
RESEARCH ARTICLE

Cluster-based analysis improves predictive

validity of spike-triggered receptive field

estimates

James Bigelow1,2*, Brian J. Malone1,2,3

1 Coleman Memorial Laboratory, University of California, San Francisco, California, United States of

America, 2 Department of Otolaryngology—Head and Neck Surgery, University of California, San Francisco,

California, United States of America, 3 Kavli Institute for Fundamental Neuroscience, University of California,

San Francisco, California, United States of America

* James.Bigelow@ucsf.edu

Abstract

Spectrotemporal receptive field (STRF) characterization is a central goal of auditory physiol-

ogy. STRFs are often approximated by the spike-triggered average (STA), which reflects the

average stimulus preceding a spike. In many cases, the raw STA is subjected to a threshold

defined by gain values expected by chance. However, such correction methods have not

been universally adopted, and the consequences of specific gain-thresholding approaches

have not been investigated systematically. Here, we evaluate two classes of statistical cor-

rection techniques, using the resulting STRF estimates to predict responses to a novel valida-

tion stimulus. The first, more traditional technique eliminated STRF pixels (time-frequency

bins) with gain values expected by chance. This correction method yielded significant in-

creases in prediction accuracy, including when the threshold setting was optimized for each

unit. The second technique was a two-step thresholding procedure wherein clusters of con-

tiguous pixels surviving an initial gain threshold were then subjected to a cluster mass thresh-

old based on summed pixel values. This approach significantly improved upon even the best

gain-thresholding techniques. Additional analyses suggested that allowing threshold settings

to vary independently for excitatory and inhibitory subfields of the STRF resulted in only mar-

ginal additional gains, at best. In summary, augmenting reverse correlation techniques with

principled statistical correction choices increased prediction accuracy by over 80% for multi-

unit STRFs and by over 40% for single-unit STRFs, furthering the interpretational relevance

of the recovered spectrotemporal filters for auditory systems analysis.

Introduction

Receptive field characterization is fundamental to sensory physiology. In recent decades, the

spectrotemporal receptive field (STRF) has emerged as a preferred model for representing

stimulus features that drive neurons throughout the auditory pathway [1–7]. Analogously, spa-

tial-temporal receptive fields have been widely used to characterize responses of visual [8–11]

and somatosensory neurons [12–13]. As its name implies, the STRF summarizes the joint
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spectral (spatial) and temporal features that evoke dynamic changes in the firing rates of sen-

sory neurons. STRFs may also be used to identify stimulus features that evoke subthreshold

neuronal responses [14–15], or drive changes in the collective activity of cell populations, such

as those reflected in multi-unit action potential recordings [4,16–18], local field potentials [19–

20], and electrocorticography signals [21–23]. STRFs are frequently incorporated with an out-

put nonlinearity (e.g., to account for response threshold and saturation) into the Linear-Non-

linear encoding model that can be used to generate predicted responses to novel input [24].

The most common method for estimating STRFs in the auditory system is the spike-trig-

gered average (STA), which comprises the average stimulus preceding a spike [1,6,24–28].

High gain regions of the STA are thought to reveal the stimulus subspace filtered by the neu-

ron, i.e., the subset of stimulus dimensions that evoke a neuronal response. Although the STA

can theoretically yield a rigorous characterization of a neuron’s linear stimulus-response trans-

formation, practical limitations are assumed to introduce some degree of noise into STRF

estimates obtained with this methodology [6]. For instance, constraints on recording time nat-

urally impose finite boundaries on the stimulus space that can be sampled, and limit the num-

ber of spikes that can be obtained for calculation of the STA. Thus, even with a fully balanced

stimulus ensemble, stimulus features falling outside a neuron’s receptive field typically fail to

cancel out perfectly in the STA, resulting in nonzero gain values, assumed to reflect measure-

ment error, scattered throughout the putatively nonresponsive regions of probed STRF space.

For this reason, most studies of STRF structure have implemented one of various corrective

procedures in an effort to more closely approximate the true underlying STRF [6–7,29–35].

One classic correction technique, still widely used in the auditory STRF literature [17,22,36–

38], involves identifying statistically significant regions of the STRF simply by zeroing time-

frequency bins (pixels, for digital STRF representations) with gain values expected by chance

[17,22,26,31,36–40]. Chance values can be determined from null STAs computed with ran-

domized spike times [31], and gain threshold choices usually correspond to values of the null

distribution with conservative (p< 0.01–0.001) probability values [17,22,26,31,36–40].

Statistical correction choices may be especially important for applications requiring highly

dimensional STRFs. For instance, neurons throughout the primate auditory pathway are capa-

ble of both exquisitely fine spectral selectivity (~0.1 octave scale [41–43]) and temporal respo-

nse precision (~millisecond scale [44–48]), particularly in alert subjects [42]. At the same time,

many neurons exhibit broad spectral and/or temporal integration properties, especially in

hierarchically-advanced stations such as auditory cortex, where spectral bandwidths spanning

multiple octaves and temporal integration times exceeding 100 ms are common [6,49]. Cap-

turing the response properties of such heterogeneous neuronal populations thus requires both

broad bandwidth and high spectrotemporal resolution. Under the gain thresholding technique

described above, the likelihood of false positive (Type I) errors increases with the number of

pixels in the STRF [50–52]. For example, even a null STA with 200 × 200 time/frequency bins

is expected to have 400 “significant” pixels after gain thresholding at the p< 0.01 significance

level. Adopting a more conservative threshold would limit the false positives, but increase false

negative (Type II) errors. Such a compromise between sensitivity and specificity is well known

in the functional magnetic resonance imaging (fMRI) literature, where analyses routinely

include many thousands of voxels [50–52]. The most popular approach to this large-scale

multiple testing problem is a two-step, cluster-based correction procedure [51,53–54]. Clusters

of contiguous voxels surviving an initial activation threshold are then subjected to a cluster-

extent (or mass) threshold, such that only clusters exceeding a specified number of voxels (or

summed activation value) are retained for subsequent analysis.

Although numerous investigations have concluded that cluster-based correction appropri-

ately balances false positive and false negative errors in fMRI studies, similar approaches are
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rare the receptive field estimation literature [26,55]. Moreover, most STRF studies implement-

ing gain thresholding techniques as described above tend to adopt conventional significance

thresholds (p< 0.01–0.001), without further examining the consequences of these choices. To

our knowledge, neither gain-thresholding nor cluster-analysis techniques have been formally

evaluated in the STRF literature, e.g., in terms of performance-based metrics such as accuracy

in predicting responses to novel stimuli [32–34]. Thus, the analyses in the present study were

structured around two primary objectives: first, to systematically investigate the consequences

of specific gain thresholding settings on resulting STRF structure, and second, to test the utility

of two-step, cluster-based correction procedures for improving STRF validity. We approached

these objectives by applying a range of liberal to conservative gain and cluster-based thresholds

to raw STAs obtained from awake primate auditory cortex. The validity of each threshold set-

ting was then evaluated by comparing observed neuronal responses elicited by a novel valida-

tion stimulus to the predicted response obtained using each version of the corrected STRF

[29,32–34,56–57]. We then extended these correction approaches by implementing a simple

cross-validation heuristic for selecting the best threshold settings for individual STRFs. Finally,

we investigated whether the foregoing approaches could be improved upon by independently

selecting thresholds for the excitatory and inhibitory subregions of the STRF. In general, we

find that prediction accuracy improves significantly following correction with conventional

gain thresholding techniques, and that further meaningful improvements were only possible

with cluster-based correction techniques. Excitatory and inhibitory subfield versions of these

approaches offered, at best, only marginal additional improvement.

