inhibits Hexokinase 2 (68)
Inhibitors of epigenetic modifiers
Cell type Inhibitor Function Reference
Macrophages MTA Methyltransferase inhibitor (63)
Bronchial epithelial cells Epigallocatechin-3-gallate (EGCG) Inhibition of histone acetyltransferase (20)

BIX01294 Inhibitor of histone Methyltransferase
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polymorphisms (SNPs) in these genes are associated with changes
in pro-inflammatory cytokine production after in vitro training by
b-glucan and BCG (71). Therefore, enzymes whose activity is
dependent on cAMP or glutathione could be used as novel targets
to modulate trained immunity.
HORMONAL CONTROL OF TRAINED
IMMUNITY RESPONSES IN MONOCYTES
AND MACROPHAGES

Studies in vivo have shown that administration of b-glucan in
mice attenuates the hallmarks of sepsis-induced by Escherichia
coli infection in a sex-dependent manner (22). In this regard, b-
glucan mediated prevention of lung injury by the induction of
trained immunity worked better in females than in males (22).
Interestingly, this work showed that female hormones, such as
estrogens are involved in the development of trained immunity,
which can also explain the increased susceptibility of male over
female mice to E. coli-induced sepsis (22). Mechanistically the
authors showed that exposure of macrophages to b-estradiol,
which is a form of the female hormone estrogen (72), polarizes
these cells toward a pro-inflammatory M1 phenotype with
enhanced ability to kill E. coli and therefore more efficient at
preventing sepsis (22). Finally, this study also showed that
treatment of macrophages with b-estradiol inhibited the nuclear
translocation of RelB, a member of the non-canonical pathway of
NF-kB, which contributes to macrophage polarization towards the
M1 pro-inflammatory phenotype (73).

Remarkably, the role of estradiol and sex-depended hormones in
trained immunity remains controversial. In vitro studies have shown
that sex hormones such as estradiol and dihydrotestosterone (DHT)
can inhibit the production of pro-inflammatory cytokines during the
trained immune response elicited by BCG (48). Therefore, further
research is required to define the specific contribution of sex
hormones to trained immunity and how differs from the induction
by BCG or b-glucan. To our knowledge, there is only limited studies
comparing the metabolic and epigenetic landscape associated with
immune training induced by BCG in comparison to b-glucan (67,
74, 75).
TRAINED IMMUNITY ON ALVEOLAR
MACROPHAGES AND INVOLVEMENT
OF RESIDENT CELLS

Alveolar macrophages (AMs) are the main sentinels that reside
in the alveolar space and represent an example of tissue-resident
cells in which trained immunity has been described (76). Most of
the current knowledge in innate immune memory comes from
systemic infection or immunization data, which induces innate
memory in circulating monocytes or macrophages (21, 62). The
establishment of trained immunity on AMs provides an example
for the involvement of adaptive immunity for the development of
trained immunity on innate immune cells (76). Consistently with
this notion, a recent study showed that the interaction between
Frontiers in Immunology | www.frontiersin.org 5
alveolar macrophages (AMs) and T cells in the surface mucosal
allows the development a memory-like response in
macrophages (76).

Evidence showed that S. pneumoniae infection following
adenovirus vaccination induces trained immunity on AMs via
a rapid increase of chemokines and neutrophilia (76). In this
process, CD8+ T cells are required for the priming of AMs
through secretion of IFN-g (76). Following infection, AMs up-
regulate the expression of MHC II (76). Furthermore, when
CD8+ T cells were depleted, a loss of AMs memory was observed
at 7 and 28 days post depletion, accompanied by a decrease in
AMs glycolytic rate (76). Although this type of interaction
between an innate and adaptive immune response generates
trained immunity phenotype in AMs, it would be important to
evaluate whether other resident cell populations, such as DCs can
be trained in this manner (76).
TRAINED IMMUNITY IN NK CELLS

Natural killer (NK) cells are another cell type with the ability to
adopt an immune memory-like phenotype for viral pathogens
(73). Consistently with this notion, it was shown that NK cells
can adopt a memory phenotype against murine cytomegalovirus
(MCMV) (77). Studies in mice showed that adoptive transfer of
MCMV-induced memory NK cells significantly increased the
survival of newborn mice upon MCMV infection as compared to
mice transferred with unexperienced NK cells (78). The
mechanisms underlying trained immunity, in this case, involved
structural changes at the chromatin structure, in which the
suppressive DNA methylation is reduced in the locus of genes
codifying for antiviral cytokines such as interferon (IFN)-g (73).
Furthermore, regulatory genes important for cell activation become
accessible for the transcriptional machinery allowing a faster
response upon stimulation (73). Studies from cohort patients
showed that cytomegalovirus (CMV) seropositivity was
associated with the expansion of memory NK cells (79).
Identifying such memory cells was based on the expression of the
activating receptor NKG2C, which recognizes MHC-I presented
peptides leading to cell activation (80). NKmemory-like cells have
also been shown to be induced by theBCGvaccine (81). Inhumans,
enhanced IFN-gproductionbyNKcells fromvaccinated volunteers
was still present over one year after vaccination, suggesting that
BCG induces long-lasting memory in NK cells (81). Furthermore,
this BCG-induced memory increased production of IFN-g, IL-1b,
IL-6, and TNF-a following challenges withM. tuberculosis andM.
tuberculosis-unrelated pathogens, such as C. albicans and S. aureus
(Figure 1) (81).

