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Protective effects of Panax notoginseng 
saponins in a rat model of severe acute 
pancreatitis occur through regulation 
of inflammatory pathway signaling by 
upregulation of miR-181b

Ming-wei Liu1, Yun-qiao Huang1, Ya-ping Qu2, Dong-mei Wang3, 
Deng-yun Tang3,4, Tian-wen Fang2, Mei-xian Su4,5  
and Yan-qiong Wang6

Abstract
Panax notoginseng saponins are extracted from Chinese ginseng—Panax notoginseng Ledeb—and are known to have 
therapeutic anti-inflammatory effects. However, the precise mechanism behind their anti-inflammatory effects remains 
relatively unknown. To better understand how Panax notoginseng saponins exert their therapeutic benefit, we tested 
them in a rat model of severe acute pancreatitis (SAP). Rats received a tail vein injection of Panax notoginseng saponins 
and were administered 5% sodium taurocholate 2 h later. Pancreatic tissue was then harvested and levels of miR-181b, 
FSTL1, TREM1, TLR4, TRAF6, IRAK1, p-Akt, p-p38MAPK, NF-κBp65, and p-IκB-α were determined using Western 
blot and quantitative real-time polymerase chain reaction (qRT-PCR). Enzyme-linked immunosorbent assays were 
used to determine serum levels of tumor necrosis factor-α (TNF-α), TREM1, interleukin (IL)-6, ACAM-1, IL-8, and 
IL-12 and DNA-bound levels of NF-KB65 and TLR4 in pancreatic and ileum tissue. Serum levels of lipase and amylase, 
pancreatic myeloperoxidase (MPO) activity, and pancreatic water content were also measured. Hematoxylin and 
eosin staining was used for all histological analyses. Results indicated upregulation of miR-181b, but negligible levels 
of FSTL1, p-p38MAPK, TLR4, TRAF6, p-Akt, IRAK1, TREM1, p-NF-κBp65, and p-IκB-α, as well as negligible DNA-
bound levels of NF-KB65 and TLR4. We also observed lower levels of IL-8, IL-6, ACAM-1, TNF-α, MPO, and IL-12 in 
the Panax notoginseng saponin–treated group when compared with controls. In addition, Panax notoginseng saponin–
treated rats had significantly reduced serum levels of lipase and amylase. Histological analyses confirmed that Panax 
notoginseng saponin treatment significantly reduced taurocholate-induced pancreatic inflammation. Collectively, our 
results suggest that Panax notoginseng saponin treatment attenuated acute pancreatitis and pancreatic inflammation by 
increasing miR-181b signaling. These findings suggest that Panax notoginseng saponins have therapeutic potential in the 
treatment of taurocholate-induced SAP.
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Introduction

Severe acute pancreatitis (SAP) is a condition with 
many complications, resulting in a high death rate 
of between 20% and 30%.1–5 However, acute pan-
creatitis (AP) is usually mild, has no complica-
tions, and usually heals on its own.1 SAP has 
several significant pathological features, including 
a large area of necrotic tissue and extensive pan-
creatic hemorrhage.2 Clinically, SAP is often 
accompanied by acute renal insufficiency, acute 
lung injury (ALI), and hepatic impairment.3,4 Late-
stage SAP features multiple organ dysfunction 
syndromes (MODS), and uncontrolled SAP can 
result in multiple organ failure (MOF).3 Despite its 
significant health effects and high mortality rate, 
there remains no satisfactory treatment for SAP. 
Current therapeutic methods are purely sympto-
matic and focused on pain relief, gastric decom-
pression, and the maintenance of balanced 
electrolytes, fluids, and pH.6 Given this great ther-
apeutic need, attention has recently turned to the 
active ingredients found in Panax notoginseng.7 It 
has been hoped that of these, one might prove ben-
eficial in the treatment of SAP.

Panax notoginseng is one of the most commonly 
used species in traditional Chinese medicines 
(TCMs) and has significant efficacy in treating path-
ological hemostasis, promoting blood circulation, 
and alleviating pain.7,8 Panax notoginseng saponins 
are obtained from Panax notoginseng (Chinese gin-
seng) extracts and are primarily composed of ginse-
nosides (Rg1, Rb1, and Rg2), notoginsenoside R1, 
and RK3.7 Ginsenoside Rb1 is an inhibitor of vascu-
lar cell adhesion molecule 1 (VCAM-1).8 Several of 
these compounds have active biological properties; 
for instance, protopanaxadiol-type saponin is the 
most potent saponin fraction against tumor necrosis 
factor-α (TNF-α)-induced monocyte adhesion.9 
Moreover, ginsenoside Rb1 functions as a phytoes-
trogen and ginsenoside Rg1 has been shown to 
lower hepatic oxidative stress in exercising rats.10,11 
In addition, ginsenoside Rg1 protects against mem-
ory impairments.12 Panax notoginseng is also an 

inhibitor of TNF-α-induced endothelial adhesion 
molecule expression and monocyte adhesion.13 In 
apolipoprotein E (ApoE)-deficient mice, ginseno-
side Rg2 also suppresses RAGE/MAPK signaling 
and helps block nuclear factor kappa B (NF-κB).14 
Finally, Rg1 and RK3 activate the phosphatidylino-
sitol-3 kinase Akt pathway and inhibits p38 MAPK 
signaling.8,15 Critically, Panax notoginseng sapo-
nins may be help slow or prevent inflammatory dis-
eases; however, the mechanism(s) of action of 
Panax notoginseng with regard to disease modifica-
tion remain relatively unknown.

MicroRNAs (miRNAs) are the primary regula-
tors in a variety of biological processes.16 Specific 
disease-related miRNAs that have been recently 
identified include those for several kinds of can-
cers, autoimmune diseases, and infectious  
diseases.16–18 Additional related miRNA studies 
have verified some of these functions in vivo.19–21 
However, the role of miRNAs in inflammatory dis-
eases like AP remains poorly understood. Relatedly, 
it is also necessary to better understand whether 
miR-181b functions as a cytokine-responsive 
miRNA in the regulation of the pancreatic response 
to inflammation.

