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Abstract: Caesalpinia sappan L. (CS) is widely used to treat diabetic complications in south-east Asia,
specifically in traditional Chinese medicine. This study intends to explain the molecular mechanism
of how chemical constituents of CS interrelate with different signaling pathways and receptors
involved in T2DM. GC-MS was employed to identify the chemical compounds from the methanol
extract of CS wood (MECSW). Lipinski’s rule of five was applied, and 33 bioactive constituents have
been screened from the CS extract. After that, 124 common targets and 26 compounds associated
with T2DM were identified by mining several public databases. Protein–protein interactions and
compound-target network were constructed using the STRING database and Cytoscape tool. Protein–
protein interactions were identified in 121 interconnected nodes active in T2DM and peroxisome
proliferator-activated receptor gamma (PPARG) as key target receptors. Furthermore, pathway
compound target (PCT) analysis using the merger algorithm plugin of Cytoscape revealed 121 nodes
from common T2DM targets, 33 nodes from MECSW compounds and 9 nodes of the KEGG pathway.
Moreover, network topology analysis determined “Fisetin tetramethyl ether” as the key chemical
compound. The DAVID online tool determined seven signaling receptors, among which PPARG was
found most significant in T2DM progression. Gene ontology and KEGG pathway analysis implied the
involvement of nine pathways, and the peroxisome proliferator-activated receptor (PPAR) pathway
was selected as the hub signaling pathway. Finally, molecular docking and quantum chemistry
analysis confirmed the strong binding affinity and reactive chemical nature of fisetin tetramethyl
ether with target receptors exceeding that of the conventional drug (metformin), PPARs agonist
(rosiglitazone) and co-crystallized ligands, indicating that fisetin could be a potential drug of choice
in T2DM management. This study depicts the interrelationship of the bioactive compounds of
MECSW with the T2DM-associated signaling pathways and target receptors. It also proposes a more
pharmaceutically effective substance, fisetin tetramethyl ether, over the standard drug that activates
PPARG protein in the PPAR signaling pathway of T2DM.

Keywords: Caesalpinia sappan L.; T2DM; PPAR signaling pathway; fisetin tetramethyl ether;
network pharmacology

1. Introduction

Type-2 diabetes mellitus (T2DM) is a global epidemic attributed to the dysregulation
of carbohydrate, lipid, and protein metabolism resulting from impaired insulin secretion,
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insulin resistance, or a combination of both. According to the International Diabetes
Federation (IDF) report in 2021, one in ten adults (20 to 79 years) has diabetes mellitus.
The IDF also estimated this rate to rise to 643 million by 2030 and 783 million by 2045.
Such a significant increase will come from the economic transition from low-income to
middle-income levels [1].

T2DM is a complex chronic disease involving genetic predisposition, environmental
and behavioral risk factors [2–4]. Upon the dysfunction of feedback loops between insulin
action and insulin secretion, insulin-sensitive tissues, such as liver, muscle, and the adipose
tissue, are affected, resulting in abnormal insulin secretion by pancreatic islet β cells and
abnormal glucose levels in the blood; this impaired insulin secretion comes forth as rooted
sake of T2DM [5]. Insulin resistance causes type-2 diabetes, which mediates increased
glucose synthesis in the liver and decreases glucose intake in muscle and adipose tissue
at a certain insulin level. Moreover, chronic inflammation leads to impaired control of
blood glucose levels, resulting in vascular complications [6]. Likewise, β-cell dysfunction
causes reduced insulin release resulting in blood glucose homeostasis failure [7] and the
accumulation of reactive oxygen species (ROS) in β cells, also accountable for insulin defi-
ciency through immutable damage in mitochondria [8]. Individuals who suffer from this
noteworthy metabolic condition are at a greater risk of mortality from myocardial disease,
renal disease, virus-related sickness, and respiratory diseases, among other causes [9–11].

Pharmacologically significant agents, such as biguanides, sulfonylureas, meglitinides,
thiazolidinediones, alpha-glucosidase inhibitors, incretin-based therapies, dipeptidyl-
peptidase IV inhibitors, insulin analogs, and bromocriptine, have been reported as potential
for T2DM patients in clinical scenarios [9,12–15]. Several oral anti-diabetic drugs, including
metformin, glimepiride, repaglinide, pioglitazone, sitagliptin, and acarbose, have been
used frequently as therapeutic agents. However, these drugs often create side effects, for
instance, lactic acidosis, hypoglycemia, anorexia, nausea, dyspeptic episodes, impaired
renal function, and other gastrointestinal issues [16–18]. While synthetic drugs pose some
adverse effects in the patient, a wide range of plant-derived compounds are showing
promising outcomes in managing T2DM [19]. That is why plant-derived metabolites have
been way ahead of synthetic ones in the quest for a safer therapeutic agent of T2DM.
Since different medicinal plants are reported and widely used to manage diabetes as per
traditional practice in the south Asian region, this study aims to draw some insight into the
selected plant’s anti-diabetic activity, Caesalpinia sappan, which has been reported as having
anti-diabetic activity in several recent studies [20–24].

Caesalpinia sappan L. is also known as Biancaea sappan (L.) Tod and belongs to the Cae-
salpiniaceae family. It is commonly recognized as sappan wood and Indian redwood. It has
traditionally been utilized in Ayurvedic diabetes therapy [25]. Water extracts of C. Sappan
wood (CSW) have been widely used to treat diabetic complications in south-east Asia,
specifically in Chinese traditional medicine [26]. CSW exhibited inhibitory activities to-
wards LPS-induced NO production in macrophage, cytotoxicity against human pancreatic
cancer cells, breast cancer cell, and colon cancer cell lines [27–30]. It also showed significant
anti-inflammatory activity in many studies [31–33]. Moreover, a methanolic extract of
C. sappan showed significant anti-diabetic activity in alloxan-induced diabetes mellitus
in rats and alpha-glucosidase inhibitory activity [34,35]. Brazilin, extracted from CSW,
increased the synthesis of fructose-2,6-bisphosphate [36]. Fructose-2,6-bisphosphate syn-
thesized from CS stimulated the process of glycolysis by activating phosphofructokinase-1
resulted in reduced blood glucose levels [37]. Furthermore, some important compounds—
including brazilin, sappanol, and episappanol [38]; dibenz[b,d]oxocins protosappanin B, C,
and isoprotosappanin B [39]; and homoisoflavonoids 3′-deoxysappanol, 3-deoxysappanone B,
and 4-O-methylsappanol [40]—were extracted from CSW by using high-performance liquid
chromatography. Saponin, another compound from CSW, exposed potential anti-diabetic
activity by inhibiting glucose transport and stimulating insulin secretion in pancreatic β

cells [41,42]. CSW also contains tannins capable of lowering blood glucose by inhibiting
α-amylase and α-glucosidase, leading to carbohydrate digestion and glucose absorption
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during high blood glucose levels after meals [43]. Hence, due to the promising anti-diabetic
activity of C. sappan wood (CSW), we intend to predict its interaction mechanism with
metabolic pathways and genes that express proteins involved in the progression of T2DM.

