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Abstract: Both color and structure make important contributions to human visual perception, as well
as the evaluation of landscape quality and landscape aesthetics. The EEG equipment liveamp32 was
used to record the EEG signals of humans when viewing landscape images, structure images with
filtered color, and color images with a filtered structure. The results show that the SVM classifier
was the most suitable classifier for landscape classification based on EEG features. The classification
accuracy of the landscape picture recognition was up to 98.3% when using beta waves, while the
accuracy of the color recognition was 97.5%, and that of the structure recognition was 93.9% when
using gamma waves. Secondly, color and structure played a major role in determining the alpha
and gamma wave responses, respectively, for all the landscape types, including forest, desert, and
water. Furthermore, structure only played a decisive role in forest, while color played a major role
in desert and water when using beta waves. Lastly, statistically significant differences between
landscape groups and scenario groups with regard to alpha, beta, and gamma rhythms in brain
waves were confirmed. The reasonable usage and layout of structure and color will have a very
important guiding value for landscape aesthetics in future landscape design and landscape planning.

Keywords: color; structure; landscape recognition; electroencephalography (EEG)

1. Introduction

The measurement of brain activity is an objective way of assessing the physiological
perception of engagement with the landscape, environment, or other objects [1–3]. Brain
imaging is helpful to measure the effects of unconscious stimuli [4,5]. Research has dis-
cussed the interplay between landscape types and the physiological response of human
beings. Recent laboratory-based neuroimaging studies indicated that various environ-
ments may be associated with characteristic patterns of brain activity [6,7]. EEG frequency
features have commonly been used in EEG signals. Generally, high-amplitude signals
in the low-frequency range are observed when the subjects are in a calm state, whereas
high-amplitude signals in the high-frequency range are obvious in a stimulated state [8,9].
EEG features (frequency-domain features, time-domain features, and spatial-domain fea-
tures) in EEG signals represent the brain region activities. Thus far, there have been many
studies using EEG technology and machine learning for recognition with good classifica-
tion accuracy, e.g., emotion recognition [10–13], object structure recognition [14,15], color
recognition [16], and landscape and animal image recognition [17]. Some studies have
gradually applied EEG technology to different fields, including environmental perception
and landscape assessment [6,18–20], while others have also explored the impact of specific
environmental characteristics on the natural environment [21–23].

Color is a basic aspect of human perception. It is known that color also affects human
spirit and emotion. Moods and behaviors can be changed by colors [24]. Color signals
improved the survival of early humans [25,26]. Differences in human color perception
according to physical and psychological experiments have been discussed [27]. British
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color planning expert Lancaster proposed the concept of “color landscape”. Expressing that
a localized or personalized landscape can be achieved by controlling the color of elements
in the environment [28]. On the other hand, object recognition has revealed the role of
structure information in higher-level vision [29,30]. Data from behavioral studies and
neuropsychological studies have suggested that color (as surface features) contributes to
structural object recognition [31,32]. At the same time, color information plays an important
role in the visual recognition of natural objects [33].

The quantitative analysis of color is important for a scientific evaluation of landscape
aesthetic quality and forest landscape management [34]. Landscape type also plays a
decisive role in the visual aesthetic quality of the local landscape. The complexity of
landscape structure will affect people’s evaluation of landscape aesthetic quality to a certain
extent. For example, the structure of the forest community and the spatial distribution of
population affect the landscape aesthetic quality [34,35].

In this paper, we aimed to analyze the role of color and structure in landscape recogni-
tion by using the objective quantitative index of EEG features. We mainly focused on color
and structure because they play important roles in landscape evaluation and recognition,
as well as affect people’s spirit and emotion. EEG signals have been not only used as a
tool to supplement surveys or expert opinion commonly utilized in the landscape evalua-
tion field [19], but also supported by functional magnetic resonance imaging (fMRI) [36]
and near-infrared studies [37,38]. Therefore, research on the role of color and structure
as a function of EEG features in landscape recognition can provide a necessary basis for
landscape perception and landscape recognition in landscape evaluation. This study will
provide a method and guidance for use in summarizing the weight of color and structure
in landscape classification.

