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Abstract: CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a
well-known oncogenic kinase that regulates vital cell autonomous functions and animal development.
Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell
signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing
hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2
with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental
abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple
aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific
“transcriptome” databases, which raise the prospect that this protein kinase has many additional
targets in the developing eye. We discuss the possibility that CK2 functions during early retinal
neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that
this conservation may extend to other developmental programs. Together, these studies underscore
the immense power of the Drosophila model organism to provide new insights and avenues to
further investigate developmentally relevant targets of this protein kinase.
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1. General Overview

Protein phosphorylation is recognized to be a fundamental and evolutionarily conserved
regulatory mechanism that controls virtually all aspects of cell and developmental biology. Despite
knowledge of the existence of phospho-proteins, the nature of the participatory enzymes remained
unknown until the early 1950s, when the laboratory of Eugene Kennedy described, for the first
time, the presence of an enzyme, which they called a protein “phosphokinase” [1]. This enzyme
possessed the capacity to transfer a phosphate group from ATP to proteins and resulted in the
formation of phospho-serine, known to be highly enriched in casein. In addition, they demonstrated
that this enzyme preferentially phosphorylated α-casein, as compared to β-casein. In a sense,
these seminal studies of Burnett and Kennedy not only revealed the enzymatic basis for the covalent
attachment of phosphate to proteins, but also raised the possibility that this type of enzyme exhibited
substrate-specificity, now acknowledged to be a fundamental and defining feature of all members of
the protein kinase family. Despite the profound implications of their findings, further studies on this
“phosphokinase” were not pursued. Just four years later, Edwin Krebs and Edmond Fischer reported
the seminal and landmark discovery that phosphorylation controls enzymatic activity [2], subsequently
recognized by the Nobel Prize in 1992 [3]. Recalling the decision to not pursue further studies on
“phosphokinases”, and in a perspectives article in 1992, Eugene Kennedy stated that “I dropped the study
of protein kinases, and like the base Indian, cast a pearl away, else richer than all his tribe” [4]. The identity of the
protein kinase(s) described by Burnett and Kennedy remained unknown. Subsequent purification and
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identification of the participatory enzymes resulted in their naming as “casein kinase(s)”, a misnomer
because these enzymes do not reside in the Golgi apparatus, a prerequisite for phosphorylation of
the secreted protein casein. These aspects will not be discussed here, given the detailed and excellent
historical perspectives (for reviews on CK2, see References [5–9]). The casein-modifying activity has
now been definitively linked to the Fam20C protein kinase, that not only phosphorylates casein but
is also responsible for the generation of most of the secreted phospho-proteome [10,11]. To remove
confusion, the two enzymes Casein Kinase I and II were renamed protein kinase CK1 and CK2.
We use this more recent nomenclature, but note that many reports and genome/proteome databases
still use the old name.

This review focuses on protein kinase CK2 from the fruit fly Drosophila melanogaster, a preeminent
animal model, which has illuminated many fundamental principles underlying cell signaling,
regulation of gene expression and animal development. We review the subunit composition of
Drosophila CK2, the complexity of its gene structure, the multiplicity of its physiological targets that
are supported by genetic analyses, physiological/developmental processes revealed by analysis of
CK2 mutant flies, large scale screens that have identified proteins that interact with individual CK2
subunits, and conclude with its emerging roles in multiple aspects of eye development.

2. Biochemical Properties and Regulation of Dm-CK2

Drosophila CK2 (henceforth abbreviated as Dm-CK2) was first purified to homogeneity by
Glover and co-workers, who demonstrated that the enzyme purified from 0 to 18 h old embryos,
like its mammalian counterpart [12–14], is composed of two catalytic Dm-CK2-α and two regulatory
Dm-CK2-β subunits that form a hetero-tetrameric (α2β2) holoenzyme. This enzyme utilizes ATP
or GTP with almost equal efficiency, appears to be messenger-independent, auto-phosphorylates
Dm-CK2-β, modifies Ser or Thr residues in its targets, and is inhibited by Heparin [15,16]. In addition,
Dm-CK2 modifies hyper-acidic regions in target proteins, a property that was first described for the
mammalian enzyme from various sources [17–20]. However, unlike mammalian CK2, which contains
two distinct catalytic subunits (α and α′ [21,22]), Dm-CK2 contains a single α isoform. In contrast,
metazoan organisms generally contain a single isoform of CK2-β, which was thought to also be the
case with Dm-CK2 purified from embryos [15]. However, more recent studies are revealing that the
Drosophila genome encodes for the greatest diversity of CK2-β subunit isoforms (see below). These
features are also associated with CK2 purified from the yeast Saccharomyces cerevisiae [14,16,23–29].
The first evidence that CK2 is conserved through evolution came from the findings that antibodies
raised against mammalian (bovine) CK2 strongly cross-reacted with the corresponding subunits of
Dm-CK2 [30]. The cloning of cDNAs encoding Dm-CK2-α and CK2-β subunits by the laboratory of
Claiborne Glover [31] revealed the primary sequences of these two subunits, thereby enabling the
characterization of the cDNAs of the corresponding subunits from diverse species including budding
yeast [32,33], fission yeast [34], nematodes [35–37], plants [38], amphibians [39], and mammals [40–43].
Together, these studies not only reinforced the high conservation of CK2 throughout eukaryotic
evolution, but revealed subunit heterogeneity that is unique to each taxonomic group.

Despite a search for regulation through second messengers, small ligands, or phosphorylation,
the mechanisms influencing CK2 activity have remained unknown. Consequently, CK2 is generally
regarded as a second-messenger independent and constitutively active protein kinase. Regulation
through holoenzyme (α2β2 tetramer) dissociation seems unlikely, because monomeric Dm-CK2-α
(generated by biochemical or recombinant approaches) displays approximately 25% of the activity seen
with the holoenzyme [44–46], and addition of CK2-β stimulates activity four-fold concomitant with
reconstitution of the tetrameric holoenzyme. Similar findings have been reported for monomeric CK2-α
subunits from other sources [27,47]. Regulation through polyamines has been well described [48–52];
these compounds affect Dm-CK2 activity against specific target proteins in vitro, generally act through
interactions with the CK2-β subunits [44], and have now been proposed to link CK2 activity to the
EGFR/MAPK signaling pathway [53]. However, the broader implications of these findings and their
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physiological relevance remain unresolved. The findings that CK2 levels and activity respond to
mitogen signaling, e.g., Epidermal Growth Factor [54,55], led to broad interest because CK2 functions
could be linked to EGFR signaling, a pathway known to be intricately linked to cancer and animal
development [56–58]. However, a detailed reevaluation reveals that these earlier findings on induction
by mitogens were artefactual [59]. Further interest stemmed from the findings that CK2 levels/activity
correlate to leukemic transformations [60,61], and other cancers, but whether this involves aberrant
CK2 regulation remains unknown.

A novel regulatory mechanism has been recently proposed, and extends an observation, first
reported by Claiborne Glover, that Dm-CK2 undergoes polymerization involving an ordered but
reversible association of the tetrameric holoenzyme into a filamentous state [62]. Filament formation is
favored at physiological ionic strengths, and the filaments dissociate into the tetrameric holoenzyme
at ionic strengths that are optimal for CK2 activity in vitro. This property is not seen with the
monomeric Dm-CK2-α subunit either expressed in bacteria, yeast or insect cell culture (Bidwai,
unpublished), suggesting that tetramer–tetramer associations involve the regulatory CK2β subunit.
Indeed, it has recently been demonstrated that human CK2 also undergoes polymerization [63] in
a CK2β subunit-dependent manner, raising the prospect that the earlier findings on Dm-CK2 may
have broader impact. CK2 filaments do not appear to involve structural rearrangements akin to a
“prion-type” polymerization, and the filamentous state is proposed to down-regulate CK2 activity.
However, the biological relevance of the CK2 filaments in their native (in vivo) milieu remains to be
investigated. A robust in vivo evaluation of this property is now possible given the availability of null
and hypomorphic mutants for the Dm-CK2-α/β genes (see below) and the identification of interfacial
residues that mediate filament formation.

3. Substrates of Dm-CK2

The first substrate for Dm-CK2 to be identified was DNA Topoisomerase II [64,65],
whose activity was stimulated three-fold upon phosphorylation. This post translational modification
(PTM) occurs in vitro and in vivo (Drosophila embryonic Kc cells in culture), findings that have
been corroborated for DNA Topoisomerase II from the yeast S. cerevisiae [66–68]. The application of
high throughput whole cell proteomic strategies has enabled detailed analysis of the CK2-dependent
cellular phospho-proteome. This approach has successfully been applied to mammalian cells or
yeast expressing heterologous proteins upon treatment with high-affinity and -specificity inhibitors
of CK2 [69,70], and reveals a multitude of proteins whose phosphorylation is stimulated as well
as inhibited, and includes many proteins with cell-autonomous roles. While such information can
illuminate the extent of the CK2 phospho-proteome, analyses of cell lines do not reveal targeting of
developmentally important genes, whose expression is often restricted to a specific cell-type, a region
of the developing embryo/animal, or is under temporal control. Accordingly, Giot and coworkers
used the yeast two hybrid strategy to evaluate Drosophila protein–protein interactions at a global
level [71], but these interactions have not been subject to follow-up studies. These latter two aspects
have restricted our understanding of the CK2 “phospho-proteome” relevant to animal (Drosophila)
development, and much of our knowledge of specific targets has emerged on a case-by-case basis
(see below).

