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Purpose of review

Hematopoietic stem cell (HSC) transplantation has yielded tremendous information on experimental
properties of HSCs. Yet, it remains unclear whether transplantation reflects the physiology of
hematopoiesis. A limitation is the difficulty in accessing HSC functions without isolation, in-vitro
manipulation and readout for potential. New genetic fate mapping and clonal marking techniques now
shed light on hematopoiesis under physiological conditions.

Recent findings

Transposon-based genetic marks were introduced across the entire hematopoietic system to follow the
clonal dynamics of these tags over time. A polyclonal source downstream from stem cells was found
responsible for the production of at least granulocytes. In independent experiments, HSCs were genetically
marked in adult mice, and the kinetics of label emergence throughout the system was followed over time.
These experiments uncovered that during physiological steady-state hematopoiesis large numbers of HSCs
yield differentiated progeny. Individual HSCs were active only rarely, indicating their very slow periodicity
of differentiation rather than quiescence.

Summary

Noninvasive genetic experiments in mice have identified a major role of stem and progenitor cells
downstream from HSCs as drivers of adult hematopoiesis, and revealed that post-transplantation
hematopoiesis differs quantitatively from normal steady-state hematopoiesis.
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INTRODUCTION

Compared to solid tissues that are maintained by
stem cells such as the gut or the skin, the hemato-
poietic system is particularly accessible. This is
because of the fact that the mostly migratory cells
can readily be retrieved from the blood and from
lymphoid organs. A detailed phenotypic map of
cells, cell populations, tissues, and organs under
resting, immune-responding, or pathological con-
ditions is now available. Multicolor phenotyping by
flow cytometry has evolved into mass cytometry
that allows the detection of tens of markers simul-
taneously on the cell surface and inside of single
cells. Unlike in flow cytometry, the cells are
destroyed in the process and cannot further be
examined functionally. mRNA sequencing and
DNA mutation analyses in single cells have become
powerful tools. Collectively, the immune system
can now be deconvoluted to the resolution of single
cells, and at large scales, that is, for thousands of
individual cells [1–4].
rs Kluwer Health, Inc. All rights rese
In vitro, precursor–product relationships start-
ing from single cells have been examined since the
development of hematopoietic colony assays. This
area has been much refined by high-resolution
tracking of single cells undergoing colony for-
mation, and by simultaneous observation of gene
expression associated with, or driving lineage com-
mitment [5–7]. These assays read out the possible
potential, and not necessarily the potential that is
rved. www.co-hematology.com
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KEY POINTS

� Transplantation has been the mainstay of research on
HSC and progenitor functions in vivo. To what degree
post-transplantation hematopoiesis reflected the
physiology of hematopoiesis has been unknown.

� Noninvasive experimental systems have now uncovered
major differences comparing normal (polyclonal with
low individual HSC contribution) and post-
transplantation (oligoclonal with few dominant HSC
clones) hematopoiesis.

� During unperturbed steady-state hematopoiesis at least
30% of HSCs (or 5000 HSCs per mouse) are active
over time.

� Hundred-fold myeloid over lymphoid bias at the MPP
stage has been shown by HSC fate mapping.

Hematopoiesis
realized in vivo. Cells may be exposed to ‘supra-
physiological’ conditions, often aiming at maximal
cloning efficiencies or burst sizes, which can result
in developmental skewing, or even impose a poten-
tial on cells. For example, ectopic expression of
Notch-ligands, Delta-like-1 or 4 on stromal cells
can persuade undecided progenitors toward a T-cell
lineage program [8]. Notch signals are essential for
T-cell development but forcing progenitors down the
T-cell path in vitro does not necessarily identify those
cells that would normally take this route [9,10].