A more efficient and safer treatment for T2DM demands a proper explanation of
its molecular etiology. Network pharmacology is a well-defined method to investigate
the interactions between target compounds, genes, and proteins associated with the dis-
ease [44,45]. It can reveal the molecular mechanism of the compounds from a multi-
functional point of view, highlighting the interaction of diverse factors involved in the
disease progression and elucidating the synergistic impact of the bioactive compounds
in a living cell [43,46]. With the advent of modern bioinformatics and systems biology,
poly-pharmacological methods contribute suggestively to network-based drug discovery
as a cost-effective drug developing tool [47]. Network pharmacology has proven beneficial
in explaining the underlying complex relationship between the pharmacological proper-
ties of given compounds and the whole biochemical pathway involved in a particular
disease [48,49]. In our study, network pharmacology is employed to evaluate the bioactive
compounds from CSW and their mechanism against T2DM. Bioactive compounds from
CSW are identified using GC-MS analysis. Following that, overlapping genes related
to the selected compounds and T2DM are identified using the public databases. Then
genes involved in hub signaling are chosen by analyzing gene set analysis. Finally, the
most potent candidates of CSW against T2DM are determined by implementing molecular
docking analysis for the selected genes. The detailed process is depicted in Scheme 1.
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was used to uncover key targets, possible functions, and pharmacological pathways in T2DM patients
treated with MECSW.

2. Materials and methods
2.1. Plant Collection and Extraction

Caesalpinia sappan wood (CSW) was collected from Chuncheon local market and was
authenticated by Dr. Dong Ha Cho, plant biologist and Professor, Department of Bio-Health
Convergence, College of Biomedical Science, Kangwon National University. A voucher
number (CRT 215) was stored at Kenaf Corporation in the Department of Bio-Health
Convergence, and the collected material can be used only for research purposes. The
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collected dried wood (500 g) was grinded into a coarse powder using an automated grinder.
The fined powder (100 g) was soaked in 500 mL of methanol (Daejung, Siheung City, Korea).
The mixture was put in a sealed bottle and placed for continuous shaking and stirring (for
3 days) through an automated shaker machine (repeated 3 times for the highest yield). The
mixture was filtered (Whatman qualitative filter paper Grade 1) and evaporated using a
vacuum evaporator. The evaporated sample (MECSW) was dried under a hot water bath
(IKA, Staufen city, Germany) at 40 ◦C. The yield was found 3.4 g, which was preserved in a
refrigerator (−4 ◦C) for further GC-MS analysis.

2.2. GC-MS Analysis

In order to perform the GC-MS study on MECSW, we adopted the GC-MS equipment
together with an analytical capillary column DB-5MS (30 m × 0.25 µm × 0.25 mm). Our
prior research outlined the whole methodology in precise detail [50].

2.3. Filtration of Bioactive Constituents from MECSW

The drug-likeness approach (Lipinski’s rule of five) was used to screen MECSW’s bioac-
tive compounds (identified by GC-MS), which overcome ADME (Absorption, Distribution,
metabolism and Excretion) restrictions while securing oral bioavailability score > 0.50. An
online program called Swiss ADME [51] was used to explore the drug-likeness properties of
identified compounds. In order to do this calculation, we utilized compound’s SMILES from
PubChem (https://pubchem.ncbi.nlm.nih.gov/, accessed on 27 July 2021) database.

2.4. Acquisition of Compound and T2DM Associated Targets

By using the Homo sapiens mode, we collected targets linked to the filtered bioac-
tive compounds by putting their SMILES into the SEA (Similarity Ensemble Approach)
(http://sea.bkslab.org/, accessed on 2 August 2021) and STP (Swiss Target Prediction)
(http://www.swisstargetprediction.ch/, accessed on 3 August 2021) databases, respectively.
The DisGeNeT (https://www.disgenet.org/search, accessed on 5 August 2021) [52], Malac-
ards (https://www.malacards.org/, accessed on 6 August 2021) [53], and the OMIM (https:
//www.ncbi.nlm.nih.gov/omim, accessed on 6 August 2021) [54] databases were used to
collect targets interacted with T2DM. On the other hand, VENNY 2.1 (https://bioinfogp.cnb.
csic.es/tools/venny/, accessed on 15 August 2021) identified and exhibited the common
overlapping targets between MECSW bioactive compounds and T2DM targets.

2.5. Creating a Network Involving Intersecting Targets

Homo sapiens with a confidence level of >0.4 in protein interactions, the intersected
targets between the compound-related gene and T2DM target genes were included into
the STRING database Version 11.0b (https://string-db.org/, accessed on 24 August 2021)
for protein queries. The Cytoscape 3.8.2 software program [55] was used to subsequently
classify the entire network employing the CytoHubba module contained in Cytoscape and
following the degree algorithm to identify its key essential genes:

Deg(v) = |N(v)| (1)

where, a node’s neighbors are represented by N(v), while each node’s neighbors are
represented by v.

2.6. Network Layout for the Pathway Compound Target (PCT)

A graphical depiction of the pathway compound target (PCT) network was created
using the preprocessing output of bioactive chemicals from MECSW and frequent T2DM
targets that intersected with the MECSW. This network was built using Cytoscape’s merger
algorithm plugin (Cytoscape 3.8.2). An analysis of network topology parameters was
performed with the help of the network analyzer. Nodes represented bioactive compounds,
targets, and pathways, and interactions between these components were shown along the
edges. The degree also referred to the prevalence of a node’s interconnected neighbors.

https://pubchem.ncbi.nlm.nih.gov/
http://sea.bkslab.org/
http://www.swisstargetprediction.ch/
https://www.disgenet.org/search
https://www.malacards.org/
https://www.ncbi.nlm.nih.gov/omim
https://www.ncbi.nlm.nih.gov/omim
https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
https://string-db.org/
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The greater the percentage of a node’s that are directly linked to each one, the greater the
impact [56].