Many previous studies have shown that color and structure play an important role
in environmental assessment and landscape recognition, especially in human perception
of the environment or landscape [21–23,25–27,34,35]. However, the influence of color or
structure on landscape recognition is not clear as a function of the objective index of EEG
features. Three hypotheses are proposed to explore the role of color and structure in
landscape recognition:

(1). The recognition accuracy of different colors, structures, and landscape types varies,
whereas the classification accuracy for different scenarios in different landscapes
is similar;

(2). Color and structure play different roles in different landscape types;
(3). The distribution of brain regions is different in different scenarios and landscape types.

2. Materials and Methods

We selected the experimental images (Figure 1) for this study through consultation
with several experts.

2.1. Materials

Firstly, five photographs were selected to represent each type of common natural
setting, including forest, desert, and water. Then, 10 people with more than 5 years of
experience in landscape design were asked to rate each photo on a scale of 1–5. The highest-
scoring photographs were chosen according to the cumulative scores. The landscape images
were color-filtered to form structure landscape images (i.e., black and white landscape
images) and then structure-filtered to form corresponding color images. Accordingly, we
obtained three groups of images (landscape images, structure images, and color images)
for this experiment. In Adobe Photoshop CS4, the color-finder tool takes an RGB value of
10 points in the landscape images and takes the average value. This process was repeated
three times to get the average RGB value; then, the color images were quarried. The
structured images were grayscale-converted from landscape images to black and white
using Adobe Photoshop CS4 with the default RGB values (best for color comparison) and
no special retention of brightness or shadow. Secondly, each participant’s EEG signals
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were collected and evaluated. Lastly, EEG results were analyzed to assess the perception of
participants in different scenarios (landscape images, structure images, and color images)
and different landscape types (forest, desert, and water). The role of color and structure in
landscape recognition was concluded on the basis of EEG features.
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Figure 1. Examples of experimental images.

In the laboratory, the room was completely closed and without noise. A 15 inch
display device was put in front of the subjects. There were nine different images, each of
which remained on screen for about 20 s (20 repeats for each image, with 2 s of stimulation
each). After a series of images, the volunteers had a rest.

2.2. Subjects

A total of 20 volunteers aged between 25 and 55, nine women and 11 men, participated
in the experimental procedure. The participants had varied employment situations, such
as university staff, social workers of various industries, and university graduates. We
described the purpose of the experiment before beginning, and participants were asked to
be right-handed, with no color blindness, and in good physical health, without any history
of mental disorder. If they met the requirements and agreed to continue the experiment,
they then signed an informed consent form before testing. The study was approved by the
school’s ethics committee.

2.3. Method

In this study, the Active System produced by Brain Products (LiveAmp, Brain Products
GmbH, Gilching, Germany) with 32 channels was used to obtain the signals of the brain
activity (Figure 2). The original EEG data were analyzed by the EEGlab, which is a
toolbox for processing continuous EEG signals. The EEG signals were detrended using the
average of left and right mastoids as a reference. Then, eye electrical, electromyography,
electrocardiography, power frequency interference, and other disturbance artefacts were
removed by independent component analysis (ICA) [39–41]. Next, the EEG signals were
segmented into contiguous 2 s windows, and any segments which retained artefacts
were rejected [42]. The experiment used the international 10–20 system and a 32-channel
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electrode cap. Therefore, a total of 1800 (9 × 20 × 10) data samples were generated. Then,
250 Hz downsampling and 0.5–50 Hz filtering were performed to obtain the preprocessed
EEG datasets. Fast Fourier transform was used to extract frequency band information.
The frequency-domain features were extracted to obtain the logarithmic frequency energy
values of the waves in five frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),
beta (13–30 Hz), and gamma (>30 Hz) [43].
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The absolute EEG value for various types of pictures show that the natural landscape
play a certain role in recovery from stress, whereby alpha waves (8–13 Hz) and beta waves
(13–30 Hz) are the most suitable indicators [3]. Gamma waves (>30 Hz) are associated
with meditation and happiness [44], as well as high-level information processing [45,46].
Another study also found a correlation between relaxation therapy and alpha waves [21].
As delta and theta waves are mainly presented during sleep, alpha, beta, and gamma
waves were mainly used in this study for different landscapes and scenarios.