Because in-vitro readouts may or may not reveal
the physiology of hematopoiesis, transplantation of
stem and progenitor cells into myeloablated recip-
ients has been the mainstay of in-vivo hematopoi-
esis research [11]. Transplantation is a robust assay,
the conditions are well established, it works exper-
imentally in animals and clinically in humans, and
the reconstituted blood and immune systems are
functional long term. Successful reconstitution
from a single hematopoietic stem cell [(HSC), in a
fraction of the mice] [12–17,18

&&

,19
&&

,20
&

], proves
within this system two postulated key properties of
the HSC true:
(1)
296
Self-renewal: One HSC needs to reconstitute
thousands of cells in the HSC compartment,
which can only be achieved by massive prolifer-
ation without obvious loss of HSC identity.
(2)
 Multipotency: One HSC generates mature prog-
eny for essentially all hematopoietic lineages,
demonstrating, by definition, multipotency of
transplanted HSC in vivo.
Genetic barcoding prior to transplantation is a
sophisticated approach to track individually tagged
cells and their progeny in mice transplanted with
www.co-hematology.com
bulk populations of stem cells [21–23]. After trans-
plantation, high-throughput sequencing of DNA bar-
coding tags has demonstrated self-renewal and
multipotency, and revealed that only few, that is,
in the order of tens, HSCs contribute to hematopoi-
esis [21,22].

Self-renewal and multipotency are fascinating
but experimentally challenging to demonstrate
for normal hematopoiesis. HSC transplantation
represents an artificial situation, and little has been
known about the degree of self-renewal and multi-
potency in the normal bone marrow. In-vivo lineage
tracing has now provided evidence for self-renewal
(maintenance of few labeled HSCs throughout the
lifespan of the mouse) and multipotency (full line-
age spectrum generated from few HSCs in vivo,
although not at clonal level). HSC proliferation
[24–26] as such is no indicator of differentiation
or self-renewal because proliferation can feed either
process. Finally, the relative roles of HSCs vs.
downstream stem and progenitor cells for the main-
tenance of steady-state hematopoiesis, or the differ-
entiation flow through the system remained
enigmatic.

Collectively, soon there will be complete struc-
tural information of all cellular components of the
immune system at very high resolution. Yet, as an
outlook, noninvasive experimental methods have
to be developed to address key open questions on
the operation of hematopoiesis under physiological
conditions. Here, we will review recent studies on
unperturbed hematopoiesis. It now appears that,
while the hematopoietic system can be reconsti-
tuted by bone marrow transplantation, HSC engraft-
ment after transplantation does not recapitulate the
system as it originally operated in the donor. Their
enormous adaptability to demand and huge regen-
erative capacity allow HSCs to perform under both
conditions, albeit with differing division of labor
between stem cells.
SINGLE-CELL PHENOTYPING
APPROACHES A HOLISTIC SCALE

Phenotypic analysis leads to the description of cells
based on parameters that include expression of cell
surface markers, intracellular proteins, protein
modifications, RNA expression, epigenetic marks,
and sequencing of genomic mutations. Phenotyp-
ing of living cells plays a key role for the purification
of rare cells, including HSCs [18

&&

,19
&&

,27,
28,29

&

,30], for prospective analysis in adoptive
transfer experiments. Owing to technological
advances, phenotyping approaches unprecedented
depth and resolution. Mass cytometry enables the
simultaneous identification of in the order of 40
Volume 23 � Number 4 � July 2016
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phenotypic antigens (including, for example, intra-
cellular signaling cues such as protein phosphoryl-
ation) at the single cell level [31,32]. In conjunction
with large-scale single-cell RNA sequencing,
proteomics and epigenetic analyses, these new tools
enable deep (detailed biochemical or genetic ‘status’
of a cell) and broad (degree of heterogeneity within
populations) biological information on stem cells
and progenitors [33–37]. These experiments provide
a deconvoluted (yet not easily comprehensible)
view on complex cell ensembles [32,34,38]. Recent
reviews have covered these developments
[1,3,4,39,40].

Most single-cell approaches require the retrieval
of cell suspensions from biological samples, and
artifacts in the wake of cell isolation, sorting and
further manipulations cannot fully be excluded. In
this regard, the combination of mass spectrometry
with immunohistochemistry is not only offering
new avenues in pathology but may also bring some
of these new technologies closer (or back) to the
tissues [39,41]. Still also here, fixation and other
procedures may not be always neutral [2].