Materials and methods

Subjects and surgical preparation

All procedures were carried out in strict compliance with recommendations in the Guide for

the Care and Use of Laboratory Animals of the National Institutes of Health, and were

approved by the Institutional Animal Care and Use Committee of the University of California,

San Francisco. Details regarding protocol and methodology have been published previously

[58–59]. A brief description follows.

Physiological data were collected from two adult squirrel monkeys (Saimiri sciureus, Mon-

key 1: male; Monkey 2: female). Subjects were group housed with other conspecifics in a tem-

perature and humidity controlled colony. Subjects had ad libitum access to water and primate

diet supplemented with fresh fruits and vegetables. An environmental enrichment program

was administered by UCSF Laboratory Animal Resource Center staff. Regular monitoring and

care was provided by UCSF veterinary staff.

Prior to physiological recording, subjects were trained to sit in a primate chair. A head post

was then surgically implanted to allow head restraint. For all surgical procedures, subjects

were sedated with ketamine (25 mg/kg) and midazolam (0.1 mg/kg), and anesthetized with

isoflurane gas (0.5–5%). Implants were secured to the cranium with bone screws and dental

acrylic. Perioperative antibiotics and analgesics were administered as needed in consultation

with UCSF veterinary staff. After subjects were trained to sit in the primate chair while head

fixed, they underwent a second surgery in which a recording chamber was implanted over pri-

mary auditory cortex (A1). The temporal muscle was resected, the cranium overlying auditory

cortex was exposed, and a recording chamber was secured with bone screws and dental acrylic.

Perioperative care was administered as before.

Sterile procedures were used for all recording sessions to access auditory cortex. Following

lidocaine (1%) application, a small cranial burr hole (2–3 mm) was drilled inside the recording

chamber under magnification with a surgical microscope. A small incision was then made in
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the dura using micro-surgical instruments. The process was repeated as needed for subsequent

recording sessions to expose additional areas of auditory cortex. Between recording sessions,

implants were cleaned aseptically and the chamber was filled with antibiotic ointment and

sealed with a metal cap.

Electrophysiology

Recordings were conducted inside a sound attenuation chamber (Industrial Acoustics Com-

pany, Bronx, NY). Extracellular data were collected using 16-channel linear electrode arrays

(177 μm2 contact size, 150 μm spacing; NeuroNexus Technologies, Ann Arbor, MI). Probes

were advanced into cortex with a hydraulic microdrive (David Kopf Instruments, Tujunga,

CA) to depths at which neural activity was evident on most or all channels. Penetrations were

approximately perpendicular to the surface of the exposed cortex, although it was not possible

to achieve strict orthogonality for every recording given the complex anatomy of auditory cor-

tex near the superior temporal sulcus [60–61]. Extracellular signals were amplified with an

RA16 Medusa preamplifier (Tucker-Davis Technologies, Gainesville, FL), band-pass filtered

(800–5000 Hz) and stored to hard disk at 30.3 kHz using a Cheetah A/D system (Neuralynx,

Inc., Bozeman, MT) for offline analysis. Spike waveforms that exceeded three median absolute

deviations of the raw voltage distribution were retained for further analysis.

Both multi-unit (MU) and isolated single-unit (SU) signals were analyzed. Custom MATLAB

software (MathWorks, Natick, MA) was used for spike waveform detection, outlier rejection,

and sorting. Template matching was used in combination with manual sorting in 2D and 3D

waveform feature space (e.g., projections onto principal components, peak/valley amplitude,

spike times). Autocorrelation, cross-correlation, and refractory period analyses were used to sup-

port SU classifications. Only SUs that remained active for the duration of the recording were

included in subsequent analyses. Filtered spikes that could not be assigned to a SU were consid-

ered MU signals.

Stimulus presentation

Sounds were delivered through a free-field speaker directly in front of the subject, 40 cm from

the interaural line. Sound levels were calibrated using a Brüel & Kjær Model 2209 meter using

an A-weighted decibel filter and a Model 4192 microphone. Levels were constrained across the

experiment between 64 and 66 dB, and sound levels within the same recording session fell

within 1 dB of each other.

The stimulus used for estimating STRFs (below) was a dynamic moving ripple (DMR; Fig

1A), which has been extensively used in auditory STRF analysis as described in detail elsewhere

[5–6,31,39]. Briefly, the DMR is a temporally-varying broadband stimulus that shares many fea-

tures with natural sounds such as short-term (local) spectrotemporal correlations, but is fully

balanced in the long term for durations exceeding a few minutes [31]. It is thus capable of driv-

ing auditory cortical responses, and permits rigorous STRF estimates using the STA method

without additional correction for stimulus correlations. For the present experiment, the dura-

tion of the DMR was 30 min and comprised ~40 sinusoidal carriers per octave spanning 50–

40,000 Hz, each with randomized phase. Carrier magnitude was modulated by the spectrotem-

poral envelope, which at a given time is defined by a single spectral (peaks/oct) and temporal

modulation rate (peaks/s). The spectral modulation rate varied from 0–4 cycles per octave, and

the temporal modulation rate varied between –150 Hz (upward sweep) and 150 Hz (downward

sweep). Both modulation parameters varied randomly and independently over time, and were

statistically independent and unbiased within their respective ranges. Maximum modulation

depth was 40 dB with a logarithmic amplitude distribution [39]. A unique 30-s DMR segment
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(50 repetitions), generated with the same parameters as the estimation stimulus, was used as a

validation stimulus to assess the prediction accuracy of the STRF estimates (Fig 1B).

STRF analysis and validation

All analyses were performed in MATLAB (MathWorks, Natick, MA). Raw STAs were

obtained for each unit by computing the average stimulus preceding each spike (Fig 1C).

Fig 1. Spectrotemporal receptive field (STRF) estimation and validation procedures. (A) Units were first probed with a 30-min dynamic

moving ripple (DMR), a synthetic broadband stimulus sharing many features with natural sounds including local spectrotemporal correlations. (B)

Responses elicited by a novel 30-s DMR segment (50 repetitions) were used for subsequent validation and testing. (C) STRFs were estimated by

calculating the spike-triggered average (STA). Response predictions were obtained by convolution of the STRF and validation spectrogram, with

the output nonlinearity modeled by half-wave rectification. (D) STRF validity was assessed by calculating the correlation coefficient between

predictions and neuronal responses obtained with the trial-averaged peristimulus time histogram (PSTH). (E) Null STAs computed with circularly-

shifted spike times were used to generate a sample of gain values expected by chance. A normal distribution fit to these values was used to

determine gain value cutoffs corresponding to a logarithmically-spaced range of significance levels from p < 100 to p < 10−9. (F) Similarly, null

STAs subjected to a gain threshold were used to generate a sample of cluster mass values expected by chance, and a gamma distribution fit to

these values was used to identify cluster mass cutoffs corresponding to the same range of significance levels. (G) The corrected STA was defined

by pixels (clusters) exceeding a specified significance level.

https://doi.org/10.1371/journal.pone.0183914.g001
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STRFs were estimated at a resolution of 193 frequency bins (~0.05 oct, y-axis) and 200 time

bins (1 ms, x-axis) to adequately reflect the spectral and temporal encoding fidelity of the audi-

tory system in awake primates [41–48]. The color spectrum (z-axis) used to define STRF pixel

values corresponds to the spike rate relative to the mean, such that red and blue reflect firing

rates above or below the mean, respectively [31]. For simplicity, we refer to these responses as

the excitatory and inhibitory regions of the STRF, respectively [17]. We use the term gain to

refer to the strength of these responses (reflected in STRF pixel intensity values).