2.7. Investigation of the Role of GO and KEGG Pathways in Common Intersected Targets

The KEGG pathway interpretation and molecular functional annotation of all in-
tersected targets were undertaken on the DAVID (https://david.ncifcrf.gov/tools.jsp,
accessed on 19 September 2021) (Database for Annotation, Visualization and Integrated
Discovery) database to determine their role in signaling pathways. For this enrichment
study, the identifier was OFFICIAL GENE SYMBOL, and the species was Homo sapiens.
This database is exceptionally crucial in network pharmacology because it shows targets
implicated in disease underlying molecular mechanisms, and the GO database exhibits
the descriptive biological terms of those targets, such as biological process (BP), cellular
component (CC), and molecular function (MF) [57]. A p-value <0.05 was used as a cutoff
for GO and pathway enrichment. The p-value was corrected using a false discovery rate
(FDR) error control technique, and the result was known as the Q value. It was possible to
visualize the KEGG pathway bubble plot map visually by using Origin Pro 2021 to examine
the routes.

2.8. Formulation and Purification of the Ligand and Receptor Protein

The PubChem chemical library was used to obtain the .sdf files of the preferred ligands
revealed via compound-target network research along with conventional pharmaceuti-
cals, such as metformin, and co-crystallized protein ligands. As previously reported, the
constituents were indeed prepared for molecular docking investigations incorporating
the LigPrep tool in Schrödinger Suite-Maestro v12.5 [58]. PPARG (PDB ID: 3E00), PPARA
(PDB ID: 1K7L), PPARD (PDB ID: 5U3Q), FABP3 (PDB ID: 5HZ9), FABP4 (PDB ID: 3P6D),
MMP1 (PDB ID: 1SU3) and NR1H3 (PDB ID:1UHL), seven receptor proteins essential in
hub signaling pathways, were chosen because their crystal structures were available in
the RCSB Protein Data Bank (https://www.rcsb.org/, accessed on 11 October 2021) and
UniProt database (https://www.uniprot.org/, accessed on 11 October 2021), respectively.
Following our previously reported processes, we set the Schrödinger Suite-Maestro v1. 5
integrated Protein Preparation Wizard tools after the 3D crystal structure was located in
the RCSB database [59,60].

2.9. Glide Directed Molecular Docking Assay

In order to hatch receptor grids overactive molecules (co-crystallized ligand site), we
used Glide tools integrated in Schrödinger Suite-Maestro version 12.5 software [61]. Their
default topological settings used during grid creation were a scaling factor 1.00, the OPLS3
force field, and a cut-off value of 0.25% for three-dimensional protein assemblies. On the
macromolecules’ kernel active site residues, a cubic box of precise facets was placed in
14 Å × 14 Å × 14 Å grid points, at a feasible docking site. Later, docking studies used
Glide’s standard precision (SP) scoring system, with each ligand’s best rating conformation
and binding result recorded separately.

2.10. Quantum Chemistry of Key Ingredients

Utilizing the Jaguar panel of Maestro 12.5 software, the key compound (fisetin tetram-
ethyl ether) and standard drugs’ (metformin) structural variables were absolutely optimized
using the Lee–Yang–Parr (B3LYP-D3) correlation functional technique at the 6–31G++ (d,p)
level basis set [62]. This optimized configuration also generated enthalpy, Gibbs free en-
ergy, highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital
(LUMO) border molecular orbital energies using the same level of theory. LUMO energy
was deducted from the relevant HOMO energy value to compute each chemical’s HOMO–

https://david.ncifcrf.gov/tools.jsp
https://www.rcsb.org/
https://www.uniprot.org/
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LUMO gaps (Eg). The following equations estimated the hardness (η) and softness (S)
based on border HOMO and LUMO energies.

η = (HOMO − LUMO)/2 (2)

S = 1/η (3)

3. Results
3.1. Exploration of MECSW Ingredients Using GC-MS

The data obtained from the gas chromatography-mass spectrometry (GC-MS) study
revealed 33 significant bioactive constituents in the MECSW (Figure 1). Table 1 shows the
retention time (RT), peak area (percent), chemical formula, and tentative identities of the
bioactive compounds. All compounds were categorized (belong to the organic kingdom):
namely lipids and lipid-like molecules, benzenoids, organic acids and derivatives, or-
ganic oxygen compounds, organic 1,3-dipolar compounds, organoheterocyclic compounds,
phenylpropanoids and polyketides, and alkaloids and derivatives.
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Figure 1. GC-MS peak of the methanolic extract of C. sappan and an indication of the key bioactive
(fisetin tetramethyl ether).

Table 1. A list of 33 chemical components noted by GC-MS revealed from methanolic extract of
C. sappan wood (MECSW).

SL. No. RT Time (min) Area (%) PubChem CID Chemical Formula Compound Class Compounds Name

1 5.366 0.22 5363448 C7H12O3 Fatty acyls (3E)-5-Hydroxy-2-methyl-3-hexenoic acid

2 5.683 1.3 5055 C8H8O3 Phenol esters 1,3-Benzenediol, Monoacetate

3 6.606 0.53 7342 C6H12O2 Carboxylic acids
and derivatives Ethyl 2-Methylpropanoate

4 6.856 0.7 5054 C6H6O2 Phenols 1,3-Benzenediol

5 7.529 2.14 62378 C11H18O Organooxygen compounds 3-Methyl-2-Pentyl-2-Cyclopenten-1-One

6 8.116 0.52 81750 C9H12O3 Benzene and
substituted derivatives 2,4-Dimethoxybenzyl alcohol

7 8.231 0.92 91477 C27H44O Steroids and steroid derivatives Cholest-4-En-3-One

8 8.51 1.26 785 C6H6O2 Phenols Hydroquinone

9 8.731 0.96 5284421 C19H34O2 Fatty acyls 9,12-Octadecadienoic acid,
methyl ester

10 8.818 0.15 21206 C16H32O2 Fatty acyls Tetradecanoic acid, 12-Methyl-,
Methyl Ester
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Table 1. Cont.