Ultimately, an important question is whether
this holistic phenotypic approach leads to a detailed
‘structural’ map of the immune system (a highly
valuable resource), or whether also developmental
routes can be recapitulated, or even be predicted,
from these data. Several groups have developed
mathematical models to extract developmental tra-
jectories (akin to a movie) from a (standing) picture
based on data obtained from large bodies of single
cells [31,37,42,43]. To what extent these new
approaches will help to unravel developmental
pathways in previously uncharted territory remains
to be determined. It appears, currently, that the
obtained trajectories are either fitted to, or tested
against known pathways. This is of course important
for validation, yet it does not prove that navigation
will be safe with no land in sight. It seems likely that
the ‘running machine’ is not readily deducible from
stills of its parts. Consider a progenitor cell in which
a set of transcription factors turns on erythropoietin
receptor mRNA transcription; is this cell always
destined to become a committed erythrocyte pro-
genitor, or can it turn off the erythropoietin receptor
gene and choose an alternative fate? In-vivo fate
mapping shows that Cre recombinase drivers
inserted into lineage-specific gene loci can indeed
separate branches in vivo; however, this separation is
not absolute (e.g., in IL7raCre mice, some myeloid
cells are marked, implying that not every cell
expressing the IL7ra during its ontogeny will
become a lymphocyte) [44]. In summary, fate-map-
ping experiments are likely necessary to comp-
lement the phenotypic picture functionally.
1065-6251 Copyright � 2016 Wolters Kluwer Health, Inc. All rights rese
TRANSPLANTATION: A WONDERFUL
ASSAY BUT NOT THE WHOLE STORY
Transplantation of HSCs and progenitors has com-
pelling experimental advantages: it is feasible, and
the conditions (e.g., dose of radiation; radioprotec-
tive cell doses; and engraftment kinetics) are
established. Transplantation can separate durable
engraftment (long-term reconstitution; by conven-
tion referring to HSC activity for at least 4 months)
from transient reconstitution (for about 6 weeks and
often important for radioprotection). HSC exhaus-
tion can be tested by serial transplantation. Trans-
plantation can reveal competitive advantages or
disadvantages when test and competitor cells are
coinjected, it can yield functional information on
mutant stem and progenitor cells from knockout
mice, it can facilitate the analysis of lethal mutants
from which at least fetal liver cells can be isolated,
and it can be crucial to distinguish hematopoietic
intrinsic vs. extrinsic (systemic) phenotypes.

The race for the world record in enrichment and
purity in HSCs has been based on repopulating
frequencies starting from single or few cells (or
graded numbers of cells in limiting dilution exper-
iments). This was the guiding principle in the
original descriptions of phenotypically enriched
HSC populations [13,14,16,45–47]. It is interesting
to observe the reported engraftment frequencies
over time. One report claimed near absolute engraft-
ment [48] whereas others reported limitations, for
instance because of seeding inefficiencies (e.g., cell
loss in the lungs on intravenous transfer or imper-
fect niche homing) [49]. Repopulating HSCs (also
termed long-term [LT] HSCs) are highly enriched in
a rare subset (about 0.006%) of cells in bone marrow
that have a lineage (Lin)�KitþSca1þCD150þCD48�

phenotype; sometimes further markers (e.g.,
CD34�/low, CD41�, and Flt3�) are included. How-
ever, some combinations appear redundant because,
when tightly gated, some markers virtually exclude
cells bearing other markers (e.g., CD34 and CD150
are mutually exclusive).

HSC transcriptomes have been analyzed in the
search for new HSC markers and to deduce infor-
mation on HSC biology [18

&&

,28,30,33,50]. HSCs
have successfully been identified in vivo using
reporter mice for Hoxb4 [51], and Fgd5 [29

&

]. HSC
reporter mice have also been used for the in-situ
localization of the stem cell niche in the bone
marrow [18

&&

,30]. In a-catulinGFP knock-in mice,
HSC could be enriched by using only this marker
from a frequency of 1/37 000 (unfractionated bone
marrow) to 1/7 (a-catulinGFPþ cells) [18

&&

]. Con-
versely, depletion of a-catulinGFPþ cells from bone
marrow reduced the repopulating frequency almost
100-fold over total bone marrow. The highest HSC
rved. www.co-hematology.com 297