The EEG data were randomly divided into training (70%) and test (30%) data. For
our purposes, we used 10-fold cross-validation to train and test extracted features for all
classifiers. For KNN, we used k = 5 as a baseline for comparison with other classifiers. For
random forest, we used a total of 500 trees. We used LIBSVM software [47] to implement
the SVM classifier and employ the linear kernel.

2.4. Statistical Analysis

Firstly, machine learning (K-nearest neighbor, random forest classifier, and support
vector machine) was used to classify different landscape types, colors, and structures as
a function of brain waves after the pretreatment of EEG signals; then, the recognition
accuracy in different situations was obtained. Secondly, the relative weights of structure
and color in landscape recognition were calculated, and the method approximated the
average increase in R2 upon adding predictive variables to all possible submodules [48–50],
followed by using the reweights function in R software [51]. Lastly, variance analysis was
used to test differences between groups with the same sample size. The Tukey HSD test was
carried out for a binary comparison between different scenarios and different landscape
types. The significant differences in different scenarios and using different landscape
types were identified. All the statistical analyses were performed using R and Matlab.
Graphs were completed in Matlab and Excel, and graph combination was completed in
CorelDRAW2018.
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3. Results
3.1. Recognition Accuracy of Landscape, Structure, and Color Based on Brain Waves

The classification accuracy of the three different classifiers for landscape, structure,
and color are displayed in Figure 3 as a function of alpha, beta, and gamma waves. SVM
was the classifier with the highest recognition accuracy for colors, structures, and land-
scapes using alpha, beta, and gamma waves, followed by RF and KNN (Figure 3). Using
the SVM classifier, the trend of recognition accuracy was gamma > beta > alpha, while
similar trends were confirmed using both the RF classifier and the KNN classifier. The
accuracy of landscape image classification was higher than that of structure and color
image classification using alpha, beta, and gamma waves in RF and SVM. Using the SVM
classifier, the accuracy of landscape image recognition was up to 98.3% using beta waves,
while the recognition accuracy of colors corresponding to the landscape was 97.5% us-
ing gamma waves, and that of structures was 93.9% using gamma waves. Using the RF
classifier, the accuracies of landscape, structure, and color were 98.6%, 95.8%, and 93.9%,
respectively, using gamma waves.
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The classification accuracy of the three different classifiers for three different scenarios
(forest, desert, and water landscapes) are displayed in Figure 4 as a function of alpha,
beta, and gamma rhythms in brain waves. The classifier with the highest recognition
accuracy for landscape color images (with structure filtered out), landscape structure
images (with color filtered out), and raw landscape images was SVM using alpha, beta,
and gamma waves in all cases (Figure 4). Using the SVM classifier, the accuracy of different
scenarios was higher, exceeding 90% for alpha, beta, and gamma waves with all landscape
types. The classification accuracy for the three different scenarios was 91.7–92.2% using
alpha waves, 96.1–97.8% using beta waves, and 94.7–99.2% using gamma waves. There
was little difference in classification accuracy across the three landscape types. The high
recognition accuracy for the different scenarios indicated that color and structure both play
an important role in landscape recognition.
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According to the results in Figures 3 and 4, SVM was the most suitable classifier in
this study, with accuracies exceeding 82.5% in all cases, which were relatively higher than
those obtained using KNN and RF with alpha, beta, and gamma waves. In addition, the
goodness of fit, specificity, and sensitivity of different classifiers for different landscape
types and different scenarios (Appendix A) were calculated when choosing the most
suitable classifier.