Compared to mammalian cell-based strategies, studies in Drosophila have identified a smaller
cohort of CK2 substrates, and many of these have revealed important roles in development. We used
the Drosophila database (Flybase, release date of 18 October 2016), and identified proteins whose
interaction with CK2 was revealed by studies that combined direct biochemical with reverse-genetic
approaches. We note that the role of Dm-CK2 has also been inferred based on genetic screens
using RNAi against Dm-CK2-α/β subunits or via dominant-negative (DN) constructs against
Dm-CK2-α, and these studies implicate roles in cell signaling, development, tissue morphogenesis and
organogenesis. However, we have excluded these from consideration in this review, because molecular
target(s) cannot be discerned solely by “reverse-genetic” approaches. We correlated known targets to
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the Drosophila-Protein-Interaction-Map (DPIM) database [72,73], an LC-MS based approach in which
Dm-CK2 interacting proteins were identified following its expression and co-immunoprecipitation
from Drosophila S2 cells (see below). It should, however, be noted that follow-up studies to identify
which of these proteins is an interacting partner and/or a substrate for phosphorylation are generally
lacking, and therefore only those proteins for which direct biochemical evidence has been reported are
included in Table 1.

Table 1. CK2 targets from FlyBase (November 2016).

Protein Function Effect of Phosphorylation

Ankyrin-2 Cytoskeletal Adaptor Maintenance of synaptic stability
Antennapedia Transcription Factor Spatial restriction of activity
Armadillo Transcription Factor Phosphorylation triggers degradation
Cactus Transcription Factor Required for activity during axis formation
Clock Transcription Factor Stabilizes Clock
CREB2 Transcription Factor Inhibits DNA binding
Dishevelled (dsh) Transcription Factor Influences Wg/Wnt signaling
dMi-2 (DPIM) Chromatin Structure Inhibits nucleosome-stimulated ATPase
E(spl)-M8/M5/M7 Transcription Factor Phosphorylation required for repressor activity
Engrailed Transcription Factor Phosphorylation enhances DNA-binding
Enhancer of Rudimentary Transcription Factor Promotes and inhibits activity
FMR1 (DPIM) RNA-Binding Affects dimerization and RNA-binding
GAGA factor (519) Transcription Factor Reduced DNA binding affinity
Groucho Transcription Factor Stimulates short range repression
Hairy Transcription Factor Promotes repressor activity
Heterochromatin protein HP1 Chromatin Structure Stimulates DNA binding
mushroom body miniature Ribosome Biogenesis Promotes nucleolar localization
NAP1 Chromatin Structure Affects degradation and cellular locale
Odd Transcription Factor Inhibits Groucho binding and repression
Orb (CPEB-family) RNA-Binding Promotes Orb activity
P element Somatic Inhibitor (PSI) Splicing factor Modulates interactions with splicing factors
Period Circadian Clock Promotes nuclear entry
Raf Protein Kinase Required for ERK activation
Ribosomal S6 kinase Protein Kinase Required for activity
RPL-22 Ribosome Structure Unknown
Smoothened Signaling Stabilizes and promotes Hedgehog signaling
Syntaxin-1 Membrane Protein Stimulates interaction with Dopamine Transporter
Timeless Circadian Clock Promotes nuclear entry
Topoisomerase II (DPIM) DNA-replication Stimulates activity
Warts Protein Kinase Indirectly promotes Warts suppression of Yorkie

DPiM (in red) denotes proteins identified in the Drosophila Protein Interaction Map.

As shown in Table 1, this list of bona fide Dm-CK2 target proteins is not as extensive as that
in mammals. Nevertheless, this list includes numerous developmentally important transcription
factors, proteins involved in regulation of cytoskeletal and chromatin structure, ribosome structure
and biogenesis, DNA-replication, circadian rhythms, etc. With few exceptions (such as CREB2 [74],
Raf [53], Topo-II [64], and rPL22 [75]), most of the proteins in this list serve well-established roles
in development. Examples are, Ankyrin-2 [76], Antennapedia [77], Armadillo [78], Cactus [79],
Clock [80], Dishevelled [81], dMI-2 [82], E(spl)-M5/M7/M8 [83,84], Engrailed [85], Enhancer of
Rudimentary [86], FMR1 [87], GAGA factor-519 [88], Groucho [89], Hairy [90], Heterochromatin
protein HP1 [91], mushroom body miniature [92], NAP1 [93], Odd [94], Orb [95], P element Somatic
Inhibitor [96], Ribosomal S6 kinase [97], Smoothened [98], Syntaxin-1 [99], and Warts [100]. Remarkably,
only three proteins from this list, dMi-2, FMR1 and DNA-Topo-II, have been also identified in the DPiM
database (Table 1 and see below). The low overlap between genetically analyzed proteins targeted by
CK2 to those identified in the DPiM database reveals limitations inherent to cell-based assays. Although
the S2-cell line is of embryonic origin, it does not fully recapitulate gene expression patterns across a
developing embryo/animal. Consequently, many genes whose expression is controlled in a spatially
and/or temporally restricted manner are not captured in S2-based assays. For example, although the
Notch effector proteins E(spl)-M8/M5/M7 were identified in a yeast two-hybrid screen of a Drosophila
(0–18 h) embryo cDNA library [101], and the consequences of CK2-mediated phosphorylation of
E(spl)-M8 during neurogenesis (eye and bristle development) are well understood [83], these proteins
appear to not be endogenously expressed in S2 cells. This is, perhaps, the greatest weakness of
high-throughput proteomic methods to reveal the extent of the CK2 “interactome” that regulates
animal development.
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4. Drosophila Genes Encoding Catalytic (α) and Regulatory (β) Subunits

Unlike most metazoan organisms, Drosophila harbors a single Dm-CK2-α gene [31]. On the other
hand, and unique to Drosophila, is the presence of multiple genes, both X-linked and autosomal,
that encode proteins with high homology with metazoan CK2-β subunits (Table 2), which are
functionally non-redundant (see below). These are the X-linked Dm-CK2-β [102] and Stellate (Ste)
genes [103–105], and the autosomal genes Dm-CK2-β′ [106] and Suppressor of Stellate Like (SSL,
also called Dm-CK2-βTes) [107,108]. The Stellate locus is unusual in that it harbors multiple copies of
the Ste gene; this appears to vary between strains, with perhaps the highest number (~200) in the
D. melanogaster strain Oregon R. This multi copy Ste locus, located in a heterochromatic region of
the X-chromosome, is unique in that its expression is testis-specific and normally repressed through
the action of a Y-linked Su(Ste) gene cluster [109]. Consequently, in X/O males (those lacking the
Y chromosome), Ste undergoes massive de-repression and the Ste protein accumulates at levels
sufficient to form crystalline aggregates that disrupt spermatocyte maturation resulting in loss of
fertility. Ste gene copy number seems to influence the type of crystals; needle-shaped crystals in
strains with low copy number but star-shaped crystals in strains with high copy number. The reasons
underlying these differences are unresolved, and it is also unknown if sterility in XO males involves
Ste-dependent impairment of endogenous Dm-CK2. In a similar manner, SSL/Dm-CK2-βTes was
thought to be testis-specific [110]. However, SSL transcripts are present in the embryo, although
levels markedly increase in a male-specific manner in third-instar-larvae, pupae, and adults [107].
These results demonstrate that SSL/Dm-CK2-βTes expression encompasses a greater developmental
window, and raise the possibility that this alternative Dm-CK2 subunit may confer distinct functions
to CK2 in a sex-specific manner.

Table 2. Subunit diversity and non-redundancy of Dm-CK2β isoforms.

Genes Encoding CK2 Subunits in Drosophila

Gene (Chromosome) Isoforms Alleles Nature

CK2α (III) Single

CK2α-Tik M161K + E165D
CK2α-TikR Loss of Function
CK2α-MB00477 Hypomorphic
CK2α-G703 W279G
CK2α-H3091 D212N

CK2β (X) Multiple
CK2βAndante M166I
CK2βmbuP1 Hypomorphic
CK2βmbu∆A26-2L Loss of Function

Stellate (X) Single None N/A

CK2β′ (II) Single None N/A

SSL/CK2-βTes (II) Single None N/A

Phenotypes of Ectopic Expression

Isoform Tissue Overexpression Phenotype

CK2α-WT Proneural cluster No Effect
CK2α-Tik Proneural cluster Impaired Notch Signaling (eye & bristle)
CK2α-M161K Proneural cluster Impaired Notch Signaling (eye & bristle)
CK2α-E165D Proneural cluster Impaired Notch Signaling (eye & bristle)

CK2β-VII-a Ubiquitous No Effect Rescues CK2β∆A26

CK2β-VII-b Ubiquitous Dominant Lethal Rescues CK2β∆A26

CK2β-VII-c Ubiquitous No Effect Rescues CK2β∆A26

CK2β-VII-d Ubiquitous Dominant Lethal No rescue of CK2β∆A26

CK2β-VII-d-VI Ubiquitous No Effect No rescue of CK2β∆A26

Stellate Not Tested N/A Not tested

CK2β′ Ubiquitous Dominant Lethal No rescue of CK2β∆A26

SSL/CK2-βTes Ubiquitous Dominant Lethal No rescue of CK2β∆A26

Yellow box highlights ability to complement the lethality of CK2β∆A26 mutants. CK2-β isoforms that fail to
rescue loss of the X-linked CK2-β gene are indicated in red.

In contrast to Dm-CK2-β′, Ste, and SSL/CK2-βTes, all of which encode for a single protein isoform,
the Dm-CK2-β gene encodes for multiple isoforms due to alternative transcription and splicing.
These include five transcripts named CK2-β type-VIIa, -VIIb, -VIIc, -VIId and -VII-VI (Table 2, and see
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References [102,111]). This diversity of transcript types has so far not been reported for other metazoan
organisms. All five transcripts encode the highly conserved core of CK2-β, which includes the well
characterized (N-terminal) auto-phosphorylation site and the zinc-finger [112], but differ in the length
and sequence heterogeneity of ~15–20 C-terminal residues [111]. Consequently, these variations do not
affect interaction with Dm-CK2-α, but significantly impact in vivo activities of the encoded proteins
(see below). In a similar vein, Dm-CK2-β′, Ste, SSL/CK2-βTes also interact with Dm-CK2-α and appear
competent for forming the tetrameric holoenzyme in vitro, but these alternative Dm-CK2-β proteins
do not act in a functionally redundant manner with the X-linked Dm-CK2-β gene (see below).