Hematopoiesis
repopulating efficiency (1/3) was achieved by com-
bining a-catulinGFPþ cells with the Lin�Kitþ

Sca1þCD150þCD48� phenotype [18
&&

]. One report
used Hoxb5 expression to further dissect the HSC
compartment [30]. In Hoxb5-triple-mCherry reporter
mice, about 20% of phenotypically defined HSCs
(Lin�KitþSca1þCD150þCD48�CD34�/lowFlt3� cells)
were mCherryþ, and only this fraction was highly
enriched for long-term repopulating HSCs (at a
frequency of 1/2 compared with 1/16 for mCherry�

cells). It appears difficult, however, to reconcile low
frequencies in the Hoxb5� population with frequen-
cies in the range of 20–40% that others measured
previously for the entire phenotypically defined
HSC population [13,14,16,17,18

&&

].
The procedures underlying transplantation are

not standardized. Details of cell purification and cell
sorting (e.g., setting of lineage and other gates in the
flow cytometer), choice of recipient strains, con-
ditions of myeloablation, efficiency of cell injec-
tions, as well as mouse keeping conditions may
matter, effectively precluding direct comparisons
of repopulating frequencies. Still, HSC populations
can be purified to harbor repopulating frequencies
of up to 50% [14,18

&&

,30,52]. Finally, based on
transplantation there is evidence for heterogeneity
among HSCs based on expression levels of Kit [53]
and CD150 [52,54].

In transplantation experiments, the lineage
output has been analyzed at various time points
for at least lymphocytes (mostly T and B cells)
and myeloid cells (mostly granulocytes). The notion
that a myeloid bias is a hallmark of aging hemato-
poiesis is largely based on the transplantation of
young and old HSCs. Moreover, transplanted
HSCs have fallen into distinct lineage and kinetic
repopulation patterns, suggesting functional
heterogeneity with the total HSC compartment
[16,17,20

&

,52,54,55]. It is unknown whether such
HSC subsets exist in situ.

Genetic barcoding of HSCs and progenitors
in vitro, followed by transplantation, has been used
to track the clonal output of tagged cells in vivo
[21–23]. The identification of DNA barcodes in
sorted cell populations can uncover the types of
lineages and the relative amounts of cells that have
been generated in vivo from those tagged HSCs that
successfully engrafted. These experiments demon-
strated that the number of contributing HSCs (i.e.,
the number of unique barcodes) is very low (in the
order of tens). By extrapolation, this suggested that
only few HSCs might contribute also to normal
hematopoiesis.

Recently, a barcoding strategy has also been
applied to obtain a high-resolution view of the
myeloid-erythroid progenitor compartments [56],
298 www.co-hematology.com
which is in agreement with a parallel study based
on single-cell RNA expression data [37]. This marked
heterogeneity within common myeloid progenitors
is in keeping with the identification of committed
erythrocyte progenitors within the common
myeloid progenitor compartment [57].

From this brief update on transplant hemato-
poiesis, it is evident that much of the current under-
standing of the system is based on studies of the fate
and functions of HSCs following adoptive cell trans-
fer and engraftment. The flipside is that our knowl-
edge of hematopoiesis under nonperturbed
conditions in the bone marrow is limited.
NONINVASIVE STUDIES OF
HEMATOPOIESIS

In-vivo tracing methods have been developed to
‘visualize’ hematopoietic development from HSCs
under native conditions (see [58] for underlying
considerations). Inducible lineage tracing of cells
emerging from HSCs was reported in mice express-
ing tamoxifen-dependent versions of Cre recombi-
nase from the Scl locus [27], or from the Runx1 locus
[59]. Key for HSC fate mapping is whether or not Cre
expression can be as specifically as possible
restricted to long-term HSCs in vivo [19

&&

]. Other
suitable candidate loci include the aforementioned
genes Hoxb4 [51], Fgd5 [29