Neuronal responses evoked by the validation stimulus were evaluated by computing trial-

averaged peristimulus time histograms (PSTHs). These were compared to predicted responses

(Fig 1D) obtained by convolution of the STRF with the validation stimulus (MATLAB conv2

function; [16,23,40,62]). Half-wave rectification was used as a simple approximation of the

output nonlinearity characteristic of extracellular recordings [40,62]. The correlation coeffi-

cient between the response and prediction was used to quantify prediction accuracy. As

described in further detail below, this stimulus was randomly divided into two 15-s halves, one

for validation and the other for testing.

Statistical correction approaches

Raw STAs were corrected with a broad continuum of liberal-to-conservative statistical thresh-

olds corresponding to 30 logarithmically spaced significance values ranging from p = 100 to

p = 10−9 (note that p = 100 reflects the uncorrected STA). For each STA, gain threshold cutoff

values corresponding to each p value (expressed pgain) were obtained by fitting a normal distri-

bution to a sample of null STA gain values (Fig 1E). Expressed in this way, each gain threshold

corresponds to the proportion of the null distribution with values exceeding the specified p
value. For example, pgain < 0.01 denotes that only STRF pixels with gain values exceeding the

most extreme 1% of the null distribution were retained for further analysis. To obtain the null

STAs, spike times were circularly shifted by a random value (MATLAB circshift function)

selected from an interval equal to the stimulus duration [63]. Thus, if spikes near the beginning

of the stimulus were shifted toward the middle of the stimulus, spikes near the end of the stim-

ulus wrapped around to the beginning. An STA was then computed with the shifted spike

times using the same axes and resolution as the true STA (200 iterations). The circular shifting

approach ensured that both spike counts and inter-spike interval (ISI) distributions were pre-

served across the true and null STAs. The validity of the STRFs obtained with each gain thresh-

old setting was then evaluated in terms of prediction accuracy.

A similar approach was implemented in a two-step correction procedure comprising a gain

threshold followed by a cluster-based threshold. Following gain thresholding, the remaining

clusters (contiguous pixels identified with the MATLAB bwconncomp function) were sub-

jected to a range of cluster mass thresholds corresponding to the same 30 logarithmically

spaced p values described above. Cluster mass was defined as the summed absolute pixel val-

ues. Cluster mass cutoffs corresponding to each p value were obtained for each STA by fitting

a gamma distribution to a sample of null clusters (Fig 1F). For computational efficiency, the

null cluster mass distribution was obtained from the sample of 200 null STAs by computing

the masses of clusters remaining in every ith null STA after applying gain thresholds computed

with every jth null STA. The same range of gain thresholds described above was applied to

STAs for subsequent cluster analysis with the exception of the most extremely liberal and con-

servative settings, as follows: [i] The p value reflecting the raw STA (p = 100) was omitted since

no gain threshold was implemented, and thus, no clusters were available for analysis, [ii] The

p value reflecting the most liberal gain threshold (p< 0.49) was omitted because it generally

produced only a small number of extremely large clusters, [iii] The eight most conservative
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gain threshold settings (approximate range: p< 10−7 to 10−9) were omitted because such

extreme gain thresholds applied to null STAs typically resulted in very few or zero surviving

clusters. Thus, STAs were first corrected at the pixel (gain) level with a total of 20 thresholds

(approximate range: p< 0.24 to 10−6), and subsequently corrected at the cluster (mass) level

with 30 thresholds reflecting the original range of p values (100 to 10−9). STRF structure result-

ing from each gain and cluster threshold intersection (expressed p(gain,clst)) was evaluated in

terms of prediction accuracy as described above.

Although previous studies have applied the same significance thresholds to excitatory and

inhibitory regions of the STRF [31], it is conceivable that STRF validity could benefit from

independent thresholding. This is because, as numerous studies have reported, inhibitory

regions tend to be less robust and stereotyped, and more variable than excitatory regions of the

STRF [11,17,30,64]. Thus, an excitation-dominated STRF might benefit from more rigorous

elimination of inhibitory pixels and clusters. To test this hypothesis, the correction approaches

outlined above were extended to two additional analyses in which excitatory and inhibitory

pixels and clusters were thresholded independently. This yielded a total of four statistical cor-

rection approaches which are summarized and compared below: [1] pixel gain correction

(pgain), [2] independent excitatory and inhibitory pixel gain correction (pgain{exc,inh}), [3] cluster

mass correction (p(gain,clst)), [4] independent excitatory and inhibitory cluster mass correction

(p(gain,clst{exc,inh})). We note that, contrary to our a priori expectations, independent excitatory

and inhibitory subfield analysis yielded little, if any, significant improvement in predictive

validity over the more basic approaches. As such, all figures pertaining to these analyses are

presented in the Supporting Information section (S1–S4 Figs) to permit better focus on the

principal results of the paper.

Two implementations of each of the foregoing gain- and cluster-based thresholding

approaches are summarized in the results below. First, a fixed-parameter approach was tested

in which all units were uniformly subjected to the same threshold settings. Each unit was

exhaustively tested at all possible intersections of the significance levels included in our study

(p< 100 to p< 10−9). For each unit, this yielded a vector of 30 prediction correlation values

for gain thresholding alone (pgain), a matrix of 30 × 30 prediction values for independent excit-

atory and inhibitory gain thresholding (pgain{exc,inh}), a matrix of 20 × 30 prediction values for

gain- plus cluster-thresholding (p(gain,clst)), and an array of 20 × 30 × 30 values for independent

excitatory and inhibitory cluster mass correction (p(gain,clst{exc,inh})). For the second approach,

best threshold settings were selected for each unit via cross-validation. To avoid overfitting

these threshold settings, the validation stimulus was randomly divided into two equal 15-s

segments. The threshold settings that maximized prediction accuracy for the first half of the

data (validation dataset) were then evaluated in terms of prediction accuracy for the second

half (test dataset). For the fixed-parameter approaches and raw STA, prediction values

reflect the test dataset alone. To minimize the dependence of the results on any particular

definition of the validation and test datasets, the procedure was repeated ten times for ran-

domly-selected dataset halves. Prediction correlation values reported below indicate the

mean across iterations.

Because the present study was primarily concerned with the comparative consequences of

gain and cluster correction choices, no smoothing was applied to responses, predictions, or

STRF kernels. Unless otherwise noted, all analyses included the full estimation, validation, and

test datasets. To ensure the results reflected units with reliable responses during both the esti-

mation and validation phases, each multi-unit and single-unit was characterized with the reli-

ability index (RI [22]) and trial similarity (TS [65]) metrics. To calculate RI, the estimation

dataset was first divided into 30 1-min segments. An STRF was then computed using half of

the segments selected at random (pgain < 0.05), and a second STRF was computed using the
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remaining segments. RI was defined as the mean correlation coefficient between the two

STRFs across 200 iterations. TS was computed by constructing a PSTH from half of the valida-

tion trials selected at random (bin size = 10 ms), and a second PSTH from the remaining trials.

TS was defined as the mean correlation coefficient between PSTHs across 100 iterations. The

RI and TS calculations were repeated using circularly-shifted spike times, and only units with

RI and TS values exceeding chance levels (p< 0.01) were retained for subsequent analysis.