5. Mutations in Catalytic (α) and Regulatory (β) Subunits

Mutations in Dm-CK2-α were isolated in a genetic screen for dominant modifiers of the circadian
clock and resulted in the identification of the first mutant allele called Timekeeper (Tik). Specifically,
Tik/+ animals display an aberrant circadian clock, whereas Tik-homozygotes (Tik/Tik) die at the first
larval stage ([113], and see Figure 1). A spontaneous and partial revertant of the clock phenotype was
also identified; this allele called TikR is also lethal at the first larval stage in the homozygous state
(Figure 1). The Tik allele harbors two missense mutations, M161K+E165D, and encodes an inactive
form of Dm-CK2-α, which retains proper folding because its ability to interact with Dm-CK2-β is
indistinguishable from wild-type Dm-CK2-α. In addition, Rasmussen and coworkers have reported
that, compared to the wild type enzyme, human CK2-α containing the M161K + E165D mutations
exhibits a ~40-fold reduction of activity towards exogenous substrates [47]. The Tik mutation thus
acts as a CK2 dominant-negative (CK2-DN) allele, and its ability to perturb the circadian clock
reflects incorporation into and downregulation of the α2β2 holoenzyme [114]. In addition to the
M161K + E165D mutations, the TikR protein harbors an in-frame deletion of nine amino acids that
are invariant between Drosophila and human CK2-α (Figure 1) and localize to a highly structured
region of the protein [115,116]. This deletion compromises folding and abrogates interaction with
Dm-CK2-β, consequently preventing incorporation of the TikR protein into the α2β2 holoenzyme.
This is supported by the identical “effective lethal phase” of Tik/Tik, TikR/TikR or Tik/TikR flies
(see Figure 1). Thus, the partial reversion of the clock phenotype by the TikR mutation does not
reflect restored CK2 activity, but instead reflects an inability of the mis-folded TikR protein to act as a
CK2-DN. In line with this interpretation, over-expression of the Tik mutant (in otherwise wild-type
flies) elicits defects in the clock, and perturbs development of the eye and bristles, a characteristic
of impaired Notch signaling (see Table 2 and Reference [83]). A similar impairment of Notch
signaling manifests upon targeted over-expression of the single mutants, CK2α-M161K or CK2α-E165D;
the former acts as a CK2-DN, whereas the latter through its ability to elicit a gain in activity of
the phosphatase PP2A. Tik should therefore be considered a “double hit” with respect to Notch
signaling. It remains to be clarified if this applies to CK2 functions in other developmental programs.
No eye/bristle defects manifest upon overexpression of TikR protein or wild-type Dm-CK2-α
(Bidwai, unpublished, and see below).

Other than defects in the circadian clock, neither Tik/+ nor TikR/+ flies display any other
developmental abnormalities (Figure 1). The normal development of Tik/+ animals is surprising,
given the DN nature of this allele and the large number of targets of this protein kinase (Table 1).
These findings raise the prospect that the circadian clock is more sensitive to levels of CK2 activity, i.e.,
a 50% reduction in TikR/+ animals elicits minor defects, whereas further reductions in Tik/+ (<50%)
become rate-limiting. The absence of overt phenotypes in TikR/+ animals could be reconciled with the
findings that only a few developmental processes are haplo-insufficient, and because development is
often “buffered” against fluctuations in gene-dosage (see below).
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Note that Dm-CK2-α mutants Tik and TikR arrest at the L1 stage, whereas CK2αMB mutants die at the 
P-to-A transition. In contrast, CK2βAnd and CK2βmbuP1 are viable, whereas CK2β∆A26 die during 
embryogenesis. Dashed green line denotes stage of life cycle when eye development initiates; black 
lines denote normal development, whereas red lines denote effective lethal phases of indicated 
mutant combinations; (B) Alignment of CK2-α from D. melanogaster (Dm) and H. sapiens (Hs). LoF 
denotes loss-of-function, whereas Ts denotes Temperature-sensitive. The locations of the Tik and 
TikR mutations are boxed and yellow highlighting denotes conservation of residues between Dm and 
Hs CK2α subunits. 

Additional mutations such as CK2-α-G703 and CK2-α-H3091 have also been identified, but 
analysis of these alleles in eye/bristle development or clock functions has not been reported. It is of 
interest to note that the CK2-α-H3091 allele replaces a highly conserved Asp212 with Asn (Figure 1). 
Remarkably, the first temperature-sensitive (ts) alleles of CK2, which were isolated in the laboratory 
of Claiborne Glover, include a D220N mutation in the CKA2 gene encoding the yeast CK2-α′ subunit 
[117]. Asp220 of yeast CKA2 corresponds to Asp212 in Dm-CK2-α (and Asp214 in Hs-CK2-α, see Figure 
1), and the targeted introduction of a D212N mutation also engenders a ts-behavior upon Dm-CK2-α 
in a yeast complementation assay [118]. The D220/212 site resides in the C-lobe of CK2-α, is close to the 
active site, and points towards the core of this region, making it likely that this is a permissive site for 

Figure 1. (A) Drosophila life cycle stages and effective lethal phase of CK2 mutants. Abbreviations
are; E, Embryo; L1, 1st larval stage; L2, 2nd larval stage; L3, 3rd larval stage; P, pupal stage;
A, adult. Note that Dm-CK2-α mutants Tik and TikR arrest at the L1 stage, whereas CK2αMB mutants
die at the P-to-A transition. In contrast, CK2βAnd and CK2βmbuP1 are viable, whereas CK2β∆A26

die during embryogenesis. Dashed green line denotes stage of life cycle when eye development
initiates; black lines denote normal development, whereas red lines denote effective lethal phases of
indicated mutant combinations; (B) Alignment of CK2-α from D. melanogaster (Dm) and H. sapiens (Hs).
LoF denotes loss-of-function, whereas Ts denotes Temperature-sensitive. The locations of the Tik and
TikR mutations are boxed and yellow highlighting denotes conservation of residues between Dm and
Hs CK2α subunits.

Additional mutations such as CK2-α-G703 and CK2-α-H3091 have also been identified, but
analysis of these alleles in eye/bristle development or clock functions has not been reported.
It is of interest to note that the CK2-α-H3091 allele replaces a highly conserved Asp212 with Asn
(Figure 1). Remarkably, the first temperature-sensitive (ts) alleles of CK2, which were isolated
in the laboratory of Claiborne Glover, include a D220N mutation in the CKA2 gene encoding the
yeast CK2-α′ subunit [117]. Asp220 of yeast CKA2 corresponds to Asp212 in Dm-CK2-α (and Asp214

in Hs-CK2-α, see Figure 1), and the targeted introduction of a D212N mutation also engenders a
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ts-behavior upon Dm-CK2-α in a yeast complementation assay [118]. The D220/212 site resides in the
C-lobe of CK2-α, is close to the active site, and points towards the core of this region, making it likely
that this is a permissive site for destabilizing CK2 structure, thereby rendering the mutant protein
temperature-sensitive in yeast as well as flies. Additionally, as seen in Figure 1, many of the mutations
that abrogate CK2-α activity or perturb its structure appear to reside in highly structured regions.
Recent advances in evolutionary statistical coupling [119] may offer a route to better understand the
clustering of these mutations, and provide new insights into the evolutionary relationships between
CK2-α subunits across the tree of life. Given these findings, it will be of interest to determine if
CK2-α-H3091 mutant flies display overt developmental defects (such as defects in embryogenesis,
or eye/bristle development) in a temperature-sensitive manner. If so, it will provide the first bona
fide ts-allele of Dm-CK2-α, which should enhance our ability to better define the Dm-CK2 dependent
phospho-proteome, and the multitude of developmental programs that are controlled by this protein
kinase. In contrast, the CK2-α-G703 allele harbors a W279G mutation, affecting a residue conserved in
both yeast CK2-α genes (CKA1/CKA2 [32]) as well as Hs-CK2-α (Figure 1, and not shown); but the
mechanism underlying the lethality of this allele remains unclear. The only hypomorphic allele that has
been identified to date is CK2α-MB00477 (CK2αMB). This allele results from the insertion of a P-element
(a transposon) in the 5′ control region. Consequently, CK2αMB is lethal when homozygous, and these
animals die at the pupal-to-adult transition (see Figure 1A). Importantly, pupal lethality is also seen in
CK2αMB/Tik or CK2αMB/TikR animals, confirming that CK2αMB is a new unique hypomorphic mutation
in Dm-CK2-α. As expected, CK2αMB/+ animals display normal eye development. However, unlike
Tik or TikR homozygotes, which die prior to the onset of retinal development (dashed green line in
Figure 1A), CK2αMB homozygotes progress normally through the third larval stage, which is a critical
juncture marking the onset of retinal neurogenesis and eye development. We discuss the nature of this
allele and highlight its utility to better understand the roles of CK2 in eye development later in this
review (see below).

The first mutant of Dm-CK2-β was the Andante allele (see Table 2), originally identified by Ron
Konopka [120,121]. This mutation, which was mapped to the 10E1-E7 region of the X-chromosome,
is in close proximity to the Dm-CK2-β gene [102] and was characterized by the lengthening of the
circadian period and locomotor activity rhythms by 1.5–2.0 h. The nature of the mutation and the
affected gene remained unknown until the laboratory of F. Rob Jackson identified it as a mis-sense
mutation in Dm-CK2-β. This mutation called Dm-CK2-βAnd [122] replaces M166I, a residue that lies in
helix α-F [112], which is positioned close to the interface between CK2-α and CK2-β. Consequently,
it was thought that CK2-βAnd is impaired for proper assembly into the α2β2 holoenzyme or destabilizes
this ternary state. However, human CK2-β with the M166I mutation interacts with CK2-α as efficiently
as wild-type CK2-β and forms the holoenzyme with normal activity [47], raising questions on its
proposed relevance to the clock defects of CK2-βAnd flies. Consistent with these latter findings,
CK2-βAnd flies are viable as hemizygous males or homozygous females. A second hypomorphic allele,
CK2-βmbuP1, was reported by the laboratory of Thomas Raabe. Remarkably, Jauch and co-workers
demonstrated that CK2-βmbuP1 impairs proliferation of Kenyon cells thus affecting development of the
mushroom body, a structure key to learning and memory. Their studies also identified an excision
allele, Dm-CK2-βmbu∆A26, that disrupts the CK2-β coding region and results in embryonic lethality when
homozygous. Together with earlier findings from the mouse model [123], these studies demonstrate
that CK2-β is an essential gene in Drosophila.