3.2. Weight and Brain Distribution of Structure and Color in Landscape Recognition

According to the average values of the whole brain, color played a major role in
stimulating alpha waves, whereas structure played a major role in stimulating gamma
waves for all landscape types (forest, desert, and water). In addition, structure played a
major role in forest recognition, whereas color played a major role in desert and water
recognition using beta waves. Here, a major role was defined as a weight in landscape
recognition greater than 50% (Figure 5). The above findings may be due to the structure of
the forest being the most complex among the three landscapes, while the structure of other
landscapes is relatively simple.
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The weights of structure and color in landscape image recognition using alpha, beta,
and gamma rhythms in brain waves of the whole brain are presented in Figure 6.
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3.3. Analysis of Different Landscapes and Scenarios Based on EEG Features

Table 1 shows the results of two-way ANOVA, suggesting a significant difference in
the human perception of scenario and landscape type. The group differences according to
scenario were found to be significant for alpha, beta, and gamma waves (p < 0.01), while
the differences according to landscape type were also significant for beta waves (p < 0.00).
However, differences according to landscape type were not significant for alpha and
gamma waves (p = 0.26 and 0.55, respectively). Moreover, the interaction effect between
scenario and landscape type was significant. Since the interaction effect between two
factors was verified by the above analysis, we performed a Tukey HSD test to determine
which electrode underlying each factor affects human perception.

Table 1. Results of ANOVA.

Factor Df SumSq MeanSq F_value Pr (>F)

Alpha wave
Scenario 2 0.31 0.15 4.67 0.01 *
Landscape 2 0.09 0.04 1.35 0.26
Scenario: Landscape 4 1.41 0.35 10.70 0.00 ***
Residuals 171 5.62 0.03
Beta wave
Scenario 2 0.16 0.08 11.54 0.00 ***
Landscape 2 0.12 0.06 8.47 0.00 ***
Scenario: Landscape 4 0.06 0.01 2.09 0.08 •

Residuals 171 1.16 0.01
Gamma wave
Scenario 2 0.34 0.17 15.42 0.00 ***
Landscape 2 0.01 0.01 0.61 0.55
Scenario: Landscape 4 0.15 0.04 3.35 0.01 *
Residuals 171 1.90 0.01

Notes: *** p < 0.001, * p < 0.05, • p < 0.1; only significant results are displayed.

For different scenarios, there were significant differences among landscape groups,
structure groups, and color groups, which were reflected in multiple electrodes of the
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whole brain (Figure 7a). Furthermore, differences between each group were also reflected
(Figure 7b–d). A significant difference between forest and desert was mainly reflected in
most electrodes for beta waves in landscape and structure, as well as for beta and gamma
waves in color (Figure 7b). A significant difference between forest and water was mainly
shown for alpha waves in landscape and structure, as well as for beta waves in color
(Figure 7c). A significant difference between desert and water was mainly displayed for
alpha and beta waves in landscape, as well as for beta and gamma waves in structure and
color (Figure 7d).
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Significant group differences among scenarios (landscape images, structure images,
and color images) were reflected for most electrodes using alpha, beta, and gamma rhythms
in brain waves (Figure 8a). Significant differences between landscape and structure images
were mainly shown for most electrodes using beta waves in forest and desert, as well as
alpha and beta waves in water (Figure 8b). Significant difference between landscape and
color images were mainly shown using gamma waves in forest, beta waves in desert, and
alpha and gamma waves in water (Figure 8c).
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4. Discussion
4.1. Recognition Accuracy of Landscape, Structure, and Color Based on Machine Learning