Previous in vivo reports have shown that the 
FSTL1 protein significantly reduced pro-inflamma-
tory mediator expression in the ischemic areas of 
the myocardium.22 Additional in vitro work has 
extended these findings, showing that the treatment 
of either cultured cardiomyocytes or macrophages 
with FSTL1 protein decreased pro-inflammatory 
gene expression in response to lipopolysaccharide 
(LPS) application.23

The first identified member of the TREM fam-
ily, TREM1, is widely expressed on pathogen-
exposed myeloid cells.24 Enhanced TREM1 
expression promotes excessive inflammation and 
increases circulating chemokines and cytokines.

Here, we sought to evaluate the role of the miR-
181b signaling pathway in taurocholate-induced AP. 
After taurocholate treatment, miR-181b signaling 
decreased, FSTL1 and TREM1 signaling pathways 
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were enhanced, and the levels of inflammatory gene 
and protein levels in the mouse pancreas were ele-
vated. Collectively, these effects contributed to later 
pancreatic injury. Importantly, Panax notoginseng 
saponins enhanced miR-181b signaling, blocked 
FSTL1 and TREM1 activity, and reduced pancreatic 
injury. This led to a weaker presentation of AP. 
Taken together, our results demonstrate that Panax 
notoginseng saponins attenuated AP and pancreatic 
inflammation by increasing miR-181b signaling 
activity. Our study further suggests that the miR-
181b signaling pathway functions as a protective 
factor in the development of AP.

Materials and methods

Reagents

A commercially available reverse transcription 
(RT) reaction kit (Takara Shuzo Co., Ltd., Kyoto, 
Japan) and a commercially available Trizol kit 
(Invitrogen, Carlsbad, CA, USA) were both used 
according to the manufacturer’s instructions. 
Commercially available DNA markers and poly-
merase chain reaction (PCR) kit (Roche, South San 
Francisco, CA, USA) were also used according to 
the manufacturer’s instructions. Rabbit polyclonal 
antibodies to FSTL1 and TREM1 were purchased 
from Sigma Chemical (St. Louis, MO, USA). 
Rabbit polyclonal anti-Akt, anti-p-Akt, and rabbit 
polyclonal anti-TLR4 antibodies were purchased 
from Cell Signaling Technology (Danvers, MA, 
USA), while rabbit polyclonal antibodies to 
TRAF6 and IRAK1 were purchased from American 
Diagnostica (Stamford, CT, USA). Rabbit poly-
clonal antibodies to p38MAPK and p-p38MAPK 
were purchased from Cell Signaling Technology). 
Rabbit polyclonal antibody to p-IRAK1 was pur-
chased from Sigma Chemical, while rabbit poly-
clonal antibodies toNF-kBp65 and p-NF-kBp65 
were obtained from Innovative Research 
(Southfield, MI, USA). Rabbit polyclonal antibod-
ies to IκB-a and p-IκB-a were purchased from 
Abcam (Cambridge, MA, USA). Rabbit polyclonal 
β-actin was obtained from Promega (Madison, WI, 
USA). ACAM-1 and IL-12 enzyme-linked immune 
sorbent assay (ELISA) kits were obtained from 
BioLegend (San Diego, CA, USA), while TNF-α, 
interleukin (IL)-6, and IL-8 ELISA kits were 
obtained from the Science and Technology 
Development Center of the People’s Liberation 
Army General Hospital (Beijing, China).

Drugs

Panax notoginseng saponin extracts were acquired 
from Yunnan Baiyao Group Co., Ltd. (Kunming, 
Yunnan, China, Approval No. Zhunzi Z5302149). 
All active compounds were identified and bio-
chemical fingerprints obtained according to previ-
ously reported methods.7–13 The main active 
components included notoginsenoside R1 and gin-
senosides Rg1 and Rb1.

Cell culture

The pancreatic acinar cell line25 was used to 
observe the in vitro effects of miR-181b on AP. 
Pancreatic acinar cells were freshly harvested from 
male Sprague Dawley rats (200–220 g) through 
enzymatic digestion using a previously described 
protocol.26 The harvested pancreatic acinar cells 
were grown in DMEM containing 100 U/mL peni-
cillin, 5% fetal bovine serum (FBS), 50 µg/L 
amphotericin B, and 100 U/mL streptomycin at 
37°C in a humidified atmosphere containing 5% 
CO2. Cells were cultured in six-well plates until 
they were subconfluent.

miRNA mimics, miRNA, inhibitors, and gene 
transfection

Pancreatic acinar cells were cultured to 40% con-
fluence. miR-181b mimics, miR-181b mimic-neg-
ative control (NC), miR-181b inhibitor, and 
miR-181b inhibitor-NC (Invitrogen) were individ-
ually added to Lipofectamine 2000 (Invitrogen) 
and the resulting mixture was added to the cell 
medium. Total RNA and all proteins were obtained 
24 h post-transfection and stored for later quantita-
tive real-time polymerase chain reaction (qRT-
PCR) and Western blot analyses.

miR-181b target gene prediction and dual 
luciferase reporter assay

Two software applications (PicTar, www.pictar.org 
and Target Scan, http://www.targetscan.org) and 
one database (www.mirbase.org) were used to 
determine possible miR-181b targets. Pancreatic 
acinar cells (1 × 105) were cultured in 24-well 
plates and transfected using Lipofectamine 2000 
(Invitrogen) with one of the following: FSTL1, 
TREM1-3′UTR-wt, FSTL1, TREM1-3′ UTR-mt, 
mi-181b, or mi-NC. At 24 h post-transfection, a 

www.pictar.org
http://www.targetscan.org
www.mirbase.org
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luciferase activity was conducted using the Dual 
Luciferase Reporter Assay System (Promega). 
Results were then normalized to Renilla luciferase 
activity.

AdCMV-miR-181b administration

AdCMV-miR-181b was constructed as previously 
described.27 A constitutively active miR-181b con-
struct was administered (1 × 109 pfu of AdCMV-
miR-181b) via tail intravenous injection into 
Sprague Dawley rats. Administration was followed 
by taurocholate-induced pancreatitis after 10 days 
post-intravenous (IV) administration of AdCMV-
miR-181b. Control rats received an empty adeno-
viral vector and identical taurocholate exposure.

Animals

Adult male Sprague Dawley rats were obtained 
from Kunming Medical University Laboratory 
Animal Center (Kunming, China). All rats were 
housed in the Animal Care Facility of Kunming 
Medical University under pathogen-free condi-
tions in controlled (30%–70%) humidity. Standard 
laboratory chow and water were provided ad libi-
tum. In all experiments, 8- to 9-week-old rats were 
used. All experiments were approved by the Animal 
Care Committee of Kunming Medical University.

Taurocholate-induced SAP

Under aseptic conditions, rats were anesthetized 
using 1% pentobarbital sodium (i.p., 35 mg/kg 
body weight). SAP was modeled using a microin-
fusion pump containing 5% sodium taurocholate 
(1.5 mL/kg body weight). Taurocholate was admin-
istered at a rate of 0.2 mL/min according to previ-
ous reports.28 Sham-operated animals underwent 
the same surgical procedures but did not have 
active infusion into the pancreas.

Animal groups and treatment

Rats (n = 32) were equally and randomly divided 
into the following four groups: sham-operated 
(SO), sham-operated with treatment (treatment 
SO), SAP model (model), and SAP model with 
treatment (treatment SAP). Treatment groups 
(treatment SO and treatment SAP) received a tail 
injection (50 mg/kg) of Panax notoginseng sapo-
nin extract every 8 h for 24 h. Normal control, 

sham, and control groups were given the same vol-
ume of saline according to the same injection 
schedule. After 24 h, all rats were anesthetized 
using 2.5% sodium pentobarbital (150 mg/kg; 
Wuhan Dinghui Chemical Co., Ltd., Wuhan, 
China) and the right internal carotid artery was iso-
lated. Blood (5 mL) was extracted and then imme-
diately centrifuged. The supernatant was collected, 
aliquoted into two sterile tubes, and stored at 
−20°C until later analysis. Ascites volume was 
acquired from the opened abdominal wall. Both 
serum and ascites fluid were used to establish 
amylase levels and ascitic capacity. After rapid cer-
vical dislocation, ileum and pancreatic tissue were 
rapidly removed and fixed in 10% formalin for 
later histological analyses. Separate pancreatic 
portions were processed to assess water content.

qRT-PCR

Total RNA was extracted using TRIzol (Invitrogen) 
and a Nanodrop spectrophotometer (ND-100; 
Thermo, Waltham, MA, USA) used to assess result-
ing RNA concentrations. Total RNA was reverse 
transcribed to complementary DNA (cDNA) using 
the HiScript 1st Strand cDNA Synthesis Kit 
(Vazyme, Nanjing, China) according to the manu-
facturer’s instructions. The stem-loop RT-qPCR 
method was used to generate cDNA from miR-
NAs.18 All qRT-PCR experiments were performed 
in triplicate using the ABI StepOnePlusTM  
real-time PCR system (Applied Biosystems, Foster 
City, CA, USA). The thermocycling program used 
was as follows: pre-incubation at 95°C for 10 min, 
35 cycles of denaturation at 95°C for 15 s, anneal-
ing at 60°C for 5 s, and elongation at 72°C for 12 s. 
Endogenous controls were U6 and β-actin and were 
used to generate miRNA and messenger RNA 
(mRNA) expression profiles, respectively. All 
expression levels were normalized to their respec-
tive endogenous control, and the 2−∆∆Ct method20 
was used to calculate fold-change in gene expres-
sion. Primers are provided in Table 1.

Western blot analysis

Nuclear, cytoplasmic, and whole protein concen-
trations obtained from rat pancreatic tissue were 
determined using the bicinchoninic acid (BCA) 
method,22 after which all proteins were run on 10% 
sodium dodecyl sulfate polyacrylamide gel 
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electrophoresis (SDS-PAGE; Bio-Rad, Hercules, 
CA, USA) using an 80-µg protein aliquot or equal 
amount of concentrated supernatant, 100 V was 
used, and for 100 min. The proteins were separated 
using 4-12% gradient SDS-PAGE and transferred 
onto polyvinylidene difluoride membranes, 17 mA 
was used and for overnight. Membranes were 
blocked with 5% (w/v) milk in TBST (0.05% 
Tween) at room temperature under agitation for 1 h 
to prevent non-specific binding. Blots were then 
incubated overnight at 4°C with primary antibod-
ies including anti-FSTL1 (1:1000), anti-TREM1 
(1:1000), anti-Beclin1 (1:200), anti-Akt (1:1000), 
anti-phospho-Akt (1:1000), anti-TLR4 (1:200), 
anti-TRAF6 (1:500), anti-IRAK1 (1:500), anti-
phospho-IRAK1 (1:500), anti-phospho-p38MAPK 
(1:1000), anti-p38MAPK (1:1000), anti-NF-kBp65 
(1:1000), anti-phospho-NF-kBp65 (1:1000), anti-
IκB-a (1:1000), anti-phospho-IκB-a (1:1000), and 
anti-β-actin (1:1000) diluted in 5% bovine serum 
albumin (BSA). Lamin-A and β-actin were used as 
the internal references for nuclear/cytoplasmic and 
whole proteins, respectively. After overnight incu-
bation, membranes were washed with TBST and 
incubated for 1 h at room temperature with the 
appropriate secondary goat anti-rabbit IgG-
horseradish peroxidase (HRP) antibody (Santa 
Cruz Biotechnology, Dallas, TX, USA; 1:2000) or 
goat anti-mouse IgG-HRP antibody (Santa Cruz 
Biotechnology; 1:2000). All secondary antibodies 
were diluted in 5% (w/v) milk in TBST. The same 
protein load was confirmed with β-actin. All 
Western blots were densitometrically quantified 
using the Bio-Rad Universal Hood and Quantity 
One software (Bio-Rad). All results were normal-
ized to β-actin levels in each lane.

Immunohistochemical analysis

Pancreatic tissue sections were subjected to antigen 
retrieval with Retrievagen A (Zymed Laboratories, 
Inc., San Francisco, CA, USA) and endogenous 
peroxidase activity quenched with 3% H2O2 
(Tianjin Jinqiang Chemical Co. Ltd., Tianjin, 
China). Sections were then blocked in 2% BSA in 
phosphate buffered saline (PBS) to prevent non-
specific binding and incubated with primary anti-
NF-κB antibody (1:200; BD Pharmingen, Woburn, 
MA, USA) for 1 h at room temperature. Sections 
were then washed with PBS and incubated with a 
biotinylated rabbit anti-goat antibody (Thermo, 
Freemont, CA, USA) for 30 min at 37°C. Sections 
were developed using Vectastain ABC and 
3,3′-diaminobenzidine (Sigma-Aldrich, St. Louis, 
MO, USA). Sections were mounted and analyzed: 
Five fields (magnification, 200×) were randomly 
selected from each section and the average propor-
tion of NF-κB-positive cells were counted using a 
true color, multi-functional cell image analysis 
management system (Image-Pro Plus; Media 
Cybernetics Inc., Rockville, MD, USA). All results 
were expressed as positive units (pu).

Myeloperoxidase activity

Pancreatic neutrophil sequestration was quantified 
by assessing its myeloperoxidase (MPO) activity.29 
Briefly, pancreatic tissue samples were homoge-
nized in 20 mM phosphate buffer (pH 7.4) and cen-
trifuged for 10 min (12,000g, 4°C). The pellet was 
re-suspended in 50 mM phosphate buffer (pH 6) 
with 0.5% hexadecyltrimethylammonium bro-
mide. The suspensions underwent three cycles of 
freezing and thawing, sonicated for 60 s, and 

Table 1. Primers used for qRT-PCR.

miR-181b F-5′-ACATTCATTGCTGTCGGTGGGT-3′
R-5′-CGCTTCACGAATTTGCGTGTCA-3′

215 bp

U6 F-5′−GTGCTCGCTTCGGCAGCACATATAC-3′
R-5′-AAAAATATGGAACGCTCACGAATTTG-3′

237 bp

FSTL1mRNA F-5′-TTATGATGGGCAGGCAAAGAA-3′
R-5′-ACTGCCTTTAGAGAACCAGCC-3′

318 bp

TREM1 mRNA F-5′-TGGTCTTCTCTGTCCTGTTTG-3′
R-5′-ACTCCCTGCCTTTTACCTC-3′

254 bp

Akt mRNA F-5′-TCACCTCTGAGACCGACACC-3′
R-5′-ACTGGCTGAGTAGGAGAACTGG-3′

174 bp

β-actin F-5′-GATTACTGCTCTGGCTCCTGC-3′
R-5′-GACTCATCGTACTCCTGCTTGC-3′

190 bp

qRT-PCR: quantitative real-time polymerase chain reaction
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centrifuged for an additional 5 min (12,000g, 4°C). 
The supernatant was used for MPO assay. A 
Beckman spectrophotometer (DU640B; Beckman 
Coulter, CA, USA) was used to detect absorbance 
changes at 450 nm after 5 min of incubation. One 
unit of MPO activity (units/milligram of tissue) 
was defined as the amount required to break down 
1 mmol of peroxide per minute at 25°C.

Serum amylase, lipase, TREM1, and  
pro-inflammatory cytokine levels and levels 
of DNA-bound NF-KB65 and TLR4 in the 
pancreas and ileum

Serum activities of amylase and lipase were deter-
mined using commercially available kits and in 
conjunction with a Roche/Hitachi modular analyt-
ics system (Roche, Mannheim, Germany). A com-
mercial ELISA kit (Quantikine; R&D Systems, 
Minneapolis, MN, USA) was used to determine the 
serum levels of TNF-α, IL-8, ACAM-1, IL-6, 
IL-12, and TREM1 according to the manufactur-
er’s instructions. Levels of DNA-bound NF-KB65 
and TLR4 in pancreas and ileum tissue were also 
assessed using separate, commercially available 
ELISA kits according to the manufacturer’s 
instructions.

Serum endotoxin and d-lactate assays

Previously collected blood samples were added in 
ethylenediaminetetraacetic acid (EDTA)-containing 
tubes, centrifuged, and the serum isolated. Serum 
samples were stored at −80°C until later assays. 
Serum endotoxin levels were determined using a 
quantitative chromogenic endpoint Limulus 
Amebocyte Lysate (LAL) QCL-1000 kit (Lonza, 
Walkersville, MD, USA) according to the manufac-
turer’s instructions. Serum d-lactate levels were 

spectrophotometrically determined using commer-
cially available kits (Genmed, Shanghai, China) 
according to the manufacturer’s instructions.

Pancreatic water content

Pancreata were weighed to assess changes in pan-
creatic interstitial edema. To determine pancreatic 
water content, a fresh pancreas sample was blotted, 
weighed, dried for 12 h at 95°C, and then weighed 
again. The difference in weight between wet and 
dry pancreas was calculated as the tissue wet 
weight percentage.

Histological examination and scoring of the 
pancreas

Pancreata were fixed overnight in 10% buffered for-
malin at 4°C and embedded in paraffin. Full-length 
(4 μm) sections were acquired and stained with 
hematoxylin and eosin (H&E) for later histological 
evaluation. According to previously published meth-
ods,30 edema, hemorrhage, inflammation, and necro-
sis were graded from 0 to 4 as shown in Table 2.

Histopathological assessment of ileal tissue

After blood sample collection, ileal tissue samples 
were harvested for later evaluation of any histo-
pathological changes. Briefly, sections were 
stained with H&E and then examined under light 
microscopy and blind conditions by two patholo-
gists. Both pathologists assessed ileal histopathol-
ogy according to the standard scale established by 
Chiu et al.31 The degree of mucosal damage was 
graded as follows: 0 = normal mucosa, 1 = develop-
ment of subepithelial space at the tip of the villus, 
2 = extension of the space with epithelial lifting, 
3 = massive epithelial lifting, 4 = denuded villi, and 
5 = disintegration of the lamina propria.

Table 2. Acute pancreatitis pathology scoring criteria.

Score Edema Inflammation Necrosis Hemorrhage

0 Absent Absent Absent Absent
1 Focally increased between 

lobules
Around ductal margins Periductal parenchymal 

destruction
Blood in parenchyma 
(<25%)

2 Diffusely increased 
between lobules

In parenchyma (<50% of 
lobules)

Focal parenchymal necrosis 
(<20%)

Blood in parenchyma 
(25%–50%)

3 Tense acini and widely 
separated lobules

In parenchyma (51%–75% 
of lobules)

Diffuse loss of lobules 
(20%–50%)

Blood in parenchyma 
(50%–75%)

4 Gross lobular separation Massive collections and 
abscesses

Severe loss of lobules 
(>50%)

Blood in 100% of lobules
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Statistical analyses

All statistical analyses were performed in SPSS 
11.0 software (SPSS, Inc., Chicago, IL, USA). 
Data were expressed as mean ± SD from several 
independent experiments, as specified in the figure 
legends. Statistical comparisons between the treat-
ment and control groups were evaluated using a 
t-test. Linear correlational analyses determined the 
relationship between two variables. Cochran’s Q 
test with corresponding analysis of variance 
(ANOVA) was used to perform multiple compari-
sons (when greater than three groups). P < 0.05 
was used to determine statistical significance.

Results

miR-181b significantly downregulated the 
p38MAPK/NF-κB signaling pathway in 
pancreatic acinar cells

We first sought to understand the effects of miR-
181b on the p38MAPK/NF-κB signaling pathway in 
pancreatic acinar cells. To do this, miR-181b mimic, 
miR-181b inhibitor, miR-181b mimic-NC, and miR-
181b inhibitor-NC were individually mixed with 

Lipofectamine 2000 (Invitrogen) to transfect pancre-
atic acinar cells. At 24 h post-transfection, qRT-PCR 
was used to measure miR-181b levels and Western 
blot was used to measure NF-κBp65, p-p38MAPK, 
and p-IκB-α levels. Results showed that the miR-
181b mimic significantly increased miR-181b lev-
els, while the miR-181b inhibitor significantly 
decreased miR-181b expression (Figure 1(a) and 
(b)), This decrease in miR-181b levels led to 
enhanced expression of NF-κBp65, p-IκB-α, and 
p-p38MAPK; conversely, increasing miR-181b sig-
nificantly reduced the expressions of NF-κBp65, 
p-IκB-α, and p-p38MAPK (Figure 1(c) and (d)). 
These findings suggest that miR-181b may play a 
role in the regulation of p38MAPK/NF-κB pro-
inflammatory signaling pathways.

Overexpression of miR-181b blocked TREM1 
and FSTL1 protein levels and ameliorated 
pancreatic damages in rats with taurocholate-
induced SAP

In order to explore the relationship between over-
expression of miR-181b and pancreatic damage in 
rats subjected to taurocholate-induced SAP, an 

Figure 1. Effect of miR-181b on p38MAPK/NF-κB signaling pathway. (a) and (b) qRT-PCR analysis of miR-181b levels in pancreatic 
acinar cells transfected with control mimic, miR-181b mimic, control inhibitor, or miR-181b inhibitor. (b) Representative images. 
(c) and (d) Quantitative Western blot analysis of p38MAPK, p-p38MAPK, NF-κB65, p-NF-κB65, IkB-α, and p-IκB-α protein levels 
in pancreatic acinar cells transfected with control mimic, miR-181b mimic, control inhibitor, or miR-181b inhibitor. The data are 
expressed as mean ± SD of three independent experiments. *P < 0.05, vs the control group and mimic-NC; #P < 0.05, vs inhibitor-NC.
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Figure 2. Effect of AdCMV-miR-181b on TREM1 and FSTL1 protein levels. An active miR-181b expression construct (1 × 109 
pfu of AdCMV-miR-181b) was delivered to rats by intravenous tail administration, followed by taurocholate-induced pancreatitis 
administration over 10 days. TREM1 and FSTL1 protein levels were determined using Western blot and qRT-PCR used to 
determine miR-181b expression levels. (a) qRT-PCR analysis of miR-181b levels in pancreatic tissue from four experimental groups 
(SO group, miR-181b SO group, SAP group and miR-181b SAP group). (b) Quantitative Western blot analysis of in pancreatic tissue 
from four experimental groups (SO group, miR-181b SO group, SAP group and miR-181b SAP group). The data are expressed as 
mean ± SD of three independent experiments. *P < 0.05, **P < 0.01, vs the SO group; #P < 0.05, vs the SAP group.

active miR-181b expression construct (1 × 109 pfu 
of AdCMV-miR-181b) was delivered to rats by tail 
intravenous administration. After taurocholate-
induced pancreatitis was induced over the course 
of 10 days, pancreatic miR-181b levels were deter-
mined using qRT-PCR, while pancreatic TREM1 
and FSTL1 protein levels were determined using 
Western blot. Results indicated that intravenous 
administration of AdCMV-miR-181b significantly 
increased miR-181b levels (Figure 2(a)). This 
administration also significantly blocked pancre-
atic TREM1 and FSTL1 protein levels (Figure 
2(b)). Histopathological examination of the pan-
creas of taurocholate-treated miR-181b rats 
revealed the markedly reduced inflammatory cell 
infiltration, severe edema, and a high degree of 
destruction of the histoarchitecture of the acini 
cells when compared with control rats (Figure 3).

FSTL1 and TREM1 are direct targets of miR-
181b

We next sought to determine how miR-181b medi-
ated the AP inflammatory response. We used a well-
known database to predict likely targets of miR-181b 
and found FSTL1 and TREM1—both of which are 

also important pro-inflammatory regulators of AP. 
Analysis revealed that FSTL1 and TREM1 mRNA 
and protein levels were dramatically reduced after 
miR-181b overexpression (Figure 4(a) and (b)). To 
validate the interaction between miR-181b and these 
two candidates (FSTL1 and TREM1), we con-
structed wild-type and mutant FSTL1 and TREM1 
for a dual luciferase reporter assay (Figure 4(c) and 
(d)). As hypothesized, miR-181b bound to the wild-
type FSTL1 and TREM1, rather than the mutants 
(Figure 4(d)).

Effects of Panax notoginseng saponins on 
the expressions of miR-181b, FSTL1, Akt, and 
TREM1 in SAP pancreas

We next sought to determine the pancreatic mRNA 
and protein levels of miR-181b, FSTL1, TREM1, 
and Akt in taurocholate-induced SAP. The levels of 
miR-181 were significantly reduced, while FSTL1, 
TREM1, and Akt mRNA levels as well as FSTL1, 
TREM1, and phosphorylated Akt protein levels 
were significantly upregulated (Figure 5(a)–(d)). 
After the administration of Panax notoginseng 
saponins, miR-181b expression was significantly 
increased. Correspondingly, mRNA levels of 
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FSTL1, TREM1, and Akt as well as the protein 
levels of FSTL1, TREM1, and phosphorylated Akt 
were all significantly reduced (Figure 5(a)–(d)). In 
sum, Panax notoginseng saponins suppressed 
mRNA and protein levels of FSTL1, TREM1, and 
Akt, but upregulated miR-181b expression.

Effects of Panax notoginseng saponins on 
pancreatic protein levels of TLR4, p-IκB-α, 
TRAF6, p-IRAK1, p-p38MAPK, and p-NF-
κBp65 in taurocholate-induced SAP

We next determined the effects of Panax notogin-
seng saponins on pancreatic protein levels of 
TLR4, TRAF6, p-p38MAPK, p-IRAK1, p-IκB-α, 
and p-NF-κBp65 in rats treated with taurocholate 
using Western blot. In vivo pancreatic protein lev-
els of TLR4, p-IRAK1, TRAF6, p-NF-κBp65, 
p-p38MAPK, and p-IκB-α were significantly 
increased in taurocholate-induced SAP group 
(P < 0.05; Figure 6). Interestingly, these levels 
were significantly reduced after Panax notogin-
seng saponin administration (P < 0.05; Figure 6).

Panax notoginseng saponins inhibited NF-
κBp65 activity in rat pancreas and ileum 
tissues with taurocholate-induced SAP

To explore the effects of Panax notoginseng sapo-
nins on NF-κBp65 activation in taurocholate-
induced SAP, pancreatic and ileal tissue sections 
were subjected to immunohistochemical staining. 
NF-κBp65 expression was weak in both the SO and 
treatment SO groups (Figure 7(a)–(d)). However, 
NF-κBp65 expression was significantly increased 
(P < 0.05) in the taurocholate-induced AP group. 
However, 24 h after Panax notoginseng saponin 
administration, NF-κBp65 activity in the pancreas 
and ileum of taurocholate-induced SAP rats was 
blocked (P < 0.05; Figure 7(a)–(d)).

Panax notoginseng saponins inhibited 
pancreatic and ileal DNA-bound NF-KB65 and 
TLR4 in taurocholate-induced SAP

To analyze the effects of Panax notoginseng sap-
onins on DNA-bound NF-KB65 and TLR4 in 

Figure 3. Effect of AdCMV-miR-181b on pancreatic damage. An active miR-181b expression construct (1 × 109 pfu of AdCMV-
miR-181b) was delivered to rats by intravenous tail administration, followed by taurocholate-induced pancreatitis administration 
over 10 days. (a) Representative images of H&E-stained pancreatic sections from three experimental groups (magnification, 400×). 
(b) Pancreatic damage score. The data are expressed as mean ± SD of three independent experiments. *P < 0.05, **P < 0.01, vs the 
SO group and the miR-181b SO group; #P < 0.05, vs the SAP group.
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taurocholate-induced SAP, nuclear protein from 
tissue sections of the pancreas and ileum were 
isolated using NE-PER Nuclear and Cytoplasmic 
Extraction Reagents (Pierce, Waltham, MA, 
USA). DNA-bound NF-KB65 and TLR4 were 
then measured using ELISA. DNA-bound 
NF-KB65 and TLR4 were markedly decreased in 
the SO group (Figure 7(e)–(h)). However, DNA-
bound NF-KB65 and TLR4 were significantly 
increased (P < 0.05) in the taurocholate-induced 
AP group. Notably, 24 h after Panax notoginseng 
saponin administration, DNA-bound NF-KB65 
and TLR4 in the pancreas and ileum of taurocho-
late-induced SAP rats were attenuated (P < 0.05; 
Figure 7(e)–(h)).

Effects of Panax notoginseng saponins on 
MPO activity in the pancreata of rats with 
taurocholate-induced SAP

After taurocholate induction of SAP, pancreatic 
MPO activity was significantly increased. However, 
administration of Panax notoginseng saponins 

resulted in a significant reduction in MPO activity 
(Figure 8(b)).

Effects of Panax notoginseng saponins on 
serum levels of TREM1, TNF-α, ICAM-1,  
IL-6, and IL-12

Serum levels of the pro-inflammatory cytokines 
(TNF-α, ICAM-1, IL-6, and IL-12) and pro-
inflammatory protein (TREM1) were significantly 
increased in taurocholate-induced SAP rats. 
However, administration of Panax notoginseng 
saponins resulted in significant reductions in the 
levels of TREM1, TNF-α, ICAM-1, IL-6, and 
IL-12 (Figure 8(a), (c)–(f)).

Effects of Panax notoginseng saponins on the 
ratio of the pancreas to body weight, ascites, 
and serum amylase activity in taurocholate-
induced SAP rats

Pancreatic edema is a major assessment criterion 
of pancreatitis; given this, we sought to determine 

Figure 4. FSTL1 and TREM1 are two downstream targets of miR-181b. (a) Reduced mRNA levels of FSTL1 and TREM1 in 
pancreatic acinar cells after miR-181b overexpression (P < 0.05); levels were enhanced after miR-181b downregulation (P < 0.05). 
(b) FSTL1 and TREM1 were decreased in cells with miR-181b overexpression when compared with empty vector control (P < 0.05). 
FSTL1 and TREM1 were significantly increased in cells with miR-181b downregulation. (c) miR-181b bound to the 3′-UTR regions of 
FSTL1 and TREM1, and binding was interrupted in mutant FSTL1 and TREM1. (d) Dual luciferase reporter assay indicated that miR-
181b mimic bound to the 3′-UTR region of wild-type FSTL1 and TREM1, rather than FSTL1 and TREM1 mutants (P < 0.05).
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if there was any difference after treatment with 
Panax notoginseng saponins. After 5% sodium 
taurocholate was injected into the biliary-pancre-
atic duct of rats, the ratios of the pancreas to body 
weight and ascites were significantly increased 
(Figure 9(a)–(c)). In addition, serum amylase was 
significantly increased in SAP rats. However, 
Panax notoginseng saponin treatment significantly 
reduced serum amylase activity. It also signifi-
cantly reduced ascites and the ratio of the pancreas 
to body weight, indicating a beneficial effect of 
Panax notoginseng saponins on pancreatic edema 
and injury (Figure 9(a)–(c)).

Effects of Panax notoginseng saponins on 
serum endotoxin and d-lactate in  
taurocholate-induced SAP rats

Serum levels of endotoxin, d-lactate, and TREM1 
were also measured to analyze the effects of Panax 
notoginseng saponins in SAP rats. Serum endo-
toxin and d-lactate levels were significantly 
increased 24 h after the administration of 5% 
sodium taurocholate (Figure 9(d) and (e)). 
However, Panax notoginseng saponin treatment 
significantly reduced serum levels of both endo-
toxin and d-lactate.

Figure 5. Effect of miR-181b upregulation by Panax notoginseng saponins on FSTL1, Akt, and TREM1 gene and protein levels and 
other pro-inflammatory proteins in the pancreas of SAP rats. (a) Effect of Panax notoginseng saponins on miR-181b levels. Pancreatic 
miR-181b levels were determined using qRT-PCR. (b) Effect of Panax notoginseng saponins on FSTL1, Akt, and TREM1 gene levels. 
Pancreatic levels of FSTL1, Akt, and TREM1 genes were determined using qRT-PCR. (c) Representative Western blots indicating 
pancreatic levels of FSTL1, Akt, p-Akt, and TREM1 24 h after administration of Panax notoginseng saponins. (d) Statistical summary 
of the densitometric analysis of FSTL1, p-Akt, and TREM1 expression. The data are expressed as mean ± SD of three independent 
experiments. **P < 0.01, vs the SO group and the treatment SO group; #P < 0.05, vs the SAP group.



12 International Journal of Immunopathology and Pharmacology  

Figure 6. Effect of Panax notoginseng saponins on TLR4, IRAK1, TRAF6, NF-κBp65, p-p38MAPK, and P-IκB-α protein expression in 
the pancreas of rats with taurocholate-induced SAP. (a) Representative graphs of TLR4, IRAK1, p-IRAK1, TRAF6, NF-κBp65, p-NF-
κBp65, p38MAPK, p-p38MAPK, and P-IκB-α protein levels 24 h after administration of Panax notoginseng saponins. (b) Statistical 
analysis of protein levels of FSTL1, Akt, p-Akt, TREM1, TLR4, p-IRAK1, TRAF6, p-NF-κBp65, p-p38MAPK, and P-IκB-α. The data 
are expressed as mean ± SD of three independent experiments. **P < 0.01, vs the SO group and the treatment SO group; #P < 0.05, 
vs the SAP group.

Effects of Panax notoginseng saponins on 
pancreatic and ileal histology in  
taurocholate-induced SAP rats

In order to evaluate the effects of Panax notogin-
seng saponins on local pancreatic and ileal injury, 
we next examined pancreatic and ileal morphol-
ogy. The SAP group showed a high degree of 
destruction of the histoarchitecture of acini cells, 
severe edema, and significantly higher pancreatic 
pathological scores than those in either the SO or 
treatment SO groups (Figure 9(f)–(h)). After SAP 
induction of SAP, villi and crypt structures were 
also partially damaged; in particular, hair became 
thinner and shorter. We also observed heavy 
inflammatory cell infiltration in the intrinsic mem-
brane as well as lymphatic dilatation and edema 
(Figure 9(h) and (i)). In the Panax notoginseng 
saponin treatment group, injuries to the pancreatic 
and ileal tissues were alleviated, with significant 
reductions in pancreatic and ileal injury scores 
(Figure 9(f)–(i)).

Discussion

The initial and subsequent rapid deterioration in SAP 
may be caused by the overexpression of pro-inflam-
matory cytokines, which are believed to be critical to 
the pathogenesis of the disease.1 In particular, 

cytokines from macrophages are considered to play 
an integral role in the development of AP.3 In this 
study, taurocholate-induced SAP led to increased 
levels of TNF-α, ACAM-1, IL-6, IL-12, and IL-8; 
critically, Panax notoginseng saponin treatment sig-
nificantly reduced levels of TNF-α, ACAM-1, IL-6, 
IL-12, and IL-8. These results were consistent with 
our pancreatic MPO activity analysis, indicating 
neutrophil and macrophage diapedesis32 in the pan-
creas. Panax notoginseng saponins successfully 
attenuated pancreas’ MPO activity, blocked tissue 
neutrophilia, and ameliorated taurocholate-induced 
pancreatic injury.

To explore the effects of miR-181b on SAP, we 
measured miR-181b expression in rat pancreatic 
tissue. Pancreatic miR-181b levels were signifi-
cantly downregulated in pancreatic tissue samples 
from rats with SAP. Moreover, the level of down-
regulation was associated with an exacerbated pan-
creatitis response and worse pancreatic injury. 
However, miR-181b overexpression attenuated the 
pancreatitis response and ameliorated pancreatic 
injury, highlighting the key role miRNAs play as 
post-transcriptional regulators of biological pro-
cesses.17,18,33 Key inflammatory regulators are 
related to the homeostatic response to inflamma-
tory stimuli by activating the TLR4 pathway34 and 
various TLR-mediated immune responses to bacte-
rial infection by either suppressing the 
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inflammatory response or reducing inflammatory 
triggers.35 The miR-181 family may control inflam-
mation under pathological conditions, thus affect-
ing growth, activation, and development.36 The 
results presented here were consistent with previ-
ous work.37 To this end, there is evidence that miR-
181a, miR-181b, and miR-181d function as 
regulators of TLR/NF-κB signaling as their expres-
sion is significantly decreased in the monocytes of 
obese patients. Correspondingly, their levels were 
increased and restored to the normal levels in lean 
subjects who had lost weight.38 Moreover, type 2 
diabetes patients administered resveratrol-enriched 
grape extracts for 1 year had decreased expression 
of pro-inflammatory cytokines—including CCL3, 
TNF-α, and IL-1β—in peripheral blood mononu-
clear cells. This was also associated with increased 
expression of six miRNAs, including miR-181b.39 
Thus, the correlation results combined with the 
known role of miR-181b in reducing downstream 
NF-κB signaling37 suggest that miR-181b plays a 
protective role in inflammatory diseases.

Emerging evidence strongly indicates a role for 
TREM1 in non-infectious inflammatory disorders.40 

TREM1 possesses the ability to amplify signaling in 
either a TLR4- or TLR2-dependent manner.41 In 
particular, the co-stimulation of neutrophils or 
monocytes with the TLR4 ligand and endotoxin 
LPS results in a synergistic increase in pro-inflam-
matory cytokine expression.41,42 Our study found 
that TREM1 was the direct target of miR-181b. The 
decrease in miR-181b by taurocholate-induced  
AP significantly increased TREM1 levels. This sig-
nificant increase was correlated with increased 
activities of TLR4 and the p38 MAPK signaling 
pathway, as well as worse taurocholate-induced 
pancreatic injury. Our study also found that this 
increase in TREM1 level was inhibited by upregula-
tion of miR-181b after Panax notoginseng saponin 
administration. This inhibitory effect was correlated 
with the reduced activities of TLR4 and the p38 
MAPK signaling pathway, as well as improved tau-
rocholate-induced pancreatic damage.

Our results clearly showed that Panax notogin-
seng saponins inhibited the IRAK1/TRAF6 signal-
ing pathway and reduced pancreatic inflammation. 
Specifically, IRAK1 is an adaptor for the Toll/IL-1R 
receptor signaling complex.43 IRAK4 may also 

Figure 8. Panax notoginseng saponins attenuated the pancreatic inflammatory response. Two hours before taurocholate-induced 
SAP, rats in the treatment group received Panax notoginseng saponin extract (50 mg/kg) via tail intravenous injection every 8 h for 
24 h. After 24 h, MPO activity was measured using a commercially available MPO kit, and serum levels of TREM1, TNF-α, ICAM-
1, IL-6, and IL-12 were measured by ELISA. (a) Serum TREM1 levels. (b) Pancreas MPO activity levels; (c) serum levels of IL-6. (d) 
serum levels ofTNF-α. (e) serum levels of IL-12. (f) serum levels ofand ICAM-1. The data are expressed as mean ± SD of three 
independent experiments. **P < 0.01, vs the SO group and the treatment SO group; #P < 0.05, vs the SAP group.
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phosphorylate IRAK1 to initiate its autophosphoryl-
ation. Hyperphosphorylated IRAK1 dissociates  
from the complex, dimerizes, and is bound to TNF 
receptor–associated factor 6 (TRAF6). IRAK1 binds 
to TRAF6 with Ubc13/Uev1A to catalyze the Lys63-
mediated polyubiquitination of IRAK1. IRAK1 
results in the polyubiquitination and dimerization of 
TRAF6 and thus transforming growth factor-β-
activated kinase 1 (TAK1).43 TAK1 phosphorylates a 
suite of regulatory kinases across various signaling 
pathways, generating and releasing multiple 
cytokines via NF-κB activation.44 Finally, activated 
NF-κB can translocate to the nucleus and bind to 
promoters of pro-inflammatory genes, thus enhanc-
ing the inflammatory response.44

NF-κB activation can lead to other signaling 
pathways, such as TLR and p38MAPK, which 
have been extensively explored.44 Inhibitors of 
p38MAPK (SB203580) can decrease the levels of 
LPS-induced pro-inflammatory proteins.45 Here, 
Panax notoginseng saponins reduced p38 MAPK 
and NF-κB signaling activity, DNA-bound 
NF-KB65 and TLR4 in the pancreas and ileum of 
taurocholate-induced SAP rats, and pancreas and 
ileum inflammation. Panax notoginseng saponin 
treatment also attenuated taurocholate-induced 
pancreatic damage.

FSTL1 significantly promotes the expression of 
inflammatory cytokines by activating the NF-κB 
pathway;46 FSTL1 also activates TLR4 signaling.47 
Here, FSTL1 was shown to be a direct target of 
miR-181b. Taurocholate-induced AP attenuated 
the activity of miR-181b, elevated FSTL1 expres-
sion, enhanced the activities of TLR4 and MAPK 
signaling, stimulated the pancreatic inflammatory 
response, and promoted taurocholate-induced pan-
creatic damage. Conversely, Panax notoginseng 
saponins enhanced miR-181b expression, blocked 
FSTL1 expression, attenuated the pancreatic 
inflammatory response, and reduced taurocholate-
induced pancreatic damage.

The PI3K/Akt pathway was identified as an 
endogenous feedback mechanism for the activa-
tion of pro-inflammatory factors.48,49 Accordingly, 
PI3K/Akt inhibition is known to decrease serum 
cytokine levels in mice.50 Previous studies indi-
cated that Akt could phosphorylate and activate 
IκB kinase IKK-α and cause the degradation of 
IκB nuclear translocation of NF-κB. Akt has also 
been shown to promote cytokine expression, 
including IL-1β, IL-18, and TNF-α, leading to 

accelerated inflammation.9 Here, taurocholate-
induced acute pancreatitis downregulated miR-
181b activity, stimulated Akt gene expression and 
phosphorylated Akt expression, and promoted 
inflammatory gene and protein expression. 
Collectively, this led to enhanced pancreatic 
inflammation. However, Panax notoginseng sapo-
nin administration reduced phosphorylated Akt 
expression by enhancing miR-181b expression, 
thus attenuating pancreatic inflammation.

Pancreatic edema is one of the main indicators 
used for assessing pancreatitis.3 Serum amylase 
activity is also a common indicator for assessing 
pancreatitis.2 This study confirmed that the admin-
istration of Panax notoginseng saponins reduced 
serum amylase activity, attenuated pancreatic 
edema, and reduced acute pancreatic injury.

AP is often accompanied by intestinal injury.51 
To this end, plasma d-lactic acid is an important 
indicator to evaluate intestinal mucosal barrier 
damage.51 Our data showed that SAP increased 
serum d-lactic acid levels, confirming the pres-
ence of intestinal mucosal barrier damage. This 
mucosal barrier damage increased intestinal per-
meability, enhanced serum endotoxin levels, 
increased pancreatic and intestinal inflammation, 
and led to more severe SAP. However, in our 
study, we found that the administration of Panax 
notoginseng saponins ameliorated mucosal barrier 
damage, blocked intestinal permeability, reduced 
serum endotoxin levels, attenuated pancreatic and 
intestinal inflammation, and ameliorated SAP.

Panax notoginseng saponins exert a protective 
effect against SAP induced by taurocholate. This 
therapeutic effect is mediated through miR-181b 
upregulation and inhibition of TREM1, FSTL1, 
TLR4, NF-κB, and p38 MAPK pathways. This 
results in reduced pancreatic and intestinal inflamma-
tion, ameliorated mucosal barrier damage, decreased 
serum endotoxin levels, and attenuated taurocholate-
induced pancreatic damage. Collectively, our results 
suggest the potential use of Panax notoginseng sapo-
nins in the treatment of inflammatory diseases such 
as AP, sepsis, and MODS.
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