It is currently unclear why loss of the Dm-CK2-α gene results in lethality at the first larval stage,
whereas that of Dm-CK2-β is embryonic lethal (see Figure 1). Maternal contribution of Dm-CK2
could account for the larval lethality of Dm-CK2-α mutants, but how does one reconcile the earlier
lethality of Dm-CK2-β mutants. One possibility is differential half-life of individual subunits or their
mRNAs, such that Dm-CK2-β protein/transcripts have a higher turnover-rate compared to Dm-CK2-α.
This issue is unlikely to be resolved by pulse-chase analysis in S2-cells, because free subunits have not
been detected in this embryonic cell type [46], and factors that regulate differential turnover and/or
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holoenzyme assembly might well be present only in an intact developing embryo. An alternative
possibility is that differential turnover is spatially and/or temporally controlled. Current technologies
do not allow us to evaluate/distinguish between these possibilities. However, the development and
refinement of genome editing technologies may allow the differential tagging of Dm-CK2-β protein or
transcripts to resolve these issues.

6. Multiple Non-Redundant Variants Encoded by the Dm-CK2-β Gene

As mentioned above, the Dm-CK2-β coding region encodes for five distinct protein isoforms,
some of which reflect distinct splicing events and are likely produced in a tissue-specific
manner. In all cases, the isoforms differ only in their C-terminal tail, which becomes appended
with ~15–20 amino acids unique to each isoform. In the crystal structure of the human CK2 holoenzyme
(PDB code 1 JWH, [115]), the CK2-β subunit is truncated such that it lacks the penultimate 10 amino
acids. Consequently, the structural constraints on the C-terminus of CK2-β are unclear. Nevertheless,
the region preceding these missing residues is a well-defined helix, which does not contribute to the
CK2-β/CK2-α interaction interface, but projects away from the core holoenzyme structure. Given
that CK2-β subunits generally display length and sequence heterogeneity in their C-terminal tail,
one might expect that these would have minimal impact on CK2 functions. To the contrary,
the laboratory of Thomas Raabe has individually tested all five Dm-CK2-β variants in an exceptionally
robust in vivo functional complementation assay, i.e., their ability to rescue the lethality of the
Dm-CK2-βmbu∆A26 mutation. Remarkably, only three out of five Dm-CK2-β isoforms (CK2-β-VIIa,
-VIIb, -VIIc) rescue lethality [111], leading to the view that these alternative C-termini alter in vivo
functionality of Dm-CK2-β variants (see Table 2). In addition, they also conducted tests for phenotypic
outcomes of ubiquitous expression of each isoform in otherwise wild-type flies using the tubulin
(tub) promoter, and find that only two Dm-CK2-β isoforms, VIIb and VIId, elicit dominant lethality.
The dominant lethality of these two isoforms may reflect competition for limiting amounts of
Dm-CK2-α that is available to form the holoenzyme. Together, these in vivo results are strong indicators
that these variants bias the Dm-CK2-β “interactome”, perhaps by regulating target protein specificity,
cellular locale, turnover rates, etc. Alternatively, these C-terminal variations may result in holoenzyme
isoforms that differ in their ability to form ternary complexes. As shown by the laboratory of Roberto
Battistutta, the C-terminus of CK2-β impacts the ability of CK2 tetramers to form ternary complexes, i.e.,
filaments [63]. In a new trimeric ring-like structure, which they call α2β2new, the C-terminus of CK2-β
competes with ATP for binding to CK2-α, and appears to stabilize a nonproductive conformation upon
insertion into the ATP-binding pocket. Additionally, they demonstrate that this interaction impairs
pairing of residues in CK2-α that are critical for catalysis and are a generally conserved feature of
protein kinases. If so, this could represent a novel structural basis for CK2 downregulation. Given these
findings, it is likely that CK2 holoenzymes containing Dm-CK2-β isoforms with alternative C-terminal
sequences differ in their propensity to form trimeric ring-like structures. The possibility thus arises
that the dominant lethality of the alternative Dm-CK2-β isoforms (VIIb and VIId) revealed by the
studies of Jauch and coworkers [111] may, in fact, involve aberrant in vivo regulation of Dm-CK2.
It would hence be worthwhile to investigate which of the five Dm-CK2-β isoforms favor or disfavor
the formation of ring-like states.

In the same study, Raabe and coworkers also tested and demonstrated that neither Dm-CK2-β′

nor SSL/CK2-βTes rescue the lethality of the Dm-CK2-βmbu∆A26 mutation, and both elicit dominant
lethality upon ubiquitous expression in wild type flies (Table 2). These findings are of interest, because
even though Dm-CK2-β′ and SSL/CK2-βTes are structurally similar to Dm-CK2-β, they exhibit two
differences. (1) Unlike the auto-phosphorylation site in Dm-CK2-β (M1SSSEE), Dm-CK2-β′ harbors
the motif M1TDSDE, whereas it is M1SCPRS in SSL. Consequently, Dm-CK2-β′ may resemble a
constitutively phosphorylated protein, while SSL would be refractory; (2) The acidic micro-domain is
also different such that the rank order of acidity is Dm-CK2-β > SSL/CK2-βTes > Dm-CK2-β′. Given the
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findings of Jauch and coworkers, it will be of interest to determine if rescue of the Dm-CK2-βmbu∆A26

mutation by Dm-CK2-β requires an intact auto-phosphorylation site and/or acidic micro-domain.
As of the writing of this review, no mutants of the Dm-CK2-β′ or SSL/CK2-βTes genes are available,

precluding predictions of their biological functions. In a yeast-based assay, these two proteins appear
to partially compensate for phenotypes elicited by loss of the yeast CK2-β genes [107], but this
may not be an appropriate assay for in vivo functions. However, considering their tissue-specificity
and/or male-specificity and dominant lethality, it is reasonable to speculate that if these isoforms
were to downregulate CK2 activity, alter its target specificity, or impact formation of trimeric rings,
these functions may be tied to male development. Nevertheless, the studies of the Raabe laboratory
make it likely that the diverse CK2-β like proteins in Drosophila (splice variations and distinct genes)
serve unique tissue, developmental stage, or sex-specific functions or confer unique regulation upon
the enzyme itself. To our knowledge, this level of complexity in CK2-β subunits has not been described
for any metazoan organism, but is not without precedence. For example, the laboratory of Marc Vidal
has reported that the “interactome” of a protein is significantly altered by splicing variations, almost
as if the alternative products are encoded by distinct genes [124]. It would hence be worthwhile to
determine the extent of overlap and non-overlap of proteins that interact with alternative isoforms
that are encoded by the Dm-CK2-β gene versus those that interact with Dm-CK2-β′ or SSL/CK2-βTes.

7. The DPiM Database Provides New Insights into the Dm-CK2 Interactome and Subunit
Specific Interactions

Whole cell proteomics affords an unbiased route to identify interacting partners.
Such an approach has been taken using Drosophila S2 cells [72,73]. In this comprehensive study,
Guruharsha and coworkers expressed≥5000 individual FLAG-HA epitope-tagged Drosophila proteins,
which was followed by co-affinity purification coupled to mass spectrometry analysis. This study has
enabled the determination of a vast number of protein complexes, which they call the ‘Drosophila
protein interaction map (DPiM, https://interfly.med.harvard.edu). Given the structural and functional
diversity of CK2-β isoforms, we analyzed the DPiM database for all five Dm-CK2 subunits, i.e., CK2-α,
CK2-β, CK2-β′, Stellate, and SSL/CK2-βTes (see Table 3). Although the DPiM database includes
analysis of only three, CK2-α, CK2-β, CK2-β′, new insights nevertheless emerge.

Table 3. The DPiM database reveals novel insights into the Dm-CK2 interactome.

Dm-CK2-α Interactors in Drosophila S2-Cells (DPiM)

Protein Function Protein Function

CK2-α CK2 Catalytic Subunit Lasp Cytoskeletal organization
CK2-β CK2 Regulatory Subunit Rump RNA-binding
AGO2 RNA-binding Ran Small GTPase
pAbp Poly-A binding protein Rack1 Receptor for activated PKC
glo mRNA binding Topo2 (Genetic) DNA Topoisomerase 2
FMR1 (Genetic) Fragile-X syndrome p38b MAP-kinase
Dek (CK2-β) Homeodomain Wmd Wing morphogenesis
Rasputin RNA-binding Mts PP2A catalytic subunit
Dre4 (CK2-β) Chromatin-binding Scf (CK2-β) Chromatin Organization
Vig2 RNA-binding Su-var(3)9 Chromatin regulator
Ssrp HMG Box Domain 14-3-3 pSer binding

Interactions between Dm-CK2-α, Dm-CK2-β and Dm-CK2-β′

FLAG-HA-Fusion (Bait) Interacting Proteins Interactions Not Detected

CK2-α CK2-α, CK2-β CK2-β′
CK2-β CK2-α, CK2-β CK2-β′
CK2-β′ CK2-α, CK2-β′ CK2-β

Interactions shared with CK2-β in the DPiM database or those revealed by genetic studies are highlighted
in red.