&

], a-catulin [18
&&

], and
Hoxb5 [30]. Busch et al. [19

&&

] generated a knock-in
mouse expressing from the Tie2 locus Cre recombi-
nase flanked on both ends by a modified estrogen
receptor domain; this fusion protein, termed Mer-
CreMer (MCM), is not leaky in the absence of
tamoxifen [60]. In Tie2MCM mice, a small fraction
(in the order of 1%) of Lin�KitþSca1þCD150þCD48�

HSCs could be induced to express the inheritable
fluorescent marker YFP [19

&&

,61]. In this system,
kinetic cell tracing experiments in a large cohort
of mice, combined with limiting dilution analysis
and mathematical modeling, revealed several unex-
pected quantitative properties of hematopoiesis
from stem cells in the bone marrow [19

&&

,58]:
(1)
 The number of HSCs that contribute to normal
hematopoiesis is in the order of 5000 cells (or
more, given that this was a lower estimate) per
mouse. Considering that mice have in the order
of 17 000 HSCs, this implies that at least 30% of
all HSCs participate over time in hematopoiesis.
(2)
 Estimates on the flux of differentiation through
the system (between phenotypically-defined
stem and progenitor compartments) could be
obtained. The by far slowest differentiation
step was found between KitþSca1þCD150þ

CD48� phenotype HSCs and short-term
Volume 23 � Number 4 � July 2016
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(KitþSca1þCD150�CD48�) phenotype HSCs,
which takes almost1 year. This implies that those
HSCs, most apical in the pyramid, are only rarely
involved in the daily generation of new blood
and immune cells. Steady-state hematopoiesis is
thus expected to be largely independent of the
activity of HSCs for extended periods of time,
which may have implications for time between
bone marrow injury and bone marrow failure
or hypoplasia.
(3)
 An individual HSC is giving rise to differentiated
progeny (cell divisions leading to differen-
tiation) approximately once per 110 days. The
rate of proliferation (one division per 110 cells
and day, or approximately 1% of HSC per day) is
lower than actually measured proliferation rates
in HSCs based on the literature [26], which are
in the order of a few percent. This difference
should reflect those cell divisions that compen-
sate for cell loss.
(4)
 The observation of many mice over long periods
of time with low HSC labeling frequencies
indicates very slow periodicity of HSCs (aver-
aged over the labeled HSC population) and no
obvious signs of random or stochastic HSC acti-
vation. The relative homogeneity of the output
from few labeled HSCs argues for one HSC pool
with rare individual HSC activity rather than
two pools, one active and one dormant, within
the labeled cells.
Transplantation
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Under steady-state conditions, the contribution
of individual HSCs (output) to the hemato-
poietic system is low. This would imply rela-
tively small clone sizes of mature immune cells,
and ensure that many different HSCs contribute
to the maintenance of hematopoiesis.
(6)
 Hematopoiesis in adult mice (not only aged
mice) is characterized by a very strong myeloid
bias, i.e. the flow from HSCs into myeloid lin-
eages is several 100-fold larger compared with
the lymphoid lineages. Because, in general,
myeloid cells are shorter-lived than lymphoid
cells, these different production rates could be
explained by the higher demand for de novo
myelopoiesis compared with lymphopoiesis.
(7)
 5-FU-induced leukopenia enhances the flux
from HSCs.
(8)
 In-situ labeled HSCs, when grafted using con-
ventional bone marrow transplantation, fail to
reestablish their original representation (i.e.,
clonal composition) in the host bone marrow.
Differences in HSC contributions over time
under steady state and post-transplantation
are depicted in Fig. 1. Quantitative hallmarks
that distinguish steady-state and post-trans-
plant hematopoiesis are summarized in Table 1.
Genetic barcoding is a powerful tool to study
precursor product and inter-lineage relationships
at very high, possibly clonal resolution. The
Tie2 promoter

STOPRosa26 promoter reporter

MerCreMer

Fate mapping
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ion in the first weeks after injection. The majority of HSC
hieved by only a few dominating HSC clones. Individual
P-mediated recombination of the Rosa26 reporter locus,
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verage about once every 110 days, with perhaps some
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generation of barcodes in vivo without the use of
viral vectors possesses an experimental challenge.
Sun and colleagues [62

&&

] developed a new mouse
model in which they labeled cells with unique
genetic barcodes in vivo. The system was driven from
the ubiquitously expressed Rosa26 locus, doxycy-
cline-inducible transposon mobilization occurred
in approximately 30% of cells, and the labeling
included stem or progenitor cells as well as fully
differentiated cells. At early time points, the
presence of tags in the periphery was unrelated to
development, but following chase periods up to
40 weeks, the turnover of label revealed data on
the dynamics of native hematopoiesis under
steady-state conditions.

Kinetic resolution of peripheral blood samples at
4–6 week intervals revealed highly polyclonal gran-
ulopoiesis that originates from successive, distinct
sets of progenitors during steady-state granulopoi-
esis [62

&&

]. Because the residence time (time cells
spend in a compartment) for multipotent progeni-
tors (MPP) is on average 70 days [19

&&

], these results
are compatible with the idea that a given set of MPP
generates (at least) granulocytes over several weeks
before another set takes over. Sun et al. found only
very few overlapping barcodes comparing LT-HSC in
the bone marrow and mature cells in the periphery,
and concluded ‘that LT-HSC have limited lineage
output under unperturbed conditions for at least
40 weeks’ [62

&&

]. However, the output from HSCs is
not zero, but an estimated number of 150 HSCs still
contribute per day [19

&&

]. The absence of common
tags could in theory also be explained by loss of
tags from the HSC pool because of stem cell
consumption during differentiation (in that case,
proliferation would always lead to two differentiat-
ing daughter cells that leave the HSC compartment,
causing loss of the original barcode from the
HSC pool).

This barcoding system has also been used
to compare hematopoiesis in situ and post-trans-
plant. Akin to the model depicted in Fig. 1, many
clones contributed early and transiently after
transplantation but, with time, an oligoclonal
pattern arose, providing strong support for the
notion that upon transplantation the population
of donor HSCs fails to reestablish its original
composition, clone sizes or activity rhythm in
the host. Finally, this barcoding system also
provided hints into lineage relationships. Only
10% of MPP clones showed bipotent development
into myeloid and lymphoid cells. Although
different lifespans of myeloid and lymphoid line-
age could mask bipotency, the experiments
indicate that multipotency exists at this pro-
genitor level in vivo.
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CONCLUSION

Until recently, information on the functions of HSCs
and progenitors was largely based on transplantation
experiments. New experimental systems have been
developed to explore the functions of normal steady-
state hematopoiesis in the bone marrow in mice.
These noninvasive experiments have uncovered
major differences comparing normal and post-trans-
plantation hematopoiesis; hence both are in vivo but
different. Following transplantation, hematopoiesis
is initially driven by many transient clones, which
fade over time, resulting in hematopoiesis that is
maintained by few HSCs (oligoclonal hematopoie-
sis). By contrast, new studies now show that normally
very large proportions of HSCs (at least 30% or about
5000 HSCs per mouse) are active over time. HSCs
have a very slow periodicity, for example, long lag
times between two incidents of activity with no
evidence for distinct dormant vs. active HSC com-
partments. Tracking of the emergence of the label
from HSCs via differentiation into mature cells led to
estimates on rates of differentiation flux, rates of
differentiation-associated proliferation, and resi-
dence times in compartments. In vivo barcoding data
gave insights into the clonal dynamics (number and
diversity of barcodes distributed over time) of hem-
atopoiesis, and suggest that at least at the MPP stage
most in-vivo potential is myeloid rather than bipo-
tent lymphoid plus myeloid. This is in line with the
several 100-fold myeloid over lymphoid bias at the
MPP stage deduced from HSC fate mapping data.

Collectively, these developments provide a quan-
titative framework for the dynamics of normal
hematopoiesis (whereas refining the structure and
relatedness of the lineage pathways under normal
conditions will require even more sophisticated
tools). The regulation of the HSC output and the
hematopoietic flow under stress conditions or during
pathology will be key questions in the future. More-
over, massive single-cell analyses will provide an
unprecedented depth of the structure of the hema-
topoietic system. Eventually, these routes of investi-
gation should merge in a detailed functional
description of the physiology and pathology of
hematopoiesis.
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