Unit populations were not screened further, e.g., by prediction significance criteria. To facili-

tate comparison with previous studies, the results focus on responses and predictions analyzed

at 10-ms resolution. Additional summaries are provided for bin sizes of 1, 2, 5, 10, 20, 50, and

100 ms.

Temporal and spectral modulation preferences

Modulation properties of each unit were obtained by computing the two-dimensional Fourier

transform of each version of the corrected STRF, as described in detail elsewhere [17,31,66].

Briefly, the Fourier transform is a function of temporal (-150 to 150 cycles/s) and spectral

modulation frequency (0 to 4 cycles/octave). The ripple transfer function (RTF) is obtained by

folding along the temporal midline (temporal modulation frequency = 0). Summing down the

columns of the RTF yields the temporal modulation transfer function (tMTF), and summing

across the rows of the RTF yields the spectral modulation transfer function (sMTF). MTFs

were considered band-pass if values above and below the peak of the MTF decreased by at

least 3 dB. All others were considered low-pass (high-pass MTFs were not encountered). The

best modulation frequency (BMF) was defined as the peak of the MTF for band-pass MTFs,

and the mean between zero and the 3-dB upper cutoff for low-pass MTFs.

Results

Recordings from 66 probes were included in the study: 50 from Monkey 1 (21 left hemisphere)

and 16 from Monkey 2 (6 left hemisphere). A total of n = 354 multi-units and n = 289 single-

units satisfied RI and TS criteria described above and were retained for further analysis. Adopt-

ing more liberal unit inclusion criteria produced results similar to those reported below, but

yielded lower raw mean prediction accuracy values and greater prediction improvements follow-

ing STRF correction (data not shown). Thus, the results reported below conservatively represent

prediction improvements following STRF correction. Qualitatively similar outcomes were

observed for MU and SU STRFs. However, because significant quantitative differences were

obtained in many of the analyses below, the results for each data type are reported separately.

Consistent with previous studies [11,17,30,64], STRFs in our sample exhibited a significant

excitatory bias (S1 Fig). The mean ratio between excitatory and inhibitory pixels with the larg-

est gain values was 1.83 for MU and 1.60 for SU STRFs (MU: p< 10−41, SU: p< 10−31; Wil-

coxon signed-rank tests). Similarly, the mean ratio of summed excitatory and inhibitory

cluster mass values, after applying a gain threshold at pgain < 0.05, was 1.21 for MU and 1.16

for SU STRFs (MU: p< 10−34, SU: p< 10−20; Wilcoxon signed-rank tests).

Gain thresholding

The consequences of statistical thresholding choices were first investigated by correcting raw

STAs with a continuum of liberal-to-conservative pixel gain thresholds. Prediction accuracy

was then calculated for each of the corrected STRFs to assess their validity. Example data

depicting the results of the correction procedure are provided in Fig 2, and a summary is pre-

sented in Fig 3. Mean prediction accuracy obtained with the raw STAs was r = 0.176 for the

MU sample and r = 0.210 for the SU sample, a significant difference (p< 10−3; Wilcoxon
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PLOS ONE | https://doi.org/10.1371/journal.pone.0183914 September 6, 2017 8 / 26

https://doi.org/10.1371/journal.pone.0183914


0.1

10-6
10-8

0.2

10-3
10-4

0.3

100100

0.4

0.1

10-6
10-8

0.2

10-3
10-4

0.3

100 100

0.4

0.5

10-6
10-8

0.55

10-3
10-4

100100

0.6

0.3

10-6
10-8

0.4

10-3
10-4

100100

0.5

iviii

iii

P
re

di
ct

io
n 

co
rr

el
at

io
n 

(r
)

A

10-810-610-410-2100

pgain

0.4

0.3

0.2

0.5

i

ii
iii iv

iviii

iii
D

10-810-610-410-2100

pgain

0.5

0.4

0.6

i

ii iii iv

iviii

iii
C

10-810-610-410-2100

pgain

0.3

0.2

0.1

0.4

i
ii

iii

iv

iviii

iii

P
re

di
ct

io
n 

co
rr

el
at

io
n 

(r
)

F

iviii

iii
I

iviii

iii
H

pgain pclst

iv
ii

iii
i

iv

iiiii
i

–Max

Max

12.8

3.2

0.8

0.2

0.05F
re

qu
en

cy
 (

kH
z)

200 100 0
Time before spike (ms)

40.0
iviii

iii
E

10-810-610-410-2100

pgain

0.3

0.2

0.1

0.4

i

ii
iii iv

iviii

iii
J

pgain pclst

pgain pclst

pgain pclst

iv
ii

iii
i

iv
iiiii

i

0.1

10-6
10-8

0.2

10-3
10-4

0.3

100 100

0.4

iviii

iii
B

10-810-610-410-2100

pgain

0.3

0.2

0.1

0.4

i

ii

iii

iv

iviii

iii
G

pgain pclst

iv

ii
iii

i

Fig 2. Example data depicting results of STRF gain and cluster-mass thresholding procedures. Raw STAs were corrected with a

continuum of liberal-to-conservative gain and cluster-mass thresholds, expressed in terms of chance probability (pgain, p(gain,clst))

determined by null STA values computed with randomly shifted spike times. The same five example units are used to illustrate the

consequences of gain thresholding (A–E) and cluster-based analysis (F–J). For each subplot, corrected STAs are shown on the left,

and plots of prediction accuracy at each tested threshold setting are shown on the right (note: pgain = 100 and p(gain,clst) = 100 reflect the

raw STA). Typically, prediction accuracy increased with moderate gain thresholding but decreased for more stringent settings (A–B), in

some cases, falling below values obtained with the raw STA (C) For other units, prediction accuracy plateaued (D) or continued to

increase (E) with increasingly stringent correction. For the cluster-based approach, contiguous pixels surviving an initial gain threshold

were subjected to cluster-mass thresholding based on summed absolute values of clusters obtained from null STAs. For most units,

peak prediction accuracy was obtained using a relatively liberal gain threshold followed by a more stringent cluster-mass threshold (F–

H). although in some cases, prediction accuracy benefited primarily from gain thresholding alone (I), or increased asymptotically at

symmetrically stringent settings for both thresholds (J).

https://doi.org/10.1371/journal.pone.0183914.g002
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rank-sum test). Gain thresholding improved prediction accuracy for the majority of STRFs,

with mean prediction accuracy at the best pgain setting increasing to r = 0.297 and r = 0.278 for

MU and SU data, respectively. The improvement was highly significant for both data types

(MU: p< 10−57, SU: p< 10−32; Wilcoxon signed-rank tests), and significantly higher for the

MU sample (p< 10−25; Wilcoxon rank-sum test). Most units reached peak prediction accuracy

within the range of approximately pgain < 0.01 to pgain < 0.001 (Fig 3A and 3B). In the interest

of placing these results in the context of previous studies, prediction accuracy was directly

compared between the units’ best pgain settings (identified on an individual-unit basis through

cross-validation) and a fixed setting of pgain < 0.01 (applied uniformly across units), chosen to

represent a conventional gain threshold [24,30–33]. As seen in Fig 3C and 3D, prediction

accuracy was significantly higher at the fixed pgain < 0.01 setting than raw (MU: p< 10−55, SU:

p< 10−32; Wilcoxon signed-rank tests), and statistically equal to the units’ best pgain setting

(MU: p = 0.20, SU: p = 0.42; Wilcoxon signed-rank tests). This finding implies that, on average,

it was possible to capture virtually all of the improvement afforded by the pgain optimization

heuristic by adopting a simpler fixed setting of pgain < 0.01. Similar outcomes were obtained at

alternative temporal discretizations of the predictions and responses, with a general trend

toward increasing prediction accuracy at larger bins (Fig 3F).