The recognition of landscape images, structure images, and color images, as well
as the recognition of different scenarios, showed that SVM was the classifier with the
highest accuracy among the three landscape types (Figures 3 and 4). The classification
accuracy was 98.3% for landscape types using beta waves, 97.5% for colors (green, blue,
and orange) using beta waves, and 93.9% for structures using gamma waves. Rasheed et al.
used linear, polynomial, and radial basis function kernels in a support vector machine
to classify red, green, and blue colors on the basis of EEG signals, yielding accuracies
of 84%, 89%, and 98%, respectively [16], similar to the results for color classification
accuracy in this study (97.5%), thus indicating their reliability. Khasnobish et al. classified
objects on the basis of EEG signals using 10 objects of various regular geometrical shapes
(cone, cube, sphere, hemisphere, cylinder, prism, and hexagonal base cylinder) and two
irregularly shaped objects (lock and mouse). The recognition accuracy was 88.34% for pure
tactile, 81.1% for pure visual, and 82.2% for a mixture of tactile and visual elements. The
average classification accuracy over all three object exploration modalities was 83.89% [14].
Rus et al. found that the EEG features in gamma wave were more suitable for object
recognition, and they used three different classifiers (SVM, KNN, and ANN) to classify
objects, yielding accuracies of 89.5%, 89.5%, and 83%, respectively [15], consistent with
the highest classification accuracy obtained using gamma waves in all brain waves in this
study. Using EEG signals, Lam et al. implemented a single-layer neural network method
to identify and classify landscape images and animal images, yielding an average accuracy
of 91.15%, in which the average recognition rate of landscape images was 89.69%, and that
of animal images was 92.34% [17]. Our classification accuracy results of 98.3% using beta
waves, 96.9% using gamma waves, and 90.6% using alpha waves for landscape images
with an SVM classifier are a little higher than Lam et al.’s result of 89.69%.

4.2. Role of Color and Structure in Landscape Identification

According to the average values of the whole brain, color plays a major role in
stimulating alpha waves, whereas structure plays a major role in stimulating gamma waves
for all landscape types (forest, desert, and water). In addition, structure played a major
role in forest recognition, while color played a major role in desert and water recognition
using beta waves. A major role denotes a weight in landscape recognition greater than
50% (Figure 5). The locations of the brain where structure played a major role were not
the same as those identified for colors using alpha, beta, and gamma waves in different
landscape types (Figure 6). The reason for this finding may be due to the structure of
forests being the most complex among the three landscapes, while the structure of the other
landscapes is relatively simple and homogeneous. Alpha waves normally play a major
role in the relaxed state [21,52]. Our finding that color plays a major role in stimulating
alpha waves for all landscapes suggests that color is very important in recognizing natural
landscapes that induce relaxation and stress recovery. Gamma waves are associated with
high-level information processing and a high cognitive state [45,46,53–55]. Our finding
that structure plays a major role in stimulating gamma waves for all landscape types is
consistent with the above conclusion. Beta waves play a major role when people are alert
or stimulated [3]. Among the three landscape types, the structure of forests is relatively
complex, while the structure of deserts and water is relatively simple. Consequently, when
people were stimulated by the corresponding landscape, structure played a major role in
the recognition of forest landscape, while color played a major role in the recognition of
desert and water using beta waves. Another possible reason may be closely related to the
plant diversity of the forest, where the tree density level is more conducive to a sense of
relaxation. Previous studies have shown that moderate vegetation levels are associated
with optimal physiological outcomes [56]. The structure of the forest landscape in this
study was relatively complex with a medium vegetation level. It can be concluded that, in
simple landscapes, color plays a very important role in influencing people’s perception,
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whereas, in relatively complex landscapes with a high species diversity, structure plays a
major role. In summary, both color and structure are important for landscape recognition.
Therefore, their reasonable usage and layout can be very important for guiding landscape
aesthetics in future landscape design and landscape planning.

Compared with other BCI-based studies [18,19,23,26,36,57,58], the electrode distribu-
tion in this study was denser. Thus, relatively more detailed brain distribution differences
and higher spatial brain resolution were obtained. In order to clearly reflect the role of
structure and color, we also examined the differences between each group. Our finding
confirmed a statistical significance in landscape and scenario recognition using alpha, beta,
and gamma waves, thereby revealing that structure and color are important for landscape
recognition as their absence led to significantly differences.