7.1. Interactions between Dm-CK2 Subunits

As expected (see Table 3), these studies identified the canonical interactions between
CK2-α + CK2-β and CK2-α + CK2-β′, consistent with previous studies using the yeast two hybrid
approach [101,106,125]. Given the tetrameric structure of the human/Drosophila CK2 holoenzyme,

https://interfly.med.harvard.edu
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the co-purification of CK2-α using FLAG-HA-CK2-α is unlikely to reflect direct interactions, but
instead “bridged” by CK2-β. Surprisingly, even though S2-cells endogenously express both CK2-β and
CK2-β′, the only interactions that were detected were CK2-β + CK2-β and CK2-β′ + CK2-β′ (Table 3).
The absence of cross-CK2-β subunit interactions in S2 cells suggests that the CK2-holoenzyme cannot
be generated using mixed CK2-β dimers, such as CK2-β + CK2-β′. Whether this also applies to the
Stellate, and SSL/CK2-βTes proteins remains unknown. The CK2-β-vs.-CK2-β′ subunit-specific bias
(for dimerization) makes it likely that sector analysis [126,127] may provide new insights into the
evolution and diversity of the CK2-β family in Drosophila. The possibility that this aspect of CK2
structure impacts in vivo functionality is exciting, and may represent a unique mode of regulation,
which has remained the most elusive aspect of CK2 functions across all eukaryotes.

7.2. Dm-CK2-α Interactors

In large part, the proteins that interact with Dm-CK2-α are unique, and encompass a multitude of
functions. Notably absent from this list are proteins whose targeting by CK2 has been confirmed by
combined biochemical and genetic studies (see Table 1). The only proteins for which such evidence
exists are Topo-II and FMR1. Interestingly, four of the interacting proteins, Dek, Dre4, Scf, and
Ssrp, were also identified as interactors of Dm-CK2-β (see below). It is of interest that the DPiM
database reveals interactions of CK2-α with Mts, the catalytic subunit of the phosphatase PP2A [128].
This phosphatase plays multiple essential roles in metazoan cell/organismal biology; it is a known
tumor suppressor that is involved in oncogenesis [129,130], and regulates the Notch and Hedgehog
signaling pathways [131–133], autophagy [134] and the cell-cycle [133,135]. Consequently, loss of Mts
activity is lethal in Drosophila. Of interest, the CK2-α + PP2A interaction was originally reported for
the human proteins, and occurs via the M161IDHE165NRKL motif [136], also present in the oncogenic
virus SV-40. Intriguingly, this very motif is mutated in the Dm-CK2-α allele Tik (see Figure 1),
and functional studies in Drosophila reveal that the CK2α-E165D mutation elicits phenotypes
that mimic overexpression of PP2A-Mts or its regulatory subunit PP2A-Widerborst [114,131].
These studies make it likely that the CK2-PP2A interaction serves to downregulate phosphatase
activity. The remaining proteins fall into four classes; chromatin organization, RNA binding proteins,
transcription factors, and others regulating signaling and the cytoskeleton. It will be of interest to
determine if these proteins are targets of CK2 in vitro, and the consequences of phosphorylation
during development.

Interactors of Dm-CK2-β and Dm-CK2-β′ are listed in Table 4, and are sorted by those that are
unique to each subunit and those that overlap. In each case, the DPiM database includes several
ribosomal proteins. Although these interactions may involve regulation of “sentinel-like” functions of
ribosomal proteins [137], we have not considered this class of proteins as bona fide CK2 interactors
because they often appear in large scale proteomic and yeast two-hybrid screens and can represent
potential artefacts.

Table 4. Dm-CK2-β and Dm-CK2-β′ interactors in Drosophila S2-cells (DPiM).

Interacting Partners Unique to Dm-CK2-β

Protein Function Protein Function

Dek (CK2-α) Homeodomain dMi-2 (Genetic) Nucleosome binding
CG13800 Actin-Binding Tango7 Neuron morphogenesis
Dre4 (CK2-α) Chromatin Binding CG3817 rRNA processing
Ssrp (CK2-α) HMG Box Domain CG1677 Zinc Finger Protein
eIF-3-S8 Translation Factor CG5525 HSP60-family
CDK12 Protein Kinase Xpc/mus210 Xeroderma pigmentosum-C
CG7033 HSP60-family Cpb (CG17158) Actin Capping Protein
CG8258 Unknown Prp38 pre-mRNA processing
Arp14D Actin related protein 2 D1 Chromosomal Protein Satellite DNA-binding
Sop2 Actin related protein 2/3 CycK Cyclin K
Cct5 T-complex Chaperonin 5 Hyd (Hyperplastic Disc) E3-Ub-Ligase
Int6 Proto-oncogene Scf/DCB-45 (CK2-α) Chromatin Organization
Tcp1-ζ HSP60-family CG6724 WD40 repeats similar to Gβ
Arc-p34 Neuronal development XNP Neuronal development
Smg5 Nonsense mediated decay
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Table 4. Cont.

Interacting Partners Unique to Dm-CK2-β

Protein Function Protein Function

Interacting Partners Unique to Dm-CK2-β′

Protein Function Protein Function

Porin Mitochondrial OM channel awd/abnormal wing discs Nucleotide Kinase
Chd64 Juvenile Hormone Signaling EB1 Myosin Binding
Fimbrin Female meiosis Smt3/SUMO SUMO family
FK506-bp2 DNA Damage Response Nlp/CRP1 Nucleoplasmin
Annexin B10 Annexin Family PCNA/Mus209 DNA-Replication

Interacting Partners Common to Dm-CK2-β and Dm-CK2-β′

Protein Function Protein Function

Fax Axon connectivity Nopp140 Cajal body protein
EloB/Elongin-B Wing cell identity Otefin Germline stem cell renewal

Interactions shared with CK2-α in the DPiM database or those revealed by genetic studies are highlighted in
red. Unnamed genes are indicated by their annotation symbol (CG#).

7.3. Interactors of Dm-CK2-β

Unique interactors of Dm-CK2-β encompass proteins involved in protein folding and turnover,
chromatin structure and transcriptional control, cytoskeleton, cell cycle progression, RNA-processing,
and neuronal development. Remarkably, only, dMi-2, a protein involved in nucleosome remodeling,
has also been identified as a target for CK2 in genetic studies (see Tables 1 and 4). In contrast,
four interactors of Dm-CK2-β, i.e., Dek, Dre-4, Ssrp and Scf, have also been isolated as interactors of
Dm-CK2-α (see Table 3). It will be of interest to determine if these four proteins directly interact with
Dm-CK2-α or Dm-CK2-β, or represent proteins that interact with the reconstituted holoenzyme in
S2 cells. The remaining proteins interact exclusively with Dm-CK2-β, consistent with the view that
some targets of CK2 such as Hairy [90], Raf [138], etc., can interact only through interaction with this
regulatory subunit.

7.4. Interactors of Dm-CK2-β′

The interactors of Dm-CK2-β′ are not as extensive as those for Dm-CK2-β (Table 4), and include
regulators of signaling, chromatin structure, DNA-replication/damage-response, etc. It is somewhat
unexpected that proteins that interact with Dm-CK2-β and Dm-CK2-β′ do not overlap extensively.
This preferential interaction partner specificity may underlie the ability of Dm-CK2-β′ to elicit
dominant lethality upon ubiquitous expression (see above), whereby the inappropriate (spatial
and/or temporal) presence of this subunit results in the formation of the CK2-β′-containing
holoenzyme (α2β′2) due to competition for a common pool of CK2-α. Given the distinct
“interactome”, this alteration in the CK2 holoenzyme could diminish phosphorylation of proteins by
the endogenous α2β2 holoenzyme or redirect activity to substrates incompatible with normal cellular
and organismal viability.

7.5. Interactors Shared between Dm-CK2-β and -β′

Of the interacting proteins identified in the DPiM database, only four (Fax, Elongin-B, Otefin and
Nopp140) are shared between Dm-CK2-β and -β′. Of interest is Nopp140 (see Table 4). Nopp140 is
a highly conserved phosphoprotein that shuttles cargo between the nucleolus and the cytosol [139],
and is thought to be critical in proliferative cells for Cajal body functions. While this protein has a native
mass of ~70 kDa (as predicted from its gene structure), it appears as a 140 kDa polypeptide, primarily
due to CK2-dependent phosphorylation. It has been estimated that Nopp140 may be phosphorylated
at ≥70 sites within its C-terminal region, which is rich in Ser and Asp residues, and is conserved
between Drosophila and mammals. These modifications, which confer a highly negative charge
to the C-terminal domain, appear necessary for in vivo functioning of Nopp140, i.e., binding cargo
proteins that contain nuclear localization signals (NLS). Interestingly, Nopp140 was not identified in
the DPiM database as an interactor of Dm-CK2α (see Table 3), suggesting that CK2 targets this protein
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in a β/β′-dependent manner. Its identification as an interactor of both Dm-CK2-β and Dm-CK2-β′

strongly suggests that Nopp140 is modified by CK2 in all cells regardless of the expression patterns of
these two CK2-β homologues, which would not be surprising given cell autonomous roles for this
phospho-protein, and because loss of Nopp140 is cell lethal.

Together, the interactors of CK2 identified through combined biochemical/genetic approaches
and the DPiM database reveal that our current knowledge of the Dm-CK2 “interactome” is, at best,
partial, and the absence of developmentally important/relevant targets suggests that a case-by-case
approach may still be required to identify its targets in Drosophila.

8. Roles of CK2 in Drosophila Eye Development

The functions of CK2 in other developmental programs have been inferred from tissue-specific
and ectopic overexpression of the CK2-DN (Tik) mutant protein, RNAi against CK2 subunits in
otherwise wild-type flies, or upon expression of CK2 target proteins harboring Ala/Asp mutations at
known sites for phosphorylation. This has been achieved in large part due to the availability of the
tissue-specific binary Gal4-UAS system [140–142], which enables genotype/phenotype relationships
to be evaluated with mutants that would otherwise be dominantly lethal. Using this approach,
it has been found that CK2 plays an important role in Notch signaling during development of two
sensory organs (eye and bristle), through its targeting of the bHLH transcription factors E(spl)-M8,
-M7, and -M5 [84], which are terminal effectors of this pathway [143–145]. In the following section,
we review key findings on the roles of CK2 in eye development with an emphasis on its functions
in early retinal neurogenesis, the potential implications on early neurogenesis in the mammalian
retina, emerging data supporting the likelihood that this protein kinase plays additional roles in the
developing eye, and conclude with a review of potentially new targets for this protein kinase.