SL. No. RT Time (min) Area (%) PubChem CID Chemical Formula Compound Class Compounds Name

11 8.914 3.95 5280450 C18H32O2 Fatty acyls 9,12-Octadecanoic Acid(Z,Z)-

12 8.981 3.34 5363372 C18H32O2 Fatty acyls Z,Z-10,12-Hexadecadien-1-ol acetate

13 9.375 0.18 41133 C14H24O Organooxygen compounds

2(1H)-Naphthalenone,
octahydro-4a-methyl-

7-(1-methylethyl)-,
(4a.alpha.,7.beta.,8a.beta.)-

14 10.01 0.22 7210 C17H18N2O2 Phenols
2-((E)-[((E)-2-([(E)-(2-Hydroxyphenyl)
Methylidene]Amino)Propyl)Imino]

Phenol or, Disalicylalpropylenediimine

15 10.19 0.47 5364132 C14H25N3O2 Allyl-type 1,3-dipolar organic
compounds

2-[(4E)-4-Hexenyl]-6-
nitrocyclohexanone
dimethylhydrazone

16 10.65 0.66 4506 C15H11N3O3 Benzodiazepines 7-Nitro-1,3-dihydro-5-phenyl-2H-
1,4-benzodiazepin-2-one or, Neozepam

17 10.73 0.52 610113 C11H13NO3 Indoles and derivatives Indole-2-one, 2,3-dihydro-N-hydroxy-
4-methoxy-3,3-dimethyl-

18 10.88 3.94 610177 C13H9N3 Diazines Pyrido[2,3-d]pyrimidine, 4-phenyl-

19 11.19 2.93 5116643 C24H37NO Carboxylic acids and
derivatives

Acetamide, 2-(adamantan-1-yl)-N-
(1-adamantan-1-ylethyl)- or,

2-adamantanyl-N-
(adamantanylethyl)acetamide

20 11.28 1.22 5379033 C20H22O4 2-arylbenzofuran flavonoids

Phenol, 4-[2,3-dihydro-7-methoxy-3-
methyl-5-(1-propenyl)-2-

benzofuranyl]-2-methoxy- or,
Dehydrodiisoeugenol

21 11.65 13.93 5379034 C19H18O3S Phenol ethers
Propenone,

1-[5-(3-hydroxy-3-methyl-1-butynyl)-2-
thienyl]-3-(4-methoxyphenyl)-

22 11.9 1.78 346948 C15H13N Pyrroles Indolizine, 2-(4-methylphenyl)-

23 11.99 6.15 610018 C17H18N4O3 Pyrans

6-Amino-5-cyano-4-(5-cyano-2,4-
dimethyl-1H-pyrrol-3-yl)-2-methyl-4H-

pyran-3-carboxylic acid
ethyl ester

24 12.51 11.82 631121 C20H26N2O3 Plumeran-type alkaloids Aspidodispermine, O-methyl-

25 12.63 3.08 631095 C19H18O6 Flavonoids
4H-1-Benzopyran-4-one,

3,5,7-trimethoxy-2-(4-methoxyphenyl)-
or, Tetramethylkaempferol

26 12.73 3.38 631112 C19H29B2NO4 Tetralins Nadolol di-methylboronic acid

27 12.85 5.34 631171 C19H18O6 Flavonoids
4H-1-Benzopyran-4-one, 2-(3,4-

dimethoxyphenyl)-3,7-dimethoxy- or,
Fisetin tetramethyl ether

28 12.95 12.81 284060 C12H18N6O6 Diazines 1,3-Dimethyl-5,6-dicarbethoxy-5,6,7,8-
tetrahydro-6,7-diazalumazine

29 13.89 1.75 541560 C28H48O Steroids and steroid derivatives Cholestane, 3,4-epoxy-2-methyl-,
(2.alpha.,3.alpha.,4.alpha.,5.alpha.)-

30 14.09 1.65 91733922 C12H17NO2 Isoindoles and derivatives 4-Cyclohexene-1,2-dicarboximide,
N-butyl-, cis-

31 14.65 5.69 457801 C29H50O Steroids and steroid derivatives Stigmast-5-en-3-ol, (3beta,24S)- or,
Clionasterol

32 15.27 0.4 83247 C15H13N Indoles and derivatives 1H-Indole, 5-methyl-2-phenyl-

33 15.66 0.68 610182 C15H13N Quinolines and derivatives Benzo[h]quinoline, 2,4-dimethyl-

3.2. Drug Candidates Filtering

The primary bioactive ingredients from MECSW were screened based on the drug-
likeness properties of recorded small molecules. Those properties were stated as molecular
weight must not be over 500, a number of H-bond donor definitely below 10, contrarily H-
bond acceptor must not exceed 5, moriguchi octanol–water partition coefficient value must
be below or equal to 4.15, and ‘Abott Bioavailability Score’ should be under 0.1 standard
value. Remarkably, all of the identified small molecules (33) occupied the above-mentioned
criteria and were classified as significant bioactive substances without infringing more than
one of the features mentioned earlier (Table 2).
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Table 2. Documentation of drug-likeness character of 33 compounds from MECSW.

Compounds Name
MW HBA HBD MLogP Number of Violations Bioavailability

<500 <10 ≤5 ≤4.15 ≤1 >0.1

(3E)-5-Hydroxy-2-methyl-3-hexenoic acid 144.17 3 2 0.64 0 0.85

1,3-Benzenediol, Monoacetate 152.15 3 1 1.32 0 0.55

Ethyl 2-Methylpropanoate 116.16 2 0 1.27 0 0.55

1,3-Benzenediol 110.11 2 2 0.79 0 0.55

3-Methyl-2-Pentyl-2-Cyclopenten-1-One 166.26 1 0 2.49 0 0.55

2,4-Dimethoxybenzyl alcohol 168.19 3 1 0.92 0 0.55

Cholest-4-En-3-One 384.64 1 0 6.23 1 0.55

Hydroquinone 110.11 2 2 0.79 0 0.55

9,12-Octadecadienoic acid, methyl ester 294.47 2 0 4.7 1 0.55

Tetradecanoic acid, 12-Methyl-, Methyl Ester 256.42 2 0 4.19 1 0.55

9,12-Octadecanoic Acid (Z,Z)- 280.45 2 1 4.47 1 0.85

Z,Z-10,12-Hexadecadien-1-ol acetate 280.45 2 0 4.47 1 0.55

2(1H)-Naphthalenone,
octahydro-4a-methyl-7-(1-methylethyl)-,

(4a.alpha.,7.beta.,8a.beta.)-
208.34 1 0 3.41 0 0.55

Disalicylalpropylenediimine 282.34 4 2 1.81 0 0.55

2-[(4E)-4-Hexenyl]-6-nitrocyclohexanone
dimethylhydrazone 267.37 3 0 1.82 0 0.55

Neozepam 281.27 4 1 0.9 0 0.55

Indole-2-one,
2,3-dihydro-N-hydroxy-4-methoxy-3,3-dimethyl- 207.23 3 1 1.4 0 0.55

4-phenylpyrido[2,3-d]pyrimidine 207.23 3 0 2.03 0 0.55

2-adamantanyl-N-(adamantanylethyl)acetamide 355.56 1 1 5.2 1 0.55

Dehydrodiisoeugenol 326.39 4 1 2.73 0 0.55

Propenone, 1-[5-(3-hydroxy-3-methyl-1-butynyl)-2-thienyl]-
3-(4-methoxyphenyl)- 326.41 3 1 2.43 0 0.55