Future research should further explore landscape structures and colors that can cause
an increase in the alpha rhythm of brain waves (inducing a physiological relaxation and
stress recovery state), which can greatly help in the identification of landscapes that provide
spiritual cultural services for human beings. Moreover, there is a need for further research
into the relationship between the time of human exposure to the natural landscape and the
process of brain waves of humans. Future research should focus on the differences in the
individual perception of landscape physiology, including an increase in sample size and age
range and more varied employment situations, as well as differences in gender, education
level, residence, property income, and other social attributes. It may be helpful to find
relevant patterns between psychophysiological trends and individual social characteristics.

5. Conclusions

With the development of EEG technology in recent years, direct evidence of human
brain activity has enabled new pathways for landscape research. The observation of
brain activity can provide the possibility of identifying mechanisms underlying perceptual
reactions associated with environmental stimuli.

This study showed that the SVM classifier was the most suitable classifier for landscape
classification based on EEG features. Secondly, color played a major role in stimulating
alpha waves, while structure played a major role in stimulating gamma waves for all the
landscape types (forest, desert, and water). In addition, structure played a major role in
forest recognition, while color played a major role in desert and water recognition using
beta waves. Lastly, a statistical significance difference in landscape and scenario recognition
using alpha, beta, and gamma rhythms in brain waves was confirmed.

In conclusion, the leading role of structure or color in landscape recognition is not
always certain; thus, a reasonable usage and layout of structure and color can be a very
important guiding value for landscape aesthetics in future landscape design and landscape
planning. This could have constructive significance for the development of beautiful
countries and cities. Furthermore, the significant difference in the stimulation of brain
waves according to landscapes highlights their influence on people’s perception, which is
a great reference value for the rational planning of multifunctional landscapes with both
recreational and educational function; it also provides a method for the quantification of
people’s spiritual value of cultural ecosystem services.
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Appendix A

The goodness of fit, specificity, and sensitivity of different classifiers were calculated for
different landscape types and different scenarios to help with choosing the most appropriate
classifier in this study.

Table A1. The goodness of fit, specificity, and sensitivity of different classifiers for different landscape types.

Classifier Variable
(Scenario)

Forest Desert Water

Goodness
of Fit Sensitivity Specificity Goodness

of Fit Sensitivity Specificity Goodness
of Fit Sensitivity Specificity

Alpha_SVM 0.842 0.838 0.597
SVM Landscape 0.958 0.988 0.942 0.946 0.825 0.971
SVM Structure 1.000 0.954 0.950 0.971 1.000 0.992
SVM Color 0.892 0.983 0.942 1.000 0.933 0.917

Beta_SVM 0.952 0.770 0.780
SVM Landscape 1.000 1.000 0.983 0.946 1.000 0.942
SVM Structure 1.000 0.950 1.000 1.000 0.950 1.000
SVM Color 0.900 1.000 0.892 0.992 0.892 0.979

Gamma_SVM 0.944 0.912 0.971
SVM Landscape 1.000 0.975 0.992 0.975 0.992 0.988
SVM Structure 0.942 0.971 0.983 1.000 0.967 0.988
SVM Color 0.942 0.996 0.967 0.996 0.983 0.996

Alpha_RF 0.365 0.672 0.481
RF Landscape 0.800 0.925 0.817 0.883 0.875 0.917
RF Structure 0.967 0.917 0.858 0.896 0.975 0.983
RF Color 0.700 0.892 0.883 1.000 0.800 0.925

Beta_RF 0.938 0.639 0.778
RF Landscape 0.967 0.992 0.925 0.933 0.983 0.942
RF Structure 1.000 0.971 0.992 1.000 0.925 0.979
RF Color 0.958 1.000 0.875 0.963 0.883 0.975

Gamma_RF 0.924 0.787 0.824
RF Landscape 0.983 0.975 1.000 0.942 0.992 0.921
RF Structure 0.917 0.996 1.000 1.000 0.875 0.983
RF Color 0.992 0.975 0.883 1.000 0.917 0.988