Studies from our laboratory are revealing the importance of CK2 to the Notch signaling pathway
during Drosophila eye development, with direct implications for a similar process in mammals,
i.e., the specification of the Retinal Ganglion Cells (RGCs). Here, we focus on the Notch pathway in
Drosophila, a preeminent genetic model that has been instrumental in the identification of the core
components and regulators of this pathway, and has laid the foundations for our understanding
of the mechanisms of Notch signaling [146–150], its importance to the development of other
animals [148,151] and its association with disease states [152–156]. Although Notch signaling regulates
diverse developmental programs, studies from our laboratory have primarily focused on its regulation
by CK2 in early eye development.

The Drosophila eye has served as a model for understanding cell proliferation, cell signaling,
polarity, specification and differentiation [157–159]. The compound eye of Drosophila is composed of
~750 units called ommatidia (also known as facets) which are patterned in a precise pseudo-crystalline
array. Each facet is composed of eight photoreceptor neurons (Retinula cells, R1–R8), 12 accessory
non-neuronal cells, and one sensory inter-ommatidial bristle (IOB). The precise hexagonal geometry of
the adult eye and its constituent cell types are both essential for proper visual perception, reasons for
which these features are highly conserved across all insects.

Eye development initiates during the third larval stage (see Figure 2), and involves progressive
stages of cell specification and morphogenesis of a monolayer neuro-epithelium called the
eye/antennal disc (eye anlagen). This onset of retinal neurogenesis is marked by the specification of the
first photoreceptors, the R8 cells, and occurs in a wave of cell specification called the Morphogenetic
Furrow (MF, see Figure 2A). In contrast to the specification of the R8 cells in the MF, recruitment of
all secondary photoreceptors (R1–R7) occurs posterior to it. The MF therefore represents a 48-hour
window of development that covers all retinal neurogenesis. For a more detailed description of R8 cell
specification and roles in this sensory organ, see Reference [160]. In Drosophila, the bHLH transcription
factor Atonal (Ato) specifies the R8 photoreceptors [161], which subsequently recruit all later retinal
cell types’ characteristic of the ommatidium (see above). The R8s are not clonally derived, and each is
the outcome of inductive recruitment that occurs in a precise spatial/temporal manner. Hence, in the
absence of Ato, no R8s or other retinal cells form, thus ablating the eye. Likewise, a defect in human
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Atoh7 elicits blindness due to a loss of RGCs and the optic nerve [162], suggesting that lessons learned
from fruit flies are applicable to mammals. R8/RGC patterning demands controlled repression of
Ato/Atoh7 by the Enhancer of split (E(spl)) proteins (called Hes in vertebrates [163,164]), which also
pattern other tissues and whose regulation by CK2 is now well understood (see below). Hence,
the regulation of E(spl) activity during R8 patterning is broadly applicable and relevant to
understanding Notch-dependent human developmental disorders.Pharmaceuticals 2017, 10, 4 14 of 29 
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unclear. In canonical Notch signaling, receptor activation elicits cleavage of the Notch intracellular 
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Figure 2. (A) R8 birth; Ato (pink/red), Sens (blue) and secondary R cells (grey); (B) CK2 and Mitogen
Activated Protein Kinase (MAPK) activate M8 at stage-2/3 of the MF, and after R8 selection, PP2A and
CK1 + Slimb mediate inactivation and/or destruction; (C) Eye phenotypes of CK2 and M8 mutants;
(D) Functional domains in M8, and location of the phosphorylation domain (PD) in the C-terminal
domain (CtD). The WRPW motif in M8 binds the essential co-repressor Groucho, and M8* (the product
of the E(spl)D mutation) eliminates the CtD; (E) Regulation of cis-inhibited M8 by CK2 and MAPK.
Note that in cis-inhibited M8, the PD blocks either HLH (blue) or Orange domains preventing
interaction with Atonal; (F) Conservation of the PD in Drosophila M8/M5/M7/Mγ and human/mouse
Hes6; (G) Model for CK2 regulation of Drosophila M8 and mammalian Hes6. Dotted line denotes
non-canonical mode of Hes6 action.

During R8 ontogeny, Ato expression initiates as a stripe at the leading edge (stage-1) of the
MF (Figure 2A). Cell-autonomous ato auto-activation [165] then produces pre-R8 cell clusters [166],
the intermediate groups (IGs, see Figure 2A). Notch signaling through E(spl) proteins then acts to
repress Ato (non-autonomously) at stage-2/3 in all but one cell from each IG [167]. That cell continues
to maintain senseless (sens) expression and differentiates as an R8 [168,169]. The other cells of each IG
remain in a non-neural (undifferentiated) state. This binary cell fate determination is termed lateral
inhibition, and functions similarly during bristle patterning [170,171]. Repression of Ato by E(spl)
proteins is therefore key to generating patterned R8s posterior to the MF (Figure 2A). One unusual
aspect of Notch signaling during R8 ontogeny is that Notch is necessary for proper expression of the
proneural protein Ato at stage-1, as well as that of the E(spl) repressors at stage-2/3 [172]. Given that
the MF is a moving wave, cells at stage-1 are separated from those at stage-2/3 by ~5–10 min [173].
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How Notch achieves these two mutually antagonistic functions within this short time frame remains
unclear. In canonical Notch signaling, receptor activation elicits cleavage of the Notch intracellular
domain (NICD) and its translocation to the nucleus to effect target gene activation [174]. It is difficult
to envision how this mode of gene regulation rapidly switches from proneural to repressive modes.
Our work (see below) suggests that CK2 plays a crucial role in enforcing a short temporal delay
such that the repressive effects of Notch only manifest at stage-2/3 of the MF (Figure 2B). In a sense,
CK2 may thus “decouple” these two phases of Notch signaling.

As mentioned above, E(spl) protein expression is necessary to resolve a single R8 from each IG.
The E(spl)Complex encodes seven homologous and highly conserved bHLH repressors [144,145],
of which M8, Mγ and Mδ are expressed in the MF [175]. While loss of the E(spl)C elicits the
abnormal specification of extra (“twinned”) R8s from an IG [167], over-expression of M8/Mγ/Mδ

(at stage-2/3) does not dominantly repress Ato or the R8 fate [172,176,177]. The importance of M8
in Ato repression is highlighted by the E(spl)D mutation. This mutation, serendipitously identified
in the 1950s [178,179], encodes M8* lacking its C-terminal domain (CtD, Figure 2C,D) and potently
represses Ato, thus ablating R8s and the eye [177,180]. The mechanism underlying the hyperactivity
of M8* remained an enigma, until we discovered that the E(spl) proteins are targeted by CK2 [84].
Specifically, CK2 interacts with and phosphorylates E(spl)-M8, -M7 and -M5; this modification targets a
highly conserved phosphorylation domain (PD) located within the CtD (see Figure 2D,F). Remarkably,
replacement of the CK2 phosphoacceptor of M8, Ser159, with Asp (Figure 2D) results in a variant that
ablates eye development via a mechanism virtually identical to that of M8* (Figure 2C, and see [84]).
Phosphorylation displaces the autoinhibitory CtD, to expose the Orange domain and permit binding
and repression of Ato (Figure 2E), a regulation that is circumvented by CtD deletion in M8* [181].
Consistent with a role in M8 repression of Ato, reduced CK2 activity elicits “twinned” R8s [182],
as occurs upon excessive expression of Ato [183] or upon loss of E(spl)C [167]. These findings thus
demonstrate that CK2 is a key participant of Notch signaling at the onset of eye development.

More recent studies are revealing that regulation of M8 activity involves multi-site PTM of the
P-domain, and this involves activation of M8 by the kinases CK2 + MAPK [184], whereas inactivation
involves the phosphatase PP2A, either alone or in combination with CK1 plus Slimb (βTrCP,
see Figure 2B). Such a model posits that controlled activation and inactivation ensures that repressive
effects of M8 occur in a spatially and/or temporally controlled manner. This mode of regulation could
enable Notch to signal in a “pulsatile” manner, akin to that during genesis of somites. We believe that
this mode of signal regulation may have direct implications on birth of RGCs in mammals, where
Math5 (murine Ato homolog 5) expressivity is refined through Hes repressors (the homologues of fly
E(spl) proteins). Specifically, previous studies have demonstrated that Hes6 (the homologue of fly M8)
harbors a highly conserved P-domain that is targeted by CK2 and MAPK [185,186], and conserves
sites for CK1 and βTrCP (Figure 2F). Furthermore, CK2 phosphorylation of mouse Hes6 also mediates
its interaction with Hes1, the repressor of Math5/Atoh7 [187–190]. The role of Hes6 phosphorylation
during RGC birth remains unknown; a possible model is discussed in the next section.