2-(4-methylphenyl) Indolizine 207.27 0 0 3.32 0 0.55

6-Amino-5-cyano-4-(5-cyano-2,4-dimethyl-1H-pyrrol-3-yl)-2-
methyl-4H-pyran-3-carboxylic acid ethyl ester 326.35 5 2 -0.3 0 0.56

Aspidodispermine, O-methyl- 342.43 4 1 2.02 0 0.55

Tetramethylkaempferol 342.34 6 0 0.94 0 0.55

Nadolol di-methylboronic acid 357.06 5 0 1.21 0 0.55

Fisetin tetramethyl ether 342.34 6 0 0.94 0 0.55

1,3-Dimethyl-5,6-dicarbethoxy-5,6,7,8-tetrahydro-6,7-
diazalumazine 342.31 7 2 1.22 1 0.55

Cholestane, 3,4-epoxy-2-methyl-,
(2.alpha.,3.alpha.,4.alpha.,5.alpha.)- 400.68 1 0 6.68 1 0.55

4-Cyclohexene-1,2-dicarboximide, N-butyl-, cis- 207.27 2 0 1.68 0 0.55

Clionasterol 414.71 1 1 6.73 1 0.55

5-methyl-2-phenyl-1H-Indole 207.27 0 1 3.32 0 0.55

Benzo[h]quinoline, 2,4-dimethyl- 207.27 1 0 3.32 0 0.55

MW = molecular weight: HBA = hydrogen bond acceptor; HBD = hydrogen bond donor.

3.3. Common Intersected Targets of Compounds within SEA and STP Database

The screened bioactive compounds were subjected to acquiring compound pertaining
targets from public databases. In parallel, each component’s SMILES code was acquired
from the PubChem chemical library and entered into the SEA and STP database queries.
The removal of duplication targets conveyed the presence of 844 compounds linked to
targets from the STP database and 489 targets from the SEA database (Table S1). The
result of the Venn diagram analysis disclosed the presence of 21.7% (238) prevalent targets
between those 2 databases (Figure 2A).
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3.4. Potential Overlapping Targets between T2DM Targets and Compound Linked
238 Intersecting Targets

T2DM targets were gleaned from accessing three disease-related public databases, in-
cluding DisGeNeT, OMIM and Malacards, which resulted in the procurement of 3081 disease-
related targets (Table S2). After that, the culled targets were examined with 238 compound-
related targets to determine the T2DM targets that were directly connected with the
various MECSW compounds (Table S3). Consequently, 124 common targets (Table S4)
directly related to T2DM and MECSW compounds were outlined (Figure 2B), in which
26 molecules were closely connected to typical T2DM targets, while the remaining seven
compounds, including (3E)-5-Hydroxy-2-methyl-3-hexenoic acid, Disalicylalpropylenedi-
imine, 2-[(4E)-4-Hexenyl]-6-nitrocyclohexanone dimethylhydrazone, 2-(4-methylphenyl) In-
dolizine, Aspidodispermine, O-methyl-, Nadolol di-methylboronic acid, and 1,3-Dimethyl-
5,6-dicarbethoxy-5,6,7,8-tetrahydro-6,7-diazalumazine, were not affiliated with any targets
in neither database (SEA and STP). Notably, those compounds were associated with the
genes involved in T2DM progression. These compounds were resulting from the intersec-
tion of T2DM related genes and target genes related to MECSW compounds

3.5. PPI Network Analysis of 124 Common Targets

To unearth the potential mechanistic insight of MECSW to treat T2DM, we introduced
those 124 common targets into the STRING database to build up a network within them.
Meanwhile, the STRING algorithm expressed those 121 nodes connected by forming
596 edges (Figure 3). The average number of neighbors was six, whilst the network
diameter was three. However, three targets, namely NEK6, ST6GAL1 and PDE4D, did
not interact with any other nodes and were thus omitted from this analysis. To scrutinize
the essential key target in the network of T2DM, we further visualized this network in
Cytoscape, where we used a degree value algorithm by employing cytoHubba apps. The
number of edges connecting to the corresponding target nodes was defined as the number
of degrees for each target. Notably, a higher degree value pinpoints the best target in the
network. With such conformity, PPARG was designated as a key target (36-degree value)
in the network for T2DM progression (Table S5).
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3.6. Pathway Compound Target (PCT) Network Analysis

To ascertain the most significant key components among the detected ingredients from
MECSW, we constructed a pathway compound target network utilizing Cytoscape. This
network displayed how pathway, compound and T2DM targets correlated among them.
The topological parameter analysis of PCT network via network analyzer apps integrated
into Cytoscape revealed that this network consists of a total of 166 (121 nodes from common
T2DM targets, 33 nodes from MECSW compounds and 9 nodes of KEGG pathway) nodes
along with interacting within them through 319 edges (Figure 4), whereas we classified
the constituents in the network based on their degree value, referred to as their number of
connections to relevant targets. Based on this, the fisetin tetramethyl ether component was
picked as a key hub substance (27 degree) in the network that might have an influential
therapeutic impact on T2DM (Table S6).

3.7. Gene-Ontology (GO) and KEGG Pathway Enrichment Analysis of 124 Common Targets

The GO and KEGG pathway appraisal truly reflects the intersected 124 common targets
engaged in the T2DM functional process through relevant targets molecular function (MF),
the biological process (BP) in which it takes part, and its cellular localization (CL). We
utilized a web-based tool, “DAVID”, to analyze GO and KEGG pathways. With respect
to GO, we determined the top 10 MF, BP, and chemical contents based on the proportion
of targets that were enriched in those categories (Figure 5), where MF is mostly involved
in binding heme, DNA, ligand activation and sequence-specific DNA, enzyme, protein,
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zinc ion and protein, and steroid hormone receptor activity. The BP in which those targets
significantly participate were apoptotic process, cell proliferation, inflammatory response,
positive–negative regulation of transcription, transcription initiation from RNA polymerase
II promoter, drug response, and oxidation–reduction process. However, the above activities
took place in the following top 10 CLs: mitochondrion, extracellular space, endoplasmic
reticulum membrane, an integral component of the plasma membrane, extracellular region,
nucleoplasm, cytosol, extracellular exosome, plasma membrane and integral component
of membrane.
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Figure 5. Gene ontology (GO) exploration of compounds’ and T2DM’s shared targets.