Independent excitatory and inhibitory gain thresholding

To assess whether the foregoing results could be improved upon by independent gain thresh-

olding of the excitatory and inhibitory regions of the STRF, prediction accuracy was assessed

for all possible intersections of 30 excitatory and 30 inhibitory gain thresholds corresponding

to the p values used in the original gain thresholding procedure. Prediction accuracy was then

evaluated at the units’ best pgain{exc,inh} and pgain settings (chosen by cross-validation), as well as

at a conventional fixed setting of pgain{exc,inh} < 0.01. Example data are shown in S2 Fig, and

the results are summarized in S3 Fig. In general, the best pgain{exc,inh} thresholds fell within a

similar range to the best pgain settings (S3A–S3D Fig). A significant bias toward more conser-

vative best pgain{inh} thresholds was detected in the MU sample (p< 10−10; two-sample K-S

test), whereas a trend toward the same direction in the SU sample did not reach significance

(p = 0.62; two-sample K-S test). As seen in S3E and S3F Fig, neither the fixed pgain{exc,inh} <

0.01 setting nor the units’ best pgain{exc,inh} settings substantially improved upon mean predic-

tion accuracy obtained with the best pgain threshold. For the MU data, prediction accuracies

were r = 0.297 for the best pgain setting, r = 0.293 for the fixed pgain{exc,inh} < 0.01 setting, and

r = 0.298 for the best pgain{exc,inh} setting; none of the pairwise comparisons reached signifi-

cance (p> 0.10, Wilcoxon signed-rank tests). For the SU data, prediction accuracies were

r = 0.278 for the best pgain setting, r = 0.277 for the fixed pgain{exc,inh} < 0.01 setting, and

r = 0.276 for the best pgain{exc,inh} setting. The difference between the best pgain and fixed pgain

{exc,inh} settings was not significant (p = 0.324, Wilcoxon signed-rank test), and the small

decreased observed in the best pgain{exc,inh} setting relative to the fixed pgain{exc,inh} and best pgain

settings reached borderline significance (p = 0.030 and p = 0.003, respectively, Wilcoxon

signed-rank tests). As above, similar outcomes were observed at smaller and larger bin sizes,

with increasing prediction accuracy at larger bins (S3H Fig).

Cluster-mass thresholding

The effectiveness of two-step (pixel- and cluster-based) thresholding was evaluated following

the same general approach as the preceding gain correction procedures. Prediction accuracy

was assessed at each intersection of gain and cluster mass thresholds detailed above. Example

results are provided in Fig 2, and a summary in Fig 4. Prediction accuracy was generally
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Fig 3. Summary of STRF gain thresholding results. (A) Mean ± SEM prediction accuracy at each gain threshold (pgain) minus prediction

accuracy obtained with the raw STA (MU: r = 0.176, SU: r = 0.210). (B) Histograms of gain thresholds that yielded the highest prediction

accuracy. (C–D) Cumulative distribution functions of prediction accuracy obtained with raw STAs, STRFs corrected with a fixed pgain setting

(pgain < 0.01 applied uniformly across units), and STRFs corrected at the best pgain settings (identified on an individual-unit basis through cross-

validation). Inset bar plots represent mean +SEM prediction accuracy. For both data types, accuracy for each gain thresholding approach (fixed

pgain and best pgain) was significantly higher than the raw STA, but these approaches significantly did not differ from each other (Wilcoxon signed-

rank tests). (E) Scatter plots of prediction accuracy for individual units at best pgain versus raw (left) and fixed pgain (right). Note that prediction

accuracy may be higher for the fixed pgain setting than best pgain setting. This is because best pgain settings determined by the validation dataset

may not maximize prediction accuracy for the test dataset (see Methods for additional details). Red markers indicate the means. (F) Mean ±SEM

prediction accuracy as a function of the temporal bin size for the PSTHs and predictions using the same correction approaches and color

schemes as in (C–D).

https://doi.org/10.1371/journal.pone.0183914.g003
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highest at relatively liberal pixel gain threshold, followed by a more stringent cluster mass

threshold (Fig 4A–4D). The distributions of best pgain and pclst threshold settings were signifi-

cantly different for both data types (MU: p< 10−73, SU: p< 10−57; two-sample K-S tests). Pre-

diction accuracy at the units’ best p(gain,clst) settings improved to r = 0.321 and r = 0.295 for the

MU and SU data, respectively (Fig 4E and 4F), a significant increase over predictions obtained

with the best pgain (MU: p< 10−30, SU: p< 10−17; Wilcoxon signed-rank tests) and best pgain

{exc,inh} settings (MU: p< 10−27, SU: p< 10−20; Wilcoxon signed-rank tests). As with the gain

thresholding approaches, results obtained with the best p(gain,clst) settings (chosen by cross-vali-

dation) were compared to a fixed-parameter approach in which the same gain and cluster

thresholds were uniformly applied across units. Prediction accuracy obtained with conven-

tional threshold settings fixed at p(gain,clst) < 0.01 fell short of that obtained with the best p(gain,

clst) settings chosen for each unit. Mean accuracy for the fixed p(gain,clst) < 0.01 setting was

r = 0.309 for MU data and r = 0.286 for SU data, significantly lower than the best p(gain,clst) val-

ues reported above (MU: p< 10−7, SU: p< 10−4; Wilcoxon signed-rank tests). Considering

the asymmetric distributions of best pgain and pclst thresholds identified above, we next evalu-

ated a fixed parameter approach in which the gain threshold setting was made more liberal

(pgain < 0.05) and the cluster threshold was made more conservative (pclst < 10−5). As see in

Fig 4E and 4F, mean accuracy obtained with this alternative version of the fixed p(gain,clst)

threshold approximated that obtained with the best p(gain,clst) approach. Mean accuracy for the

fixed pgain < 0.05, pclst < 10−5 setting was r = 0.317 for MU data and r = 0.295 for SU data, statis-

tically equivalent to the best p(gain,clst) values reported above (MU: p = 0.668, SU: p = 0.381; Wil-

coxon signed-rank tests), and significantly greater than the best pgain approach (MU: p< 10−26,

SU: p< 10−17; Wilcoxon signed-rank tests). Similar outcomes were obtained for all bin sizes,

with increasing prediction accuracy at larger bins (Fig 4H).

The comparative benefits of the cluster-based methodology over the more traditional gain-

thresholding approach can be directly observed in Fig 4G (right panel), where change in perfor-

mance is indicated by the vertical distance of the data points from the unity line. Consistent with

mean values reported above, the majority of these data points fall above the unity line, implying

superior cluster-based performance for these units. Nevertheless, some data points fell very near

the unity line, suggesting equivalent performance for these units, and a minority fell below the

unity line, implying that cluster-based correction was disadvantageous for these units. Visual

inspection of this plot indicates most of the units with lower accuracy in the cluster-thresholding

condition started out with very low prediction values (r< 0.1) in the gain-thresholding condition.

Further, an approximately equal number of data points in this range fell above the unity line, rais-

ing the possibility that such STRFs may have been highly noisy to begin with, and thus could not

be substantially improved by either correction method. For the remainder of STRFs, the largest

benefits of cluster-methods were observed in the intermediate range of prediction values (r�
0.1–0.4) following gain thresholding. Very little improvement was observed for units with high

prediction correlations (r> 0.5). This tendency toward declining improvement (cluster-based

prediction minus gain-based prediction) with increasing gain-based prediction accuracy was sup-

ported by a significant negative correlation for MU data points (r = -0.281, p< 10−7), and a trend

in the same direction for the SU data (r = -0.094, p = 0.11). Considered together, these results

raise the possibility that cluster-based methods may be most advantageous for moderately noisy

STRFs with lower predictive power.

Independent excitatory and inhibitory cluster-mass thresholding

For the final correction approach in our study, gain and cluster mass thresholds were imple-

mented as above, with the exception that inhibitory and excitatory cluster mass thresholds
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Fig 4. Summary of results from two-step (pixel-gain and cluster-mass) thresholding. (A–B) Mean prediction accuracy at each

gain and cluster threshold intersection (p(gain,clst)) minus prediction accuracy obtained with raw STRFs (MU: r = 0.176, SU: r = 0.210).

(C–D) Histograms of gain and cluster thresholds that yielded the highest prediction accuracy. Best pclst settings were significantly

more conservative than best pgain settings for both data types (two-sample K-S tests). (E–F) Cumulative distribution functions of

prediction accuracy obtained with raw STAs, STRFs corrected at the best pgain settings (chosen for each unit by cross validation),

STRFs corrected at a fixed setting (pgain < 0.05, pclst < 10−5 applied uniformly across units), and STRFs corrected at the best p(gain,clst)

settings (chosen for each unit by cross validation). Inset bar plots represent mean +SEM prediction accuracy. The fixed and best
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were permitted to vary independently of one another. The effects of these independent thresh-

olds can be seen in example data presented in S2 Fig, which are depicted at the gain threshold

that yielded the highest mean prediction accuracy. Results are summarized in S4 Fig. Best pclst

{exc} and pclst{inh} thresholds did not significantly differ from each other (MU: p = 0.61, SU:

p = 0.15; two-sample K-S tests). A small but statistically reliable increase in prediction accuracy

was observed between the best p(gain,clst) and p(gain,clst{exc,inh}) settings (S4E and S4F Fig), from

r = 0.321 to r = 0.326 for the MU data, and from r = 0.295 to r = 0.300 for the SU data (MU:

p< 10−7, SU: p< 10−5; Wilcoxon signed-rank tests). Prediction accuracy obtained with the

best p(gain,clst{exc,inh}) settings was also higher than a fixed parameter approach similar to the

one adopted in the p(gain,clst) method (pgain < 0.05, pclst{exc} < 10−5, pclst{inh} < 10−5 applied uni-

formly across units). Mean accuracy for the fixed p(gain,clst{exc,inh}) setting was r = 0.316 for MU

data and r = 0.292 for SU data, significantly lower than the best p(gain,clst{exc,inh}) approach

(MU: p< 10−3, SU: p = 0.003; Wilcoxon signed-rank tests), and statistically equivalent to the

best p(gain,clst) approach (MU: p = 0.739, SU: p = 0.990; Wilcoxon signed-rank tests). Results

were similar across bin size, with increasing prediction accuracy at larger bins (S4H Fig).

Stimulus-driven variance explained

For convenience, mean prediction accuracy values obtained for each data type and each cor-

rection approach in our study are summarized in Fig 5. Mean prediction accuracy ranged

from 0.176 (raw) to 0.321 (best p(gain,clst)) in the MU sample, and from 0.210 (raw) to 0.295

(best p(gain,clst)) in the SU sample. These values are comparable to results obtained in awake fer-

ret auditory cortex [67], and are somewhat higher than a previous study in awake primate

auditory cortex [68]. In general, STRF prediction accuracy in auditory cortex tends to be rela-

tively poor compared to lower auditory structures such as inferior colliculus, where nonlinear-

ities and contextual influences are less dominant, and responses to a repeated stimulus are

more stereotyped [68–70]. As discussed elsewhere [56,71–73], intertrial response variability

imposes an upper limit on prediction accuracy that can be obtained with a linear STRF model.

This is because the activity of units with distinctive responses across trials is principally gov-

erned by factors other than the stimulus (e.g., contextual effects, top-down influences, mea-

surement noise). Thus, the proportion of stimulus-driven variance captured by STRFs

corrected with each statistical thresholding approach was estimated by computing the slope of

the linear (least squares) relation between response and prediction correlations [73]. A slope

near 0.5 would imply that predictions tended to be higher for units with reliable responses,

but that only ~50% of the stimulus-driven variance in the PSTH was explained by the STRF

prediction. For this analysis, two PSTHs were constructed using random halves of the valida-

tion trials. Response correlations were defined by the correlation between the two PSTHs (i.e.,

the TS metric [65]) and prediction correlations were defined by the correlation between one of

the PSTHs and the prediction (mean across 100 iterations). As seen in Fig 6A, the proportion

of stimulus-driven variance captured by the predictions was approximately one third using the

raw STAs, and gradually increased to approximately one half using increasingly sophisticated

correction procedures. Similar estimates were obtained with bin size choices of 5 ms or larger,

and were generally higher at the smaller bin sizes (Fig 6B and 6C).

p(gain,clst) settings yielded significant increases in prediction accuracy over the best pgain method, and were statistically equivalent to

each other (Wilcoxon signed-rank tests). (G) Scatter plots of prediction accuracy for individual units at best p(gain,clst) versus raw (left)

and best pgain (right). Red markers indicate the means. (H) Mean ±SEM prediction accuracy as a function of the temporal bin size for

the PSTHs and predictions using the same correction approaches and color schemes as in (E–F).

https://doi.org/10.1371/journal.pone.0183914.g004
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Consequences of statistical correction on STRF structure

The significant differences in prediction correlations reported above imply structural differences

among STRFs obtained with each correction approach. It is important to note that any such differ-

ences arising during the initial receptive field estimation stage will carry over into all subsequent

characterizations of receptive field structure, possibly giving rise to shifts in parameter estimates

such as spectral/temporal preferences and bandwidths. To illustrate this point and provide addi-

tional context for understanding the consequences of statistical correction choices on STRF struc-

ture, spectral and temporal modulation preferences were estimated from RTFs obtained from

each version of the corrected STRF. Because RTFs are typically obtained from statistically signifi-

cant STRFs [17,31,66], the raw STA was omitted from this analysis and the conventionally-defined

significant STRF (i.e., the fixed pgain< 0.01 setting) was used as a baseline comparison for the

remaining correction approaches. Structural differences were quantified by calculating the abso-

lute percent change in BMF estimate relative to conventional ([BMFcorrected−BMFconventional]/

BMFconventional
� 100). Examples of RTFs, MTFs, and BMF estimates obtained using each version

of the corrected STRF are depicted in Fig 7, and population summaries are provided in Fig 8. For

clarity, statistical outliers were omitted from the cumulative distribution plots in Fig 8 (values

exceeding the third quartile plus 1.5 times the inner quartile range). As can be seen in the inset
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https://doi.org/10.1371/journal.pone.0183914.g005
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boxplots in Fig 8, BMF estimates obtained using non-conventional correction approaches typically

changed by approximately 15% (range of median values across correction approaches and unit

types: tBMF, 10.00–17.75%; sBMF, 9.09–20.66%).