9. Lessons from Drosophila R8 Cells Applied to Birth of Mammalian RGCs

The striking parallels between the fly R8 and mammalian RGC [191], and the conserved P-domain
(Figure 2F,G) begs the question of the role(s) of CK2, CK1 and βTrCP in the regulation of Hes6.
Like the R8 cell, RGC patterning requires repression of Math5/Atoh7 by Hes1 [189,190,192–194].
This activity of Hes1 is, in turn, antagonized by Hes6 through protein–protein interactions,
which (in cultured neuronal cells) requires phosphorylation of Hes6 by CK2 [187]. Post-translational
regulation of Hes6 may have two distinct outcomes (Figure 2G). In the canonical mode (Figure 2G,
blue box), CK2 would promote Hes6 inhibition of Hes1, thereby favoring Math5 activity and the RGC
fate. In contrast, CK1 + βTrCP would promote Hes6 degradation, thereby permitting Hes1 to repress
Math5 and the RGC fate. If so, the signaling circuit in the mammalian retina would be the inverse of
that in flies. In a less likely alternative, Hes6 directly antagonizes Math5. If so, CK2 would promote
Hes6 inhibition of Math5 and the RGC fate, while CK1 + βTrCP would promote, a mechanism akin
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to that in flies. However, this latter model would require that Hes6 has altered partner preference
during RGC patterning. We predict that the expression of normal and mutant Hes6 (refractory to or
mimicking CK2, MAPK, CK1 or βTrCP sites) in the early embryonic mouse retina may resolve the role
and regulation of Hes6 during RGC birth and which of these two models is correct. In addition to the
retina, post-translational regulation of Hes6 may occur elsewhere, given that Hes6 plays roles in late
embryogenesis, myogenesis [195–197], and postnatal development [198,199], and its overexpression is
linked to gliomas and breast and prostate cancer [200–202]. Our findings in Drosophila may aid efforts
to answer similar questions in the more complex mouse model, and determine if mis-regulated Hes6
activity is linked to disease states.

10. Additional Roles of CK2 during Drosophila Eye Development

Unlike the role of CK2 during (Notch-dependent) birth of R8 cells, its roles later in eye
development, i.e., the recruitment of R1–R7 photoreceptors have not been forthcoming. For example,
after birth of R8s, Notch signaling is required in a reiterative manner for the specification of the R1–R7
cells, which are born in a precise order. These include, in order, the R2/R5, R3/R4, R1/R6 followed
by the R7 cell. The hypomorphic allele of Dm-CK2-α called CK2α-MB00477 (abbreviated as CK2αMB,
see Table 2) is the first mutation that directly implicates roles for CK2 at multiple stages of eye
development. Importantly, this mutation provides “forward” genetic evidence, which is generally
considered to be a benchmark in the field of Drosophila genetics. Our analyses of this mutation
(Figure 1A) reveal that CK2MB homozygous animals, or those that are trans-heterozygous with
Tik or TikR, complete the third larval stage and die at the mid-pupal transition. As these animals
are competent to transition through these two critical stages of development (relative to the onset
of retinal neurogenesis, see Figure 1A), the compound eyes can be evaluated (for patterning and
size) following their dissection from the pupal case. These animals display a highly perturbed eye,
which is both rough in appearance and significantly (~50%) reduced in size (Figure 2C), and these
defects are completely rescued by expression of a tub-Dm-CK2-α construct (Bandyopadhyay and
Bidwai, in preparation). The former (rough eye) phenotype results from impaired lateral inhibition,
i.e., the defective refinement of a single R8 from an IG. On its own, a defect in lateral inhibition cannot
account for the reduced eye field, raising the likelihood that this phenotype may arise from defective
recruitment of secondary photoreceptors due to defective (reduced) phosphorylation of additional
CK2 targets in the developing eye.

11. Potential CK2 Targets Identified Via the Transcriptome of the Developing Eye

The complex eye defects of CK2MB/CK2MB homozygous animals raise the prospect that CK2
plays additional roles in eye development, beyond that required for controlling R8 patterning through
its regulation of E(spl)-M8 (see above). To reveal eye-specific proteins that may be regulated by CK2,
we analyzed the “transcriptome” of the developing eye disc to identify additional targets of CK2.
This sequence based prediction for high likelihood CK2 targets is facilitated by earlier studies that
defined the substrate specificity of CK2, the consensus recognition, and the impact of amino acids
vicinal to the phospho-acceptor (Ser/Thr). The following general principles have emerged for CK2;
(1) it is an acidophilic protein kinase; (2) the substrate specificity is best described as S/T-E/D-x-D/E;
(3) the presence of additional Asp/Glu residues either N- or C-terminal to the phosphoacceptor(s)
further enhances phosphorylation of target proteins; (4) phosphorylation is negatively impacted by
basic residues such as Arg/Lys since the presence of these residues within the consensus abrogates
targeting by CK2; and (5) the presence of phospho-Ser/Thr (pSer/pThr) C-terminal to the primary
phosphoacceptor augments targeting by CK2, revealing that this enzyme can participate in hierarchical
phosphorylation either alone or in concert with other protein kinases. It should, however, be noted
that some sites may be solvent exposed, but inaccessible in the tertiary structure, so this approach is,
at best, predictive.

Eye disc specific gene expression patterns were identified from Flybase (flybase.org), and queried
for proteins predicted to harbor CK2 consensus sites. Although protein abundance, regions of intrinsic
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disorder and stoichiometry appear to correlate with phospho-site conservation [203–205], we did not
incorporate these principles into our analyses, because much of this information is still lacking for
the proteome of the developing eye anlagen. The first round of analysis only included sequences
from D. melanogaster, and this identified ~180 genes. Subsequently, homologous proteins were
identified from 11 other fully sequenced and annotated Drosophila species (flybase.org) that encompass
~60 × 106 years of evolution [206,207], with the expectation that only high probability CK2 target
sites with functional importance should be resilient through this time frame. The list of potential
targets (Table 5) therefore only includes homologous proteins in which the CK2 site is conserved in all
12 species.

Table 5. Genes expressed in the developing eye with conserved CK2 sites.

Gene WebLogo of CK2 Site(s) Function

Acinus (Acn)
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Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Transcription Factor

Cullin 1 (Cul1)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Ubiquitin Ligase

Cullin 3 (Cul3)

Pharmaceuticals 2017, 10, 4 17 of 29 

 

potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Ubiquitin Ligase

Decapo (Dap)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

CDK inhibitor

Daughter of Sevenless (Dos)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Sevenless RTK signaling

Decay
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Regulator of apoptosis

Distal Antenna (Dan)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Transcription Factor

Distal antenna related (Danr)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Transcription Factor

Domino (Dom)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

SNF2/RAD54 helicase family

Ebi
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Chromatin binding

EGF-Receptor (EGFR)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

RTK signaling

ELAV
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Neurogenesis

Eyegone (Eyg)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Pax family transcription factor

Eyeless (Ey)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 
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Decapo (Dap) CDK inhibitor 
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Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Transcription factor

Eyes Absent (Eya)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Transcription factor

Fat Facets (Faf)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 
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Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Ubiquitin Ligase

Garnet (G)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 
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Distal Antenna (Dan) Transcription Factor 
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Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 
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Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Clathrin coatomer adaptor

Glass (Gl)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 
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EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 
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Golden Goal (Gogo) Axon guidance 
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Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 
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Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Transcription factor

Golden Goal (Gogo)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 
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Domino (Dom) SNF2/RAD54 helicase family 
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ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
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Head involution defective (Hid) Cell death 
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Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Axon guidance

GP150
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 
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Pax family transcription factor 
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Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Eye development

Head involution defective (Hid)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 
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ELAV Neurogenesis 
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Pax family transcription factor 
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Eyes Absent (Eya) Transcription factor 
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Golden Goal (Gogo) Axon guidance 
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Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Cell death

Homeodomain interacting Kinase (HipK)

Pharmaceuticals 2017, 10, 4 17 of 29 

 

potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 
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Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Eye development

IP3-Receptor
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 
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Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 
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Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 
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Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Inositol 1,4,5-tris-phosphate Receptor

Kismet (Kis)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 
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Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 
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Homeodomain interacting Kinase (HipK) Eye development 
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Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 
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Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Transcription factor

Klarsicht (Klar)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
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AXIN1 upregulated 1 (Axud1) Cell proliferation 
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Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 
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Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 
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IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 

PDGF/VEGF related factor 1 Cell signaling 

Pointed (Pnt) Transcription factor 

Prickle (Pk) Regulates planar cell polarity 

RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Kinesin binding

Klumpfuss (Klu)
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Ret Oncogene (Ret) RTK signaling 

Ubiquitin binding and eye
development
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Table 5. Cont.

Gene WebLogo of CK2 Site(s) Function

PDGF/VEGF related factor 1
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conserved in all 12 species. 

Table 5. Genes expressed in the developing eye with conserved CK2 sites. 

Gene WebLogo of CK2 Site(s) Function
Acinus (Acn) RNA splicing 

Anterior Open (Aop) Transcription Factor 

Asteroid (Ast) EGFR signaling 

AXIN1 upregulated 1 (Axud1) Cell proliferation 

Cadherin 86C (Cad86C) Cell adhesion/signaling 

Cadherin N (CadN) Cell adhesion/signaling 

Capicua (Cic) HMG family Transcription Factor 

Claspin ATR-Chk1 checkpoint pathway 

Cubitus Interruptus (Ci) Transcription Factor 

Cullin 1 (Cul1) Ubiquitin Ligase 

Cullin 3 (Cul3) Ubiquitin Ligase 

Decapo (Dap) CDK inhibitor 

Daughter of Sevenless (Dos) Sevenless RTK signaling 

Decay Regulator of apoptosis 

Distal Antenna (Dan) Transcription Factor 

Distal antenna related (Danr) Transcription Factor 

Domino (Dom) SNF2/RAD54 helicase family 

Ebi Chromatin binding 

EGF-Receptor (EGFR) RTK signaling 

ELAV Neurogenesis 

Eyegone (Eyg)   
Pax family transcription factor 
 

Eyeless (Ey) Transcription factor 

Eyes Absent (Eya) Transcription factor 

Fat Facets (Faf) Ubiquitin Ligase 

Garnet (G) Clathrin coatomer adaptor 

Glass (Gl) Transcription factor 

Golden Goal (Gogo) Axon guidance 

GP150 Eye development 

Head involution defective (Hid) Cell death 

Homeodomain interacting Kinase (HipK) Eye development 

IP3-Receptor Inositol 1,4,5-tris-phosphate Receptor 

Kismet (Kis) Transcription factor 

Klarsicht (Klar) Kinesin binding 

Klumpfuss (Klu) Zinc finger protein 

Liprin-γ Sterile α motif 

Liquid Facets (Lqf) Ubiquitin binding and eye development 

Neuralized (Neur) E3 ubiquitin ligase 

Osa Transcription coactivator 
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RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 
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Pointed (Pnt)
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RapGAP1 GTPase activating protein 