Similarly, the KEGG pathway enrichment analysis was conducted using DAVID online
tool on the 124 putative therapeutic targets for T2DM and discovered 9 KEGG pathways
at a threshold level of p-value < 0.05. Further, we took into account the rich factor and
adjusted the FDR value (Q-value) to define the pathway enrichment analysis, in which the
rich factor unveils the amount of pathway enrichment with a substantially lower Q value
(Table S7). According to preceding filtering, the PPAR signaling pathway was the most
abundantly enriched within the assigned targets, as shown in Figure 6.
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3.8. Docking Interaction of a Key Substance with PPAR Signaling Pathway Enriched Targets

Seven targets of the PPAR signaling pathway involved in the T2DM process were
subjected to bind with the selected key compound “fisetin tetramethyl ether” using the
Glide tools of Schrodinger. We re-docked each co-crystallized ligand to compare each
corresponding complex with their synthesized complex pattern. For additional comparison,
we also docked metformin with target transcribed protein molecules. Remarkably, we
docked thiazolidine derivative and fibrate medicines as of PPARs agonist to determine their
activation energy, whereas PPARG (PDB ID: 3EOO) demonstrated a greater binding affinity
of −6.092 Kcal/mol than thiazolidine derivatives (−4.849 Kcal/mol), co-crystallized ligand
(−4.381 Kcal/mol) and metformin (−3.761 Kcal/mol) via interacting eleven H-bond of
ARG-288, SER-342, ILE-262, GLY-258, LEU-340, and GLU-259 residues; and twelve H-
phobic bonds of ARG-288, ILE-249, LEU-333, LEU-255, ARG-280, ILE-281, CYS-285, and
ILE-341 residues with fisetin tetramethyl ether (Figure 7A).
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The docking feature of PPARA (PDB ID: 1K7L) also reflected the advancement sta-
bilization of 1K7L—fisetin tetramethyl ether interface complex having −5.563 Kcal/mol
of seven hydrogen bonds (ASN-219, GLU-286, TYR-334, CYS-278, ILE-317, and MET-220);
seven hydrophobic interactions (TYR-334, ALA-333, CYS-278, ILE-317, and LEU-321), and
one pi-sulfur bond (MET-320) in contrast to co-crystallized ligand (−5.279 Kcal/mol), fi-
brate drug (−5.204 Kcal/mol), rosiglitazone (−4.156 Kcal/mol) and the standard medicine
metformin (−3.145 Kcal/mol) (Figure 7B).
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In the same way, PPARD (PDB ID: 5U3Q) had the most apparent binding affinity
towards fisetin tetramethyl ether aiming at −5.58 Kcal/mol, which was markedly different
from rosiglitazone (−3.372 Kcal/mol), metformin (−3.319 Kcal/mol) and co-crystallized
ligand (−2.845 Kcal/mol) molecules binding energy. Of that prominent interaction was
worked out forming eight hydrogen bonds of MET-192, ALA-306, ASN-307, PHE-190,
GLU-259, LEU-304, and ILE-290; five hydrophobic bonding of LEU-304, ILE-290, LEU-294,
and LYS-229; one electrostatic bond of GLU-259; and one pi-sulfur bond of MET-293
residues (Figure 7C).

Following that, fisetin tetramethyl ether formed nine hydrogens and two electrostatic
bonds with GLU-62, THR-61, THR-74, THR-75, ASN-60, ASP-72, ASP-78, LYS-59 and
ASP-78 residues of 5HZ9, which all have a significant influence on the FABP3 association
(PDB ID: 5HZ9) (Figure 7D). The essence of this interaction complex was −3.924 kcal/mol,
opposed to rosiglitazone of −3.339 Kcal/mol, co-crystallized ligand of −3.329 Kcal/mol
and a standard drug of −2.908 kcal/mol (metformin).

Fisetin tetramethyl ether binds to the FABP4 (PDB ID: 3P6D) receptor, resulting in
−3.816 kcal/mol across nine H-bonds (GLU-61, THR-60, ASN-59, VAL-73, and ASP-71)
and three H-phobic bonds (VAL-73), which was considerably lower than co-crystallized
ligand −3.74 Kcal/mol, rosiglitazone −3.196 Kcal/mol and the conventional medicine
metformin −2.81 kcal/mol (Figure 7E).

The active pocket of MMP1 (PDB ID: 1SU3) association with fisetin tetramethyl ether
revealed eight H-bonds with HOH-951, GLN-50, SER-172, PRO-173, GLU-39, LYS-36,
ASN-43 and six H-phobic bonds with LYS-36, LYS-40, and PRO-95 residues, ultimately
exposing a docking score of −4.043 kcal/mol, which was of much lower energy than the
competitive agonist rosiglitazone (−3.79 Kcal/mol) and conventional medicine metformin
(−2.74 kcal/mol), but nearly identical to the co-crystallized ligand (−4.365 kcal/mol)
(Figure 7F). Meanwhile, the NR1H3 (PDB ID: 1UHL)– fisetin tetramethyl ether com-
plex showed more remarkable affinities of −2.967 Kcal/mol than the co-crystallized lig-
and (−2.22 Kcal/mol), but lower affinity in the case of standard medication metformin
(−4.431 Kcal/mol) and rosiglitazone (−4.983 Kcal/mol) (Figure 7G). Table S8 lists the
binding pocket residues in detail.

Nevertheless, compared to the corresponding agonist, the co-crystallized ligand and
metformin, the vital essential component of MECSW, showed excellent binding affinity,
implying that those binding complexes had greater binding stability than their synthetic
counterparts. In contrast, this remarkable finding was not lined with the NR1H3 target in
terms of metformin and rosiglitazone, which had a comparatively lower binding affinity.
Table 3 provides information on the docking score, co-crystallized ligand, thiazolidine
derivatives, and fibrate drug nomenclature.

3.9. Quantum Chemistry of Key Ingredients

Density functional theory (DFT) was used to figure out molecular descriptors scoring
functions, such as enthalpy, Gibbs free energy, HOMO, LUMO, hardness, and softness
energy of key compound and standard medicine, to clearly define their reactive chemical
nature, structural properties and regions of the molecules. Whilst the negative values
of thermodynamic characteristics of fisetin tetramethyl ether are higher than metformin,
the thermodynamic attributes of the key compounds are preferably excellent. The com-
pound’s electron-donating and accepting aptitude are symbolized by the HOMO and
LUMO frontiers molecular orbitals, respectively. Similarly, fisetin tetramethyl ether also has
the highest negative energy of −0.21123 Kcal/mol, signifying that it is the ideal electron
donor ingredient than metformin. Hardness and softness are defined as an energy gap,
which are determinant hallmarks of compounds’ chemical reactivity [63]. Appropriately,
soft molecules have a smaller energy gap over complex molecules, while complicated
molecules have an enormous energy difference. Fisetin tetramethyl ether has a relatively
low hardness energy of 0.0759 Kcal/mol than metformin. As the responsiveness of medica-
tions accelerates with their softness, this prior articulated pattern is equivalent to molecular
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softness (Table 4). Figure 8 compares the ground state (HOMO) to the first excited state
(LUMO) localization pattern of comparable compounds’ frontier molecular orbitals.