Discussion

Although receptive field characterization has been a central focus of sensory physiology for

over a century [74], estimation methods–including error correction procedures–have not

become standardized. Diverse approaches have appeared in the recent receptive field estima-

tion literature [6–7,32–34], including methods that bypass error correction procedures alto-

gether [68–69]. Simple gain-thresholding techniques applied to the STA continue to be widely

used in the auditory STRF literature [17,22,36–38], likely in part because of their straightfor-

ward implementation and interpretation. In the present study, we validate the use of such gain

thresholds for improving the predictive power of the raw STA. Significant improvements in

mean prediction accuracy were obtained by adopting a uniform, conventional gain threshold

(pgain < 0.01) representative of numerous previous studies [17,22,36–38]. Indeed, we found
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Estimates of stimulus-driven variance captured by STRF predictions were stable for bin size choices of 5 ms or larger, and

increased using smaller bin sizes.

https://doi.org/10.1371/journal.pone.0183914.g006
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that optimizing gain threshold settings for individual STRFs via cross validation failed to sig-

nificantly improve upon this conventional approach (Fig 3). This was true even for a more

refined optimization procedure in which excitatory and inhibitory gain thresholds were

selected independently (S3 Fig). A central finding of our study, however, was that cluster-

based analysis permitted meaningful improvement over these conventional and optimized

gain-thresholding techniques (Figs 4 and 5). Most of the benefit was captured by selecting

absolute gain and cluster-mass thresholds through cross validation, or by adopting fixed-

parameter settings inspired by the asymmetric distributions of best gain- and cluster- thresh-

old settings (pgain < 0.05, pclst < 10−5). Further significant improvements were possible by

independently optimizing excitatory and inhibitory cluster thresholds (S4 Fig), but the gains

were subtle and incurred substantially greater computation costs.

Despite the substantial improvements offered by gain thresholding and cluster-based analy-

sis in our study, it is important to note these methods are not assumed to eliminate estimation

noise in the STRF, only to reduce it relative to the raw STA. Further, our results do not suggest

that these methods will necessarily outperform various alternative approaches developed for
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minimizing estimation noise in other preparations [32–34]. Considering the wide diversity

and high dimensionality of stimulus and response spaces, best practices for receptive field

estimation and noise correction are likely to vary across model organisms, sensory systems,

and stations [75]. Indeed, as in previous reports, a minority of units in our study exhibited

decreased prediction accuracy following each correction method, implying that no single

method is likely to provide a universally ideal solution for a given neural population. Although

a formal comparison between the current approaches and other previously published methods

exceeded the scope of the present study, we explore below several apparent differences and

common themes among these approaches below.

Alternatives to gain thresholding and cluster-based analysis typically incorporate knowl-

edge about, and impose constraints upon, STRF structure. These include sparseness, smooth-

ness, locality, and shape of the filters [32–34]. The current results are congruent with these

approaches in demonstrating that the predictive quality of most receptive field estimates can

be significantly improved by augmenting classic reverse correlation techniques with additional

noise reduction steps. A second important parallel is that both gain thresholding and cluster-

based methods are capable of improving prediction quality by only eliminating STRF pixels,

thus resulting in relatively sparse STRFs similar to those produced by methods, such as auto-

matic relevance determination, explicitly informed by this common property of STRFs [33–

34]. A third parallel stems from the relative success of cluster-based correction approaches in
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our study, which suggest such methods are capable of improved balance between sensitivity

and specificity over gain-thresholding techniques alone. Specifically, cluster analysis holds the

advantage of potentially capturing low-gain (high-probability) pixels contiguous with high-

gain (low-probability) pixels reflecting the true receptive field, while appropriately constrain-

ing false-positive pixels with similar low-gain values scattered throughout nonresponsive filter

space. Consistent with this interpretation, mean prediction improvements were highest at the

intersection of liberal pgain and conservative pclst settings (Fig 4A and 4B), and cross-validated

threshold settings reiterated this trend (Fig 4C and 4D). Thus, similar to methods that explic-

itly bias receptive field locality such as automatic locality determination [33], cluster-based

thresholds tend to enforce an element of spectrotemporal locality by implicitly favoring sur-

vival of individual pixels that contribute to the formation of local clusters.

From a general perspective, algorithms implemented in the current study for estimating

best thresholds for individual units are conceptually similar to other methods in which various

regularization parameters are specified through cross-validation. It is important to note, how-

ever, that such optimization algorithms are neither essential to gain-thresholding techniques

nor cluster-based analysis. Indeed, fixed parameter approaches performed well in our study

and may be preferable in some situations, e.g., where any potential decrease in accuracy is off-

set by a decrease in computation time afforded by obviation of the cross-validation step. In

this regard, the current methods comprise a significant departure from those cited above, inas-

much as they require only noise distributions generated by null conditions, but are entirely

agnostic as to the structure of the receptive fields themselves. A second practical difference is

that the gain- and cluster-thresholding techniques are easily scalable to receptive fields of arbi-

trary resolution and dimensionality. The significance of this advantage can be appreciated

when considering the alternative methods cited above require computing the stimulus covari-

ance matrix defined by N × N stimulus dimensions (i.e., the number of elements in the STRF).

Such requirements can quickly become computationally prohibitive for STRFs with large

numbers of parameters, such as those evaluated in the current study, without additional dis-

cretization or dimensionality reduction steps. By avoiding these requirements, gain- and clus-

ter-based correction methods make no compromises with respect to the dimensionality or

resolution of the STRF estimates, and carry no risk of obscuring important fine spectral and

temporal details. These advantages have likely contributed to the continued use of gain-thresh-

olding techniques in auditory STRF experiments [e.g., 17,22,36–38], as well as the ubiquitous

adoption of cluster-based analysis in the fMRI literature [50–54], which directly inspired the

present analysis.

The outcomes of the present study have implications for understanding the relationship

between prediction accuracy and the linearity of stimulus-response transforms. Highly pre-

dictable responses are generally assumed to imply linear transforms, whereas poorly predicted

responses are thought to be dominated by nonlinear components [68–69]. As illustrated here,

however, prediction correlations were heavily influenced by statistical correction choices, as

well as the temporal resolution of the binned responses and predictions. Many additional

methodological choices can influence prediction accuracy results, including the size (or frac-

tion used) of the estimation and validation datasets [32,56,76], compensating for spike time jit-

ter [77], smoothing response/prediction functions or receptive field kernels [16,72,76],

excluding onset responses [72], and various technical details regarding stimulus representat-

ion approaches [78]. These factors raise important caveats for evaluating system response

linearity [70], and especially for comparing results across studies obtained with different

methodologies.

Accurate auditory STRF estimation comprises part of the more general problem of dev-

eloping accurate and models of auditory cortical encoding [32]. Progress in these domains
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may be relevant to signal classification applications such as speech recognition algorithms

[32], and are especially important for developing brain–computer interfaces and auditory cor-

tical prostheses [79–80]. For these applications, MU signals are often particularly desirable

since they do not require time- and computation-intensive spike sorting [81–82]. In this

regard, our data suggest that correction procedures may be especially important, given that

prediction improvements following STRF correction were more substantial for the MU data.

STRFs obtained from local field potentials [19–20] and electrocorticography signals [21–23]

are also directly relevant to such applications, and deserve future experimental attention with

regard to statistical correction procedures.

In summary, STRF models have been widely adopted in sensory physiology as a means of

representing stimulus features to which single neurons and cell populations are sensitive.