Experimental studies have shown that cytokine priming with an
antibody cocktail containing IL-12, IL-18, and IL-15 is sufficient to
program NK cells to produce higher levels of IFN-g upon re-
challenge with cytokines or antibodies targeting activating
receptors, such as Ly49H and NK1.1 (82). Furthermore, the
ability to produce IFN-g is maintained at least for a month and
passed frommother to daughter cells, suggesting that this memory
is epigenetically controlled (66). This notion is further supported by
observation that the pre-activation of NK cells with IL-12, IL-18,
October 2021 | Volume 12 | Article 745332
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and IL-15 cytokines promoted demethylation of IFN-g regulatory
elements (83). These findings suggest that NK cells can develop
non-antigen-specific memory, in a process driven by chromatin
remodeling (82, 83).
TRAINED IMMUNITY IN INNATE
LYMPHOID CELLS

Innate lymphoid cells (ILCs) display classical lymphoid cell
morphology lacking the diversified antigen receptors expressed
on T and B cells (84). ILCs consist of three groups: group 1 ILC
(ILC1) producing IFN -g, group 2 ILC (ILC2) producing IL-4, IL-5,
and IL-13, and group 3 ILC (ILC3) that produce IL-17 and IL-22,
which have functions similar to their pairs of adaptive immunity,
helper T cells (Th) of the type Th1, Th2, and Th17 respectively (84,
85). Thus, the cytokines produced by ILCs contribute to multiple
immune pathways, including lymphoid development, metabolic
homeostasis, maintenance of appropriate immune responses to
commensals and pathogens in mucosal barriers, enhancing
adaptive immunity, and regulating tissue inflammation (84, 85).

During infections of humans or mice with M. tuberculosis,
ILCs are decreased in peripheral blood and migrate to the site of
infection in which recruitment is regulated through the CXCL13/
CXCR5 axis (86). The IL-22 produced by ILC3 is essential to
inhibit excess inflammation and damage to epithelial cells in
mice infected by M. tuberculosis; these cells also reduce the
bacterial load (87). It has recently been shown that ILCs have
immune responses that resemble the training observed in other
Frontiers in Immunology | www.frontiersin.org 6
cells of the innate immune system; intranasal injection of BCG
can increase the recruitment of ILCs to the lungs and improve
IFN-g production (13). However, it was also documented that
exposure of ILC-2 to allergens such as Aspergillus induces a
pathological trained immunity response characterized by the
secretion of Th2 related cytokines such as IL-5 and IL-13
(Figure 1) (88). These data suggest that trained immunity can
also generate pathological responses depending on the stimuli
involved. Further studies are needed to elucidate the epigenetic
changes and metabolic factors associated with ILC-2 training (88).
TRAINED IMMUNITY ON
HEMATOPOIETIC STEM CELLS