Table 3. Scores for bioactive compound, conventional medication, and their co-crystallized ligands
docking with substantially enriched pathway genes of T2DM.

Gene PDB ID Compound Docking Score

PPARG 3E00

Fisetin Tetramethyl Ether −6.092

Rosiglitazone −4.73

Metformin * −3.761

2-Chloro-5-Nitro-N-Phenylbenzamide −4.381

PPARA 1K7L

Fisetin Tetramethyl Ether −5.563

Bezfibrate −5.204

Rosiglitazone −4.156

Metformin * −3.145

2-(1-Methyl-3-Oxo-3-Phenyl-Propylamino)-3-{4-[2-(5-Methyl-2-Phenyl-
Oxazol-4-Yl)-Ethoxy]-Phenyl}-Propionic acid −5.279

PPARD 5U3Q

Fisetin Tetramethyl Ether −5.58

Bezfibrate −4.06

Rosiglitazone −3.372

Metformin * −3.319

6-(2-{[([1,1′-Biphenyl]-4-Carbonyl)(propan-2-Yl)
amino]methyl}phenoxy)hexanoic acid −2.845

FABP3 5HZ9

Fisetin Tetramethyl Ether −3.924

Rosiglitazone −3.339

Metformin * −2.908

6-Chloranyl-2-Methyl-4-Phenyl-Quinoline-3-Carboxylic acid −3.329

FABP4 3P6D

Fisetin Tetramethyl Ether −3.816

Rosiglitazone −3.196

Metformin * −2.81

3-(4-Methoxy-3-Methylphenyl)propanoic acid −3.75

MMP1 1SU3

Fisetin Tetramethyl Ether −4.043

Rosiglitazone −3.79

Metformin * −2.74

4-(2-Hydroxyethyl)-1-Piperazine ethanesulfonic acid −4.365

NR1H3 1UHL

Fisetin Tetramethyl Ether −2.967

Rosiglitazone −4.983

Metformin * −4.431

N-(2,2,2-Trifluoroethyl)-N-{4-[2,2,2-Trifluoro-1-Hydroxy-1-
(Trifluoromethyl ethyl]phenyl}benzenesulfonamide −2.22

* = Standard medicine.

Table 4. Key chemical and conventional medication quantum properties.

Compound Enthalpy Gibbs Free Energy HOMO LUMO Eg η S

Fisetin Tetramethyl Ether −1186.191 −1186.19096 −0.21123 −0.05941 −0.1518 −0.0759 −13.173

Metformin −432.845 −432.844572 −0.20215 0.02114 −0.2233 −0.1116 −8.957
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4. Discussion

A synergistic attributable pattern of multi-pathways, multi-components and multi-
targets has constantly been observed in medicinal plants. It is more complex to evaluate
the herbal treatment efficiency in one drug-one target model due to the presence of multi-
diverse chemical ingredients in plants [64]. To metaphrase the traditional potentiality of
medicinal plants, network pharmacology research is an excellent technique that proph-
esied the therapeutic effects of herbal compounds. Such a strategy unearths their target
profiles using a computation-based action plan to generate co-module associations of gene–
compound–disease that hypothesize the synergetic rules and network modulatory actions
of botanical medicinal formula [65]. In this study, we explored the bioactive present in
MECSW employing GC-MS techniques and portended the relevant compound’s target
profiles by the sequential intersection of their association with disease targets to dig up
the mechanistic molecular process of MECSW in the treatment of T2DM. Pertinently, CSW
has been widely used in traditional medicine in the south Asian region. However, the
exact mechanism in which it exerts antidiabetic activity has not been clearly elucidated yet.
Our current study predicted the mechanistic action of compounds extracted from MECSW
at the molecular level. It predicted the interaction of target compounds with the genes
and pathways involved in T2DM. Yet, further sophisticated experiments still warrant the
establishment of this finding.

Pathway compound target (PCT) network revealed that 124 T2DM genes were linked
to 26 chemicals (out of 33 chemicals) and 9 pathways in the diagnostic mechanism of T2DM.
Similarly, the KEGG pathway also suggested that the nine pathways (four were signaling
pathways) influenced the progression and diagnostic process of T2DM, where the gene
ontology (GO) resolution of MF, BP and CC was used to perform the functional process of
the common targets between T2DM and compound-related genes. The biological process
analysis found that common targets were mainly enriched in oxidation–reduction processes
backed by the positive–negative regulation of transcription, transcription initiation, signal
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transduction, etc., which were possibly located in the integral component of the membrane
followed by plasma membrane extracellular exosome, cytosol and others; at a molecular
level, the genes participated in zinc ion binding, DNA binding, enzyme binding, and
heme binding with notably ligand-activated sequence-specific binding potentiality. The
relationship between the nine different types of T2DM related pathways is discussed below.

Prostate cancer: insulin-deprived environment in long-term diabetes results in a lower
amount of insulin-like growth factor-1 receptor (IGF-1R), and higher plasma IGF-1 is
associated with a higher risk of prostate cancer [66–68]. Transcriptional misregulation in
cancer: a broad range of human cancer had been correlated with the overexpression of
insulin receptors (IR) and IGF-1R [69–73]. Moreover, IR-A activated by IGF-2 promotes
metastasis and tumor progression, which is highly correlated with hormone-resistant
breast cancer [74]. AMPK signaling pathway: AMPK stimulates glucose uptake and
regulates the concentration of AMP in pancreatic beta cells in response to blood glucose
levels, suggesting the role of AMPK as a key molecular sensor in regulating glucose and
lipid metabolism [75–78]. Thyroid hormone signaling pathway: the thyroid hormone
also regulates glucose homeostasis by increasing hepatic glucose output, altering glucose
metabolism, decreasing active insulin secretion, and increasing renal insulin clearance [79].
Hyperthyroidism is associated with poor glycemic control, such as hyperglycemia and
insulinopenia, responsible for overt diabetes [80]. Metabolic pathways: T2DM-associated
metabolic symptoms resulting from chronic inflammation often lead to cell stress and
insulin resistance. Insulin deficiency also interferes with some metabolic pathways resulting
in hyperglycemia [81]. Calcium signaling pathway: increased Ca2+ influx was found
correlated with increased insulin-mediated glucose uptake, indicating the significance of
the calcium signaling pathway in T2DM progression [82]. Furthermore, insulin resistance in
humans has been found to be positively correlated with increased serum Ca2+ levels [83,84].
Pathways in cancer: hyperglycemia-induced oxidative stress and DNA damage trigger the
primary phases of tumor formation [85,86]. Even high glucose concentrations have been
reported to modify the gene expression related to proliferation, migration and cell adhesion,
thus leading to cancer [87]. Bile secretion: two of the most prominent signaling molecules
in the bile secretion pathway are the farnesoid X receptor (FXR) and the G-protein-coupled
membrane receptor (TGR5), which play a significant role in the regulation of lipid, glucose
and energy metabolism [88]. The alteration of this pathway may lead to T2DM and relevant
metabolic disorders [89]. PPAR signaling pathway: direct action of peroxisome proliferator-
activated receptors (PPAR)-γ often results in improved insulin sensitivity, which also acts
as major drug target for thiazolidinedione (TZD) in the treatment of diabetes mellitus.
TZD activated PPAR-γ inhibits the transcription of genes associated with glucose and
lipid metabolism [90,91]. The above mentioned nine pathways are integrally linked to
the emergence of T2DM and their rich factors indicate that the PPAR signaling pathway
has a higher enrichment level. It was reported that the greater rich factor is particularly
linked to the greatest extent of enrichment [92]. Farther, this study only focused on the
mechanistic action of one specific metabolic pathway involving the hub gene (PPARG)
with highest degree value. Thus, other targets with lower value are not considered in this
study. However, they may also possess potential to be a good target, which should be
further investigated.

The upregulation of PPARG in the PPAR signaling pathway regulates glucose home-
ostasis through modulating glucose transporter type 4 (GLUT4), beta-glucokinase, and
c-Cbl–associated protein (CAP) in the adipose tissue [93]. In addition, PPARG regulates
several adipose-tissue-mediated factors, such as TNF-α, adiponectin, leptin, and resistin,
which are essential for insulin sensitivity. Hence, the PPARG agonist is important for in-
creasing glucose tolerance by boosting insulin sensitivity and the functionality of beta cells
in diabetics [91]. In contrast, insulin sensitivity may be improved by activating PPARG and
PPARA [94]. Severe hyperglycemia has been discerned in individuals with the dominant-
negative PPARG genetic defect, suggesting a biological link between type-2 diabetes and
the PPARG gene [95]. Furthermore, one of the clock genes, “PPARD”, expressed abnormally
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to the patients with gestational diabetes mellitus (GDM) and T2DM pregnant women [96].
In that way, activation of clock genes, namely PPARA, PPARD and PPARG, would be a
better therapeutic approach for T2DM.

In the context of clockwise gene (PPARA, PPARD, and PPARG) activation, we con-
ducted docking assays using the key compound “fisetin tetramethyl ether”, co-crystallized
ligand, corresponding gene activation agonist (rosiglitazone and bezfibrate) and the stan-
dard medication metformin. As an equivalent to those gene agonists, the key ingredient
had excellent activation energy over co-crystallized ligand affinity and metformin binding
affinity. This indicates that fisetin tetramethyl ether has the potential to activate PPARs.
Several pre-clinical studies also reported fisetin for improved antihyperlipidemic effect and
antihyperglycemic effect in streptozotocin-induced diabetic rats [97–99]. However, FABP3
and FABP4 also exposed efficient binding affinity and stability with fisetin tetramethyl
ether than either metformin or co-crystallized molecules, and MMP1 genes possessed the
equivalent or analogous binding interactions and stability positions with respect to the
key component and co-crystallized ligand. Compared to the co-crystallized ligand, the
NR1H3 gene had more signatory stability, almost equivalent to metformin complex energy.
Figure 9 depicts a detailed insight of the PPAR signaling pathway. Due to rosiglitazone’s
side effect profile, another contemporary drug, metformin, was used as a control in this
study [100]. However, fisetin showed a higher affinity towards PPARG activation than that
of both metformin and thiazolidine derivatives.
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Additionally, the quantum chemical assessment of the key compound and metformin
at the DFT (density functional theory) level was used to verify their chemical reactivity
with targets or other species. The HOMO and LUMO energy gaps are essential in influ-
encing medicines’ kinetic stability and chemical reactivity [101]. A large HOMO–LUMO
gap can be linked to excellent kinetic stability and inadequate chemical reactivity. Chem-
ical function descriptors, such as hardness and softness, may account for the disparity.
Chemical reactivity is exacerbated by their softness [102–104]. Simultaneously, our targeted
hub component fisetin tetramethyl ether outperformed metformin in robust softness en-
ergy. Hence, this progressed as an effective bioactive in treating T2DM. Therefore, fisetin
tetramethyl ether might be able to control T2DM. Other studies had also corroborated the
antihyperglycemic efficacy of this compound [105–107]. However, this research anticipates
that fisetin tetramethyl ether could be a multi-target antagonist of T2DM in the network.
Even though this research founded the pharmacological effectiveness of MECSW in the
treatment of T2DM, more pharmacodynamic and molecular investigations are essential to
precisely comprehend the complex synergistic action that underlies the success of MECSW.

5. Conclusions

This study hypothesized the molecular insight of the bioactive presence in MECSW to
treat T2DM employing network pharmacology. Importantly, this study’s findings show
that MECSW might work through targeting the PPAR signaling pathway, where the key
bioactive “fisetin tetramethyl ether” exhibited tremendous impact on this pathway in the
regulation towards T2DM. These speculative mechanistic actions were further affirmed by
molecular docking simulations, in which this key constituent showed excellent binding
affinity with each protein agonist involved in the PPAR signaling cascade and conventional
pharmaceuticals. In addition, this compound’s quantum chemistry was also characterized
by its superior chemical reactivity over the usual medicine. Ultimately, this study provides
empirical testimony to substantiate the treatment effectiveness of MECSW on T2DM and
outlines profound insights into the bioactive, interacting potential target, and modes of
action of MECSW against T2DM, thus adding to the existing knowledge.
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Abbreviations

T2DM Type-2 diabetes mellitus
PPI Protein–protein interaction
SEA Similarity ensemble approach
SMILES Simplified molecular input line entry system
STP Swiss target prediction
NR1H3 Nuclear receptor subfamily 1 group H member 3
OMIM Online mendelian inheritance in man
PPARG Peroxisome proliferator activated receptor gamma
MECSW Methanolic extract of Caesalpinia sappan wood
FABP3 Fatty acid binding protein 3
PPARA Peroxisome proliferator activated receptor alpha
FABP4 Fatty acid binding protein 4
PPARD Peroxisome proliferator activated receptor delta
MMP1 Matrix metallopeptidase 1
KEGG Kyoto Encyclopedia of Genes and Genomes
FDR False discovery rate
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