Regulator of eph expression (Reph) Ephrin signaling 

Ret Oncogene (Ret) RTK signaling 

Regulates planar cell polarity

RapGAP1
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GTPase activating protein

Regulator of eph expression (Reph)
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potential targets (Table 5) therefore only includes homologous proteins in which the CK2 site is 
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Table 5. Genes expressed in the developing eye with conserved CK2 sites. 
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Scribbler (Sbb) Transcription factor 

Serrate (Ser) Notch signaling 

Seven in absentia (Sina) Regulation of R7 differentiation 

Shaven (dPax2) D-Pax2 family transcription factor 

Snf5-related 1 (Snr1) Chromatin structure 

Sine Oculis (SO) Transcription factor 

SoxNeuro (SoxN) Transcription factor 

Spineless Regulates Rhodopsin expression 

Spinster Regulates TGF-β/BMP signaling 

Star EGF signaling and eye development 

Sugarless Signaling in eye development 

Target of wit (Twit) Eye development 

Terribly reduced optic lobe (Trol) Cell polarity and signaling 

Tolkin (Tok) Negative regulator of gene expression 

α-catenin Actin binding 

As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
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EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 
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Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
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the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
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Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
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and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
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residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
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Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
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11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
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ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
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the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 
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Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
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SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 
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pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214]. Both 
SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory have 
now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that CK2 
may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may underlie 
the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of Eyg is an 
excellent example for evaluating the emergence of orthologues. The Drosophila genome encodes two 
such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV (bold 
residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe is CK2-
independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify the site(s) 
of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic eye formation. 
Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf, a 
mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in 
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to 
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such 

Negative regulator of gene expression

α-catenin

Pharmaceuticals 2017, 10, 4 18 of 29 

 

Scribbler (Sbb) Transcription factor 

Serrate (Ser) Notch signaling 

Seven in absentia (Sina) Regulation of R7 differentiation 

Shaven (dPax2) D-Pax2 family transcription factor 

Snf5-related 1 (Snr1) Chromatin structure 

Sine Oculis (SO) Transcription factor 

SoxNeuro (SoxN) Transcription factor 

Spineless Regulates Rhodopsin expression 

Spinster Regulates TGF-β/BMP signaling 

Star EGF signaling and eye development 

Sugarless Signaling in eye development 

Target of wit (Twit) Eye development 

Terribly reduced optic lobe (Trol) Cell polarity and signaling 

Tolkin (Tok) Negative regulator of gene expression 

α-catenin Actin binding 

As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins 
regulating diverse aspects of eye development. Here, we review these proteins in accordance with 
their structural classification, biochemical functions and mutant phenotypes. 

11.1. Transcription Factors 

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact 
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless (Ey) 
and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis hierarchy, 
a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]). This 
view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel) that 
ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues such as 
the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces the 
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residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV. Because 
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Conversely, it would also be of interest to conduct domain swapping experiments to determine if Toe 
can be rendered CK2-dependent. Such studies could better illuminate the relevance of CK2 to these 
critical eye-specific TFs. 

11.2. Signaling Pathways 

Cell signaling is vital for most developmental programs. Two important and intersecting 
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to Notch 
pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase in 
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As is evident from Table 5, this list of high likelihood targets of CK2 includes 58 proteins regulating
diverse aspects of eye development. Here, we review these proteins in accordance with their structural
classification, biochemical functions and mutant phenotypes.

11.1. Transcription Factors

Of the ~60 interactors, >30% (21 out of 58) represent transcription factors or proteins that impact
gene expression through modification of chromatin structure. Notably, two of these, e.g., Eyeless
(Ey) and Eyegone (Eyg), are transcription factors that lie at the apex of the retinal neurogenesis
hierarchy, a class of proteins called the “retinal determination” (RD) genes (for reviews, see [208–210]).
This view reflects the remarkable findings from the laboratory of the late Walter Gehring (Basel)
that ectopic expression of the Ey gene induces the formation of ectopic eyes in non-retinal tissues
such as the wings, legs, and antenna [211]. This remarkable ability reflects the fact that Ey induces
the transcription of additional RD-genes such as Sine Oculis (SO) and Eyes Absent (Eya) [212–214].
Both SO and Eya are predicted to be targets of CK2 (see Table 5), and studies from our laboratory
have now confirmed this to be the case for SO (Majot and Bidwai, unpublished). The possibility that
CK2 may regulate four critical eye-determination transcription factors (Ey, Eyg, SO and Eya) may
underlie the complex eye defects of CK2MB/CK2MB animals (Figure 2C). The potential targeting of
Eyg is an excellent example for evaluating the emergence of orthologues. The Drosophila genome
encodes two such genes, Eyg and Twin of Eyegone (Toe). Eyg harbors the CK2 consensus site DSDEEINV
(bold residue is likely to be targeted by CK2), whereas the corresponding site on Toe is EEEEVINV.
Because the D/E residues mimic SerP04, it raises the possibility that Eyg is CK2-regulated whereas Toe
is CK2-independent. It will therefore be of interest to determine if Eyg is modified by CK2, identify
the site(s) of phosphorylation, and determine the in vivo activities using its ability to elicit ectopic
eye formation. Conversely, it would also be of interest to conduct domain swapping experiments to
determine if Toe can be rendered CK2-dependent. Such studies could better illuminate the relevance
of CK2 to these critical eye-specific TFs.
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11.2. Signaling Pathways

Cell signaling is vital for most developmental programs. Two important and intersecting
pathways are Notch and EGFR. While our previous work has revealed the centrality of CK2 to
Notch pathway output in the developing eye and bristle (Section 8, see above), the role of this kinase
in EGFR/Sevenless (Sev) signaling has not heretofore been suspect. While CK2 regulation of Raf,
a mediator of EGFR/Sev signaling in flies is known [53] and shares many similarities to that in
mammals, if/how Raf phosphorylation fine-tunes signaling has remained obscure. In addition to
EGFR itself, CK2 consensus sites are conserved in several components regulating this pathway such as
Asteroid, Daughter-of-Sevenless, Ret, and Sina, across ~60 × 106 years of Drosophila evolution. While
Notch and EGFR have been generally thought to play opposing roles during development [215,216],
our findings that EGFR/MAPK signaling is necessary for activity of the Notch effector E(spl)-M8
(Section 8, see above) make it likely that the former proposal is an oversimplification. If CK2 were to
stimulate EGFR/MAPK signaling, it would place CK2 at the heart of the repressive effects of Notch
signaling, without which R8 photoreceptors could not be patterned in the developing eye, which would
perturb all subsequent steps of retinal neurogenesis, adult eye architecture, and vision. Given this
possibility, a full and proper biochemical and genetic investigation of these RTK signaling components
seems warranted.

11.3. Protein Turnover

Controlled protein turnover lies at the heart of eye development, wherein controlled degradation
of transcription factors such as E(spl)-M8 seems necessary to allow timely termination of Notch
signaling. We think that degradation, in principle, could be broadly applicable to all aspects of
Notch signaling. Among the proteins identified as potential targets of CK2 are Neuralized (Neur),
Fat-Facets (Faf), and Liquid-Facets (Lqf). Neur, a member of the RING family E3 ubiquitin ligase, is a
key component of Notch signaling pathway, wherein it regulates activation of the Notch ligand via
endocytosis [217,218]. In contrast, Faf is a de-ubiquitination (DUB) enzyme that negatively regulates
RTK/Ras/MAPK signaling [219,220], whereas Lqf possesses Ubiquitin-interaction motifs [221].
Mutations in all three, Neur, Faf and Lqf, are associated with defects in eye development, and thus it
will be of interest to determine how CK2 phosphorylation regulates these three proteins.

11.4. Regulators of the Cell Cycle, Cell Death, Cell Polarity and Cytoskeleton

Eye development hinges upon controlled proliferation of the eye anlagen, coordination of planar
cell polarity that regulates photoreceptor positioning, cell death to remove excess non-specified and
non-differentiated cells, and regulation of the cytoskeleton, which is necessary for formation of the
MF, the apico-basal constriction that marks the initiation of retinal neurogenesis. Members controlling
each of these aspects appear in the list of putative, highly conserved, targets for CK2. These include,
proteins regulating the cell cycle such as the CDK inhibitor Decapo (Dap), the ATR-Chk1 checkpoint
pathway component Claspin, and AXIN1 upregulated 1 (Axud1), and the well-known regulator of
apoptosis Head involution defective (Hid). Other proteins regulating the cytoskeleton include Terribly
reduced optic lobe (Trol), and Prickle, a key regulator of planar cell polarity in the developing eye.

Given the diverse array of potentially new targets of CK2 and the complex eye defects of CK2MB

flies, a proper investigation of the proteome of the developing eye that is targeted by this kinase is
warranted. Such studies will not only illuminate the extent to which CK2 regulates retinal neurogenesis
in flies, but may also reveal new insights into its roles in mammalian eye development.

12. Summary and Future Perspectives

Many aspects of CK2 functions in Drosophila have emerged from studies from several
laboratories. These include mutants, subunit diversity, functional non-redundancy of CK2-β
homologues, interacting proteins and, importantly, the diverse roles played by this protein kinase
during development. Many of these processes are likely to represent conserved features of animal
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development. The challenge before us is to decipher which roles are universally applicable, and which
are specific to taxonomic groups. The availability of CK2 mutants with a perturbed eye now enables
the application of phospho-proteomic studies, such as through the use of Phos-Tag to identify all
phosphoproteins in the developing eye disc [222], rescue CK2MB/CK2MB homozygous animals with
a CK2α-Apex fusion [223,224] enabling direct identification of the CK2 “interactome”, and finally
through genome editing of individual CK2 target genes. Such studies, will, in due course, reveal the
development-specific targets of DmCK2, and provide insights and routes to similar analysis in other
vertebrate model organisms.
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