Hematopoietic stem cells (HSCs) are long-lived cells mainly
present in the bone marrow (BM), which can self-renew and
generate multipotent and lineage-committed hematopoietic
progenitors, which then originate the entire set of cells present
in the mammalian blood system (89). Interestingly, a recent
study showed that allowing the access of BCG vaccine to the
bone marrow employing intravenous immunization rather than
subcutaneous (sc) route in mice modified the transcriptomic
landscape of HSCs resulting in enhanced myelopoiesis (19). As
compared to the standard subcutaneous route, an intravenous
administration of BCG favors the expansion of HSC progenitors
and the up-regulation of different genes involved in DNA
replication, cell division, and cell cycle (19). Among them,
various key regulators of cell cycle progression such as Cdk1,
FIGURE 1 | Cell subsets in which trained immunity has been described. Different stimuli including BCG, b-glucan, cytokines, CMV, and bacterial components can
induce a trained immunity phenotype. A common hallmark of trained immunity in these cases is the presence of H3K4me3 in the promoters of genes encoding for
different cytokines described in the figure.
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Cdk4, and other cyclins were strongly up-regulated in HSCs of
mice vaccinated intravenously with BCG as compared with
HSCs from animals immunized subcutaneously BCG
(Figure 1) (19). Interestingly, macrophages derived from the
bone marrow of mice immunized intravenously with BCG, but
not subcutaneously, showed significantly better protection
against an in vitro M. tuberculosis challenge (19). Therefore,
the outcomes of trained immunity also involved changes in the
precursors of innate cells, such as macrophages and neutrophils
(19). In the latter case, as mature neutrophils have a short
lifespan it was demonstrated that trained immunity can act via
the modulation of hematopoietic stem cells (HSCs) (90). In this
in vivo study, intraperitoneal injection of mice with b-glucan
increased the numbers and frequency of multipotent progenitors
and hematopoietic progenitors in the bone marrow and led to
enhanced cell-cycle progression in HSCs (90). This was a
beneficial response facing a second heterologous challenge with
LPS or chemotherapy-induced myelosuppression (90). However,
elevated production of cytokines, such as IFN-g can also produce
unwanted cell survival effects because sustained IFN-g signaling
can have negative consequences on hematopoietic stem cells by
increasing susceptibility for secondary stress-induced apoptosis
(91). However, is still controversial whether IFN-g alone induces
HSC apoptosis. In vitro IFN-g treatment of human HSCs co-
cultured with stromal cells augmented HSC apoptosis (92). In
addition, RNA expression studies of HSCs from patients with
high IFN-g levels have indicated an increase in the transcription
of apoptosis-related genes (93). Furthermore, stimulation of
HSCs with IFN-g alone showed no increase in apoptosis (94).
Therefore, suggesting that interaction of IFN-g with the action of
other cells modulates HSCs apoptosis. These findings provide
valuable information to developing new therapeutic approaches
to target trained immunity and cytokine production for diseases
in which cell cycle disorders play a significant role, such as
cancer (95).
TRAINED IMMUNITY IN BRONCHIAL
EPITHELIAL CELLS

Although many reports have shown that trained immunity is
triggered in innate immune cells, a recent study highlights the
ability of respiratory epithelial cells in acquiring a memory
phenotype after exposure to flagellin from Pseudomonas
aeuroginosa (P. aeuroginosa) (20). Specifically, in vitro studies
showed that pre-exposure of human bronchial epithelial cells
(BEAS2-B) to this bacterial component increases their
inflammatory response to living conidia from Aspergillus
fumigatus (A. fumigatus) and LPS (20). In this case, trained
cells produced increased levels of IL-8 and IL-6 following LPS or
A. fumigatus challenge in comparison to non-trained controls
(Figure 1). Trained immune responses were shown to rely on
epigenetic modifications. For example, inhibition of histone
acetyltransferase with epigallocatechin-3-gallate (EGCG)
significantly reduced the flagellin-induced IL-8 trained immune
response to A. fumigates (Table 1) (20). Similarly, treatment of
Frontiers in Immunology | www.frontiersin.org 7
cells with BIX01294, an inhibitor of histone methyltransferase
which prevents methylation of H3K4, also reduced flagellin-
induced IL-8 trained immune response without affecting the IL-8
levels observed in non-trained cells (Table 1) (20).
TRAINED IMMUNITY IN SKIN
STEM CELLS

Skin stem cells have been also shown capable of generating a
prolonged memory to acute inflammation, which allows
accelerating the restoration after subsequent damage in a model
of skin inflammation induced by TLR7 and the NALP3 agonist
imiquimod (96). Sequence analyses revealed an increase of
inflammation and hyper proliferation-associated pathways,
including apoptosis signaling, interleukin signaling, oxidative
stress response, and PI3 kinase pathways (96). It was suggested
that the memory experienced by the inflammation of skin epithelial
stem cells may be the basis for the recurrent skin inflammation
exhibited by patients with autoimmune disorders, such as psoriasis
and atopic dermatitis, as well as hyperproliferative disorders,
including cancer (96).
TRAINED IMMUNITY IN THE
GASTROINTESTINAL TRACT

Evidence from recent studies showed that b-glucan can also
influence intestinal inflammation and epithelial barrier function.
Experiments in mice showed that oral administration of b-
glucan could aggravate intestinal inflammation in a model of
dextran sodium sulfate (DSS)-induced colitis (97). In addition,
mice lacking dectin-1, the receptor for b-glucan, also showed
augmented susceptibility to DSS-induced colitis, a finding
recapitulated in humans with specific polymorphisms in dectin-1
(97). Prolonged oral treatment of mice with antifungals increases
disease severity in models of chronic colitis and chronic allergic
airways disease (98). Such findings highlight the importance of a
healthy fungal community in gut homeostasis. Furthermore, these
results also suggest that gut microbiota may influence peripheral
immune responses and pulmonary allergies. In this line, additional
research is needed to further elucidate the role of trained immunity
in the gut in health and disease.
IMMUNITY TRAINING IN AGAINST
PROTOZOAN-MEDIATED PATHOLOGIES

The trained immunity also confers protection against protozoan
infectious agents, as demonstrated for Leishmaniasis, which is
associated with a pro-inflammatory activity in monocytes and
macrophages (99–102). A recent study shows that the induction
of trained immunity by b-glucan increases the efficiency of
phagocytosis and the clearance of L. braziliensis, in parallel
with increased production of cytokines, specifically IL-6 and
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IL-10 (100). Such an increased immune response depends on the
enhanced expression of IL-32 that induces antimicrobial
peptides (100).
TRAINED IMMUNITY IN NON-
INFECTIOUS PATHOLOGIES

The trained immunity induced by BCG or b-glucan not only
confers non-specific protection against infectious agents, but also
to other pathologies, such as cancer (39). For example, the BCG
vaccine can contribute to the anti-tumor immune response as a
treatment in bladder cancer (39). The anti-tumor effect of BCG
seem to rely on the ability to induce trained immunity in
monocytes in which autophagy plays an essential regulatory
role (103, 104). It has been shown during non-muscle-invasive
bladder cancer that high expression of histone methyltransferase
G9a is associated with poor cancer prognosis (39).The activity of
this enzyme inhibits the induction of trained immunity in
monocytes (39). In addition pharmacological inhibition of G9a
improves trained immune responses, accompanied by a decrease
in H3K9me2 marks on pro-inflammatory genes (39).
Furthermore, ex vivo inhibition of G9a is associated with an
amplified trained immune response and altered RNA expression
of inflammatory genes in monocytes derived from patients
suffering non-muscle-invasive bladder cancer (39).

In contrast, functional and transcriptional reprogramming
toward a long-term pro-inflammatory phenotype of monocytes
and macrophages after brief in vitro exposure to ox-LDL
contributes to the progression to atherosclerosis (23, 105).
Monocytes from patients with severe symptomatic coronary
atherosclerosis display a pro-inflammatory phenotype
associated with the epigenetic remodeling at the level of
histone methylation and higher expression of speed-limiting
enzymes of the glycolysis and pentose phosphate pathways
(106). Consistently with this notion, bone marrow-derived and
peritoneal macrophages from ApoE-/- mice (a murine model of
atherosclerosis) produced more pro-inflammatory cytokines
after TLR stimulation by LPS than did saline-treated controls.
These data suggest that an ApoE deficiency may lead to the
development of trained immunity (107). However, additional
research is needed to determine the relationship between trained
immunity and this pathology.
CONCLUDING REMARKS

While the induction of trained immunity has been shown for
different types of innate cells, there is increasing evidence
showing that other non-immune cells could also contribute to
this type of immune/inflammatory response. Important
questions that remain to be answered include elucidating the
spectrum of cells that can develop a trained immunity phenotype
and test if this process depends on the origin of cells. Finally, it
will be important to elucidate the mechanism regulating trained
Frontiers in Immunology | www.frontiersin.org 8
immunity to provide an enhanced host defense while preventing
a deleterious inflammation on different tissues. Answers to these
questions in future studies are crucial to targeting trained
immunity to develop broad-spectrum therapeutic approaches
against infectious and non-infectious diseases.
FUTURE PERSPECTIVES

Here we have described and discussed as to how different
epigenetic and metabolic changes can lead to the establishment
of trained immunity. There is an intricate relationship between
the metabolic reprogramming of cells and epigenetic changes
given by the ability of multiple metabolites to modulate the
activity of histone-modifying enzymes that subsequently
regulate gene expression. However, many gaps of knowledge
remain in this field. For example, it remains to define how long
the changes associated to trained immunity last and if, in addition
to epigenetic modulation, there are other post-translational
modifications on proteins relevant for the induction of trained
immunity. Finally, due to the wide arsenal of epigenetic and
metabolic pathways involved in regulation of trained immunity
there are several potential targets to modulate the magnitude of
trained memory responses and subsequently regulate
inflammation. However, because it is currently thought that
epigenetic modulators may have pleiotropic unwanted effects, it
is possible that using LncRNAs could constitute a more specific
therapeutical approach. The knowledge about the factors
controlling the folding state of a given LncRNA, as well as the
identification of structural motifs involved in interaction with
histone modifying enzymes, may contribute to the design of next-
generation therapies able to increase the expression of relevant
cytokines to enhance antimicrobial responses of different cell
sub-sets.
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