Alpha_KNN 0.430 0.437 0.468
KNN Landscape 0.867 0.850 0.650 0.858 0.758 0.938
KNN Structure 0.917 0.929 0.800 0.829 0.900 0.958
KNN Color 0.700 0.963 0.817 0.946 0.883 0.875

Beta_KNN 0.655 0.744 0.823
KNN Landscape 0.833 0.967 0.975 0.929 0.983 0.963
KNN Structure 1.000 0.971 0.992 0.988 0.992 1.000
KNN Color 0.933 0.946 0.867 1.000 0.925 0.988

Gamma_KNN 0.819 0.708 0.835
KNN Landscape 0.950 0.950 1.000 0.917 0.958 0.971
KNN Structure 0.942 1.000 1.000 1.000 0.950 0.971
KNN Color 0.958 0.975 0.833 1.000 0.925 0.975

Table A2. The goodness of fit, specificity, and sensitivity of different classifiers for different scenarios.

Classifier
Variable

(Landscape
Type)

Landscape Images Structure Images Color Images

Goodness
of Fit Sensitivity Specificity Goodness

of Fit Sensitivity Specificity Goodness
of Fit Sensitivity Specificity

Alpha_SVM 0.642 0.331 0.780
SVM Forest 0.842 0.938 0.783 0.892 0.950 0.992
SVM Desert 0.975 0.954 0.842 0.950 0.892 0.938
SVM Water 0.900 0.967 0.750 0.846 0.867 0.925

Beta_SVM 0.825 0.911 0.883
SVM Forest 0.942 0.983 0.933 0.988 1.000 0.988
SVM Desert 1.000 1.000 0.933 0.958 0.950 0.954
SVM Water 0.967 0.971 0.975 0.975 0.883 0.975

Gamma_SVM 0.960 0.901 0.920
SVM Forest 1.000 0.975 0.942 0.979 1.000 0.992
SVM Desert 0.958 0.996 0.950 0.925 1.000 0.950
SVM Water 0.983 1.000 0.908 0.996 0.883 1.000

Alpha_RF 0.460 0.281 0.460
RF Forest 0.725 0.850 0.817 0.825 0.758 0.950
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Table A2. Cont.

Classifier
Variable

(Landscape
Type)

Landscape Images Structure Images Color Images

Goodness
of Fit Sensitivity Specificity Goodness

of Fit Sensitivity Specificity Goodness
of Fit Sensitivity Specificity

RF Desert 0.817 0.913 0.800 0.863 0.733 0.888
RF Water 0.867 0.942 0.558 0.900 0.808 0.813

Beta_RF 0.663 0.653 0.617
RF Forest 0.800 0.983 0.950 0.929 0.933 0.925
RF Desert 0.958 0.971 0.892 0.933 0.858 0.938
RF Water 0.975 0.913 0.783 0.950 0.792 0.929

Gamma_RF 0.931 0.946 0.874
RF Forest 0.992 0.988 0.958 1.000 1.000 0.971
RF Desert 0.958 1.000 1.000 0.963 0.967 0.967
RF Water 0.983 0.979 0.958 0.996 0.892 0.992

Alpha_KNN 0.208 0.086 0.384
KNN Forest 0.667 0.713 0.725 0.771 0.650 0.888
KNN Desert 0.717 0.867 0.733 0.904 0.583 0.900
KNN Water 0.650 0.938 0.475 0.792 0.892 0.775

Beta_KNN 0.320 0.534 0.541
KNN Forest 0.575 0.942 0.858 0.900 0.833 0.925
KNN Desert 0.967 0.950 0.933 0.975 0.900 0.967
KNN Water 0.917 0.838 0.850 0.946 0.875 0.913

Gamma_KNN 0.592 0.879 0.720
KNN Forest 0.775 0.992 0.942 0.979 0.925 0.888
KNN Desert 1.000 1.000 0.950 0.967 0.825 0.954
KNN Water 0.983 0.888 0.958 0.979 0.892 0.979
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