However, it is important to bear in mind that STRF estimates will reflect accurate approxima-

tions of the true underlying receptive field only to the extent that they are obtained with proper

methodological approaches. Among other factors, the legitimacy of STRF estimates critically

depends on appropriate stimulus configurations and rigorous analytical methods [6]. Using

predictive validity as a proxy for ‘ground truth’ regarding receptive field structure, the current

and previous studies suggest that classic reverse correlation techniques can benefit consider-

ably from evidence-based statistical correction procedures. In the present study, mean predic-

tion accuracy improved by 82.3% in the MU data sample and by 40.3% in the SU data sample,

reflecting an increase from capturing roughly one third to one half of the stimulus-driven vari-

ation in the PSTH. A considerable portion of the improvement observed in the present study

was possible through simple gain-thresholding techniques common in the auditory STRF liter-

ature. However, we show that cluster-based analysis offers a conceptually straightforward

extension of these techniques capable of yielding substantial additional predictive power with-

out material changes in computational sophistication or assumptions about receptive field

structure. Such changes in predictive validity imply structural differences among STRFs

obtained with each correction approach, which were further confirmed by the finding that

tBMF and sBMF parameter estimates changed by approximately 15%, on average, when non-

conventional correction methods were employed. The changes and improvements obtained

with these relatively simple correction methods are on par with those reported in previous

studies, e.g., by improving estimation stimulus choices [23,66,83–84], stimulus representation

methods [78], and encoding models [23,83,85], as well as changes incurred by contextual vari-

ables such as behavioral demands [86–87] and anesthetic state [20,88].

Supporting information

S1 Dataset. Experimental data. This dataset (.xlsx) contains the data points summarized in

Figs 3–6 and 8 and S1–S4 Figs. Data for each figure are presented on separate sheets. Data are

organized by subplot within sheets, and column headers are used to indicate data types and

conditions.

(XLSX)

S1 Fig. Excitatory and inhibitory STRF subfield ratios. (A) Most STRFs were dominated by

excitatory responses, as indicated by the majority of the histogram mass falling above 1 (excita-

tion = inhibition). The mean ratio between peak excitatory and inhibitory pixels was 1.83 for

MU and 1.60 for SU data (indicated by markers). (B) Similarly, the mean ratio of summed

excitatory and inhibitory cluster mass values (STRF gain threshold: pgain < 0.05) was 1.21 for

MU and 1.16 for SU data (indicated by markers).

(EPS)
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S2 Fig. Example data depicting results of independent excitatory and inhibitory gain- and

cluster-mass thresholding procedures. Raw STAs were corrected with a continuum of excit-

atory and inhibitory gain and cluster-mass thresholds, expressed in terms of chance probabil-

ity (pgain{exc,inh}, p(gain,clst{exc,inh})) determined by null STA values computed with randomly

shifted spike times. The same five example units depicted in Fig 2 are used to illustrate the con-

sequences of the gain thresholding (A–E) and cluster-based approaches (F–J). For each sub-

plot, corrected STAs are shown on the left, and plots of prediction accuracy at each tested

threshold setting are shown on the right. Surface plots in (F–J) depicting prediction accuracy

at each excitatory and inhibitory cluster threshold intersection are summarized for the gain

threshold that yielded the best mean prediction accuracy (note: for plots in (A–E), pgain{exc,inh} =

100 reflects the raw STA, and for plots in (F–J) pclst{exc,inh} = 100 corresponds to the STA cor-

rected only with the gain threshold noted above the surface plots with no cluster thresholding).

For many units, prediction accuracy depended more heavily on the excitatory gain threshold,

reaching peak levels at narrow and broad ranges of excitatory and inhibitory thresholds, respec-

tively (A). In some cases, the reverse was true (B–C). For other units, the consequences of excit-

atory and inhibitory gain correction on prediction accuracy were more symmetric (D–E). The

consequences of excitatory and inhibitory cluster thresholding were symmetric for most units

(F). Subtle asymmetries in the relative impact of each threshold were observed in some cases,

favoring either a relatively narrow range of excitatory or inhibitory (G–H) cluster-mass thresh-

olds. For other units, prediction increases were largely captured by basic gain thresholding,

with negligible additional benefits observed for excitatory or inhibitory cluster-mass threshold-

ing (I–J). For a given gain threshold, changes in the STA were frequently not observed at each

of the fine increments in cluster-mass threshold. E.g., the same clusters surviving a threshold

of pclst{exc} < 10−7 sometimes remained after thresholding at pclst{exc} < 10−9, giving rise to

coarse threshold-prediction functions characterized by local segments of identical prediction

accuracy.

(EPS)

S3 Fig. Summary of results from independent excitatory and inhibitory gain thresholding.

(A–B) Mean prediction accuracy at each excitatory and inhibitory threshold intersection (pgain

{exc,inh}) minus prediction accuracy obtained with raw STRFs (MU: r = 0.176, SU: r = 0.210).

(C–D) Histograms of excitatory and inhibitory gain thresholds that yielded the highest predic-

tion accuracy. For the MU sample, best pgain{inh} thresholds were significantly more conserva-

tive than best pgain{exc} thresholds, whereas a trend the same effect was insignificant in the SU

sample (two-sample K-S tests). (E–F) Cumulative distribution functions of prediction accu-

racy obtained with raw STAs, STRFs corrected at the best pgain settings (chosen for each unit

by cross validation), STRFs corrected at a fixed setting (pgain{exc,inh} < 0.01 applied uniformly

across units), and STRFs corrected at the best pgain{exc,inh} settings (chosen for each unit by

cross validation). Inset bar plots represent mean +SEM prediction accuracy. Applying thresh-

olds independently for excitatory and inhibitory time-frequency bins did not substantially

change prediction accuracy. (G) Scatter plots of prediction accuracy for individual units at

best pgain{exc,inh} versus raw (left) and best pgain (right). Red markers indicate the means. (H)

Mean ± SEM prediction accuracy as a function of the temporal bin size for the PSTHs and pre-

dictions using the same correction approaches and color schemes as in (E–F).

(EPS)

S4 Fig. Summary of results from two-step (pixel-gain and cluster-mass) correction, with

independent excitatory and inhibitory cluster mass thresholding. (A–B) Mean prediction accu-

racy at each excitatory and inhibitory cluster mass threshold intersection (p(gain,clst{exc,inh})), at the

best pgain for each unit, minus prediction accuracy obtained with raw STRFs (MU: r = 0.176, SU:
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r = 0.210). C–D, Histograms of excitatory and inhibitory cluster thresholds that yielded the high-

est prediction accuracy. No statistically reliable differences were observed between the best pclst

{exc} and best pclst{inh} settings for either data type (two-sample K-S tests). (E–F) Cumulative distri-

bution functions of prediction accuracy obtained with raw STAs, STRFs corrected at the best

p(gain,clst) settings (chosen for each unit by cross validation), STRFs corrected at a fixed setting

(pgain< 0.05, pclst{exc}< 10−5, pclst{inh}< 10−5 applied uniformly across units), and STRFs corrected

at the best p(gain,clst{exc,inh}) settings (chosen for each unit by cross validation). Inset bar plots repre-

sent mean +SEM prediction accuracy. The best p(gain,clst{exc,inh}) settings yielded significant

increases in prediction accuracy over the best p(gain,clst) and fixed p(gain,clst{exc,inh}) methods, which

were statistically equivalent to each other (Wilcoxon signed-rank tests). (G) Scatter plots of pre-

diction accuracy for individual units at best p(gain,clst{exc,inh}) versus raw (left) and best p(gain,clst)

(right). Red markers indicate the means. (H) Mean ± SEM prediction accuracy as a function of

the temporal bin size for the PSTHs and predictions using the same correction approaches and

color schemes as in (E–F).

(EPS)
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