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Abstract

Background: The automation of data analysis in the form of scientific workflows has become a widely adopted practice in
many fields of research. Computationally driven data-intensive experiments using workflows enable automation, scaling,
adaptation, and provenance support. However, there are still several challenges associated with the effective sharing,
publication, and reproducibility of such workflows due to the incomplete capture of provenance and lack of interoperability
between different technical (software) platforms. Results: Based on best-practice recommendations identified from the
literature on workflow design, sharing, and publishing, we define a hierarchical provenance framework to achieve
uniformity in provenance and support comprehensive and fully re-executable workflows equipped with domain-specific
information. To realize this framework, we present CWLProv, a standard-based format to represent any workflow-based
computational analysis to produce workflow output artefacts that satisfy the various levels of provenance. We use open
source community-driven standards, interoperable workflow definitions in Common Workflow Language (CWL), structured
provenance representation using the W3C PROV model, and resource aggregation and sharing as workflow-centric research
objects generated along with the final outputs of a given workflow enactment. We demonstrate the utility of this approach
through a practical implementation of CWLProv and evaluation using real-life genomic workflows developed by
independent groups. Conclusions: The underlying principles of the standards utilized by CWLProv enable semantically rich
and executable research objects that capture computational workflows with retrospective provenance such that any
platform supporting CWL will be able to understand the analysis, reuse the methods for partial reruns, or reproduce the
analysis to validate the published findings.
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Introduction

Amongst the many big data domains, genomics is considered
the most demanding with respect to all stages of the data life-
cycle, including acquisition, storage, distribution, and analysis
[1]. Because genomic data are growing at an unprecedented rate
due to improved sequencing technologies and reduced cost, it
is currently challenging to analyse the data at a rate matching
their production. With data growing exponentially in size and
volume, the practice of performing computational analyses us-
ing workflows has overtaken more traditional research methods
using ad hoc scripts, which were the typical modus operandi
over the past few decades [2,3]. Scientific workflow design and
management has become an essential part of many compu-
tationally driven data-intensive analyses enabling automation,
scaling, adaptation, and provenance support [4]. Increased use
of workflows has driven rapid growth in the number of compu-
tational data analysis workflow management systems (WMSs),
with hundreds of heterogeneous approaches now existing for
workflow specification and execution [5]. There is an urgent
need for a common format and standard to define workflows
and enable sharing of analysis results using a given workflow
environment.

Common Workflow Language (CWL) [6] has emerged as a
workflow definition standard designed to enable portability, in-
teroperability, and reproducibility of analyses between workflow
platforms. CWL has been widely adopted by >20 organizations,
providing an interoperable bridge overcoming the heterogene-
ity of workflow environments. Whilst a common standard for
workflow definition is an important step towards interopera-
ble solutions for workflow specifications, sharing and publishing
the results of these workflow enactments in a common format
is equally important. Transparent and comprehensive sharing
of experimental designs is critical to establish trust and ensure
authenticity, quality, and reproducibility of any workflow-based
research result. Currently there is no common format
defined and agreed upon for interoperable workflow archiving or
sharing [7].

In this paper, we utilize open source standards such as CWL
together with related efforts such as research objects (ROs) [8],
BagIt [9], and PROV [10] to define CWLProv, a format for the inter-
operable representation of a CWL workflow enactment. We focus
on production of a workflow-centric executable RO as the final
result of a given CWL workflow enactment. This RO is equipped
with the artefacts used in a given execution including the work-
flow inputs, outputs, and, most importantly, the retrospective
provenance. This approach enables the complete sharing of a
computational analysis such that any future CWL-based work-
flow can be rerun given the best practices discussed later for
software environment provision are followed.

The concept of workflow-centric ROs has been previously
considered [8, 11,12] for structuring the analysis methods and
aggregating digital resources used in a given analysis. The ROs
generated in these studies typically aggregate data objects, ex-
ample inputs, workflow specifications, attribution details, and
details about the execution environment amongst various other
elements. These previous efforts were largely tied to a sin-
gle platform or WMS. CWLProv aims to provide a platform-
independent solution for workflow sharing, enactment, and
publication. All the standards and vocabularies used to design
CWLProv have an overarching goal to support a domain-neutral
and interoperable solution (detailed in Section Applied Stan-
dards and Vocabularies).

The remainder of this paper is structured as follows. In Sec-
tion Background we discuss the key concepts and related work,

followed by a summary of the published best practices and rec-
ommendations for workflow representation and sharing in Sec-
tion Levels of Provenance and Resource Sharing. This section
also details the hierarchical provenance framework that we de-
fine to provide a principled approach for provenance capture and
method sharing. Section CWLProv 0.6.0 and Utilized Standards
introduces CWLProv and outlines its format, structure, and the
details of the standards and ontologies it utilizes. Section Prac-
tical Realization of CWLProv presents the implementation de-
tails of CWLProv using cwltool [13], and Section CWLProv Eval-
uation with Bioinformatics Workflows demonstrates and evalu-
ates the implemented module for 3 existing workflow case stud-
ies. We discuss the challenges of interoperable workflow shar-
ing and the limitations of the proposed solution, listing several
possible future research directions, in Section Discussion and
Future Directions before finally drawing conclusions in Section
Conclusion.

Background

This work draws upon a range of topics such as “provenance” and
“interoperability.” We define these here to provide better context
for the reader.

Provenance

A number of studies have advocated for complete provenance
tracking of scientific workflows to ensure transparency, repro-
ducibility, analytic validity, quality assurance, and attribution of
(published) research results [14]. The term “provenance” is de-
fined by the World Wide Web Consortium (W3C) [15] as:

“Provenance is information about entities, activities, and people involved
in producing a piece of data or thing, which can be used to form assess-
ments about its quality, reliability, or trustworthiness.”

Provenance for workflows is commonly divided into the fol-
lowing 3 categories: retrospective provenance, prospective prove-
nance, and workflow evolution. “Retrospective provenance” refers to
the detailed record of the implementation of a computational
task including the details of every executed process together
with comprehensive information about the execution environ-
ment used to derive a specific product. “Prospective provenance”
refers to the “recipes” used to capture a set of computational
tasks and their order, e.g., the workflow specification [16]. This
is typically given as an abstract representation of the steps
(tools/data analysis steps) that are necessary to create a par-
ticular research output, e.g., a data artefact. “Workflow evolution”
refers to tracking of any alteration in the existing workflow re-
sulting in another version of the workflow that may produce ei-
ther the same or different resultant data artefacts [17]. In this
work, our focus is mainly on improving representation and cap-
ture of retrospective provenance.

Interoperability

The concept of interoperability varies in different domains. Here
we focus on computational interoperability, defined as:

“The ability of 2 or more components or systems to exchange information
and to use the information that has been exchanged [18].”

The focus of this study is to propose and devise meth-
ods to achieve syntactic, semantic, and pragmatic interoperability
as defined in the Levels of Conceptual Interoperability Model
[19]. Syntactic interoperability is achieved when a common
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data format for information exchange is unambiguously de-
fined. The next level of interoperability, referred to as semantic
interoperability, is reached when the content of the actual in-
formation exchanged is unambiguously defined. Once there
is agreement about the format and content of the informa-
tion, pragmatic interoperability is achieved when the context,
application, and use of the shared information and data ex-
changed are also unambiguously defined. In the section Eval-
uation Results, we relate these general definitions to specific
workflow applications with respect to workflow-centric ROs and
describe to what extent these interoperability requirements are
addressed.

Related work

We focus on relevant studies and efforts trying to resolve the is-
sue of availability of required resources used in a given compu-
tational analysis. In addition, we cover efforts directed towards
provenance capture of workflow enactments. We restrict our at-
tention to scientific workflows and studies related to the bioin-
formatics domain.

Workflow software environment capture
Freezing and packaging the runtime environment to encompass
all the software components and their dependencies used in an
analysis is a recommended and widely adopted practice [20] es-
pecially after use of cloud computing resources where images
and snapshots of the cloud instances are created and shared
with fellow researchers [21]. Nowadays, preservation and shar-
ing of the software environment, e.g., in open access reposito-
ries, is becoming a regular practice in the workflow domain as
well. Leading platforms managing infrastructure and providing
cloud computing services and configuration on demand include
DigitalOcean [22], Amazon Elastic Compute Cloud [23], Google
Cloud Platform [24], and Microsoft Azure [25]. The instances
launched on these platforms can be saved as snapshots and pub-
lished with an analysis study to later recreate an instance rep-
resenting the computing state at analysis time.

Using “system-wide packaging” for data-driven analyses, al-
though simplest on the part of the workflow developers and re-
searchers, has its own caveats. One notable issue is the size of
the snapshot as it captures everything in an instance at a given
time; hence, the size can range from a few gigabytes to many
terabytes. To distribute research software and share execution
environments, various lightweight and container-based virtual-
ization and package managers are emerging, including Docker,
Singularity, Debian Med, and Bioconda.

Docker [26] is a lightweight container-based virtualization
technology that facilitates the automation of application de-
velopment by archiving software systems and environment
to improve portability of the applications on many common
platforms including Linux, Microsoft Windows, Mac OS X,
and cloud instances. Singularity [27] is also a cross-platform
open source container engine specifically supporting high-
performance computing resources. An existing Docker format
software image can be imported and used by the Singularity
container engine. Debian Med [28] contributes packages of medi-
cal practice and biomedical research to the Debian Linux distri-
bution, lately also including workflows. Bioconda [29] packages,
based on the open source package manager Conda [30], are avail-
able for Mac OS X and Linux environments, directing towards
availability and portability of software used in the life sciences
domain.

Data/method preservation, aggregation, and sharing
Preserving and sharing only the software environment is not
enough to verify results of any computational analysis or reuse
the methods (e.g., workflows) with a different dataset. It is also
necessary to share other details including data (example or the
original), scripts, workflow files, input configuration settings, the
hypothesis of the experiment, and any/all trace/logging infor-
mation related to “what happened,” i.e., the retrospective prove-
nance of the actual workflow enactment. The publishing of re-
sources to improve the state of scholarly publications is now
supported by various online repositories, including Zenodo [31],
GitHub [32], myExperiment [33], and Figshare [34]. These reposi-
tories facilitate collaborative research, in addition to public shar-
ing of source code and the results of a given analysis. There is
however no standard format that must be followed when some-
one shares artefacts associated with an analysis. As a result,
the quality of the shared resources can range from a highly an-
notated, properly documented and complete set of artefacts to
raw data with undocumented code and incomplete information
about the analysis as a whole. Individual organizations or groups
might provide a set of “recommended practices,” e.g., in readme
files, to attempt to maintain the quality of shared resources.
The initiative Code as a Research Object [35] is a joint project be-
tween Figshare, GitHub, and Mozilla Science Lab [36] and aims
to archive any GitHub code repository to Figshare and produce
a DOI to improve the discovery of resources (for the source code
that supports this work we have used a similar publishing fea-
ture with Zenodo).

ReproZip [37] aims to resolve portability issues by identify-
ing and packaging all dependencies in a self-contained package
that when unpacked and executed on another system (with Re-
proZip installed) should reproduce the methods and results of
the analysis. Each package also contains a human-readable con-
figuration file containing provenance information obtained by
tracing system calls during system execution. The correspond-
ing provenance trace is however not formatted using existing
open standards established by the community. Several platform-
dependent studies have been targeted towards extensions to ex-
isting standards by implementing the RO model and improv-
ing aggregation of resources. Belhajjame et al. [8] proposed the
application of ROs to develop workflow-centric ROs containing
data and metadata to support the understandability of the uti-
lized methods (in this case workflow specifications). They ex-
plored 5 essential requirements to workflow preservation and
identified data and metadata that could be stored to satisfy the
said requirements. These requirements include providing ex-
ample data, preserving workflows with provenance traces, an-
notating workflows, tracking the evolution in workflows, and
packaging the auxiliary data and information with workflows.
They proposed extensions to existing ontologies such as Ob-
ject Reuse and Exchange (ORE), the Annotation Ontology (AO),
and PROV-O, with 4 additional ontologies to represent workflow-
specific information. However, as they state, the scope of the
proposed model at that time was not focused on interoperability
of heterogeneous workflows because it was demonstrated for a
workflow specific to Taverna WMS using myExperiment, which
makes it quite platform-dependent.

A domain-specific solution was proposed by Gomez-Perez
et al. [38] by extending the RO model to equip workflow-centric
ROs with information catering to the specific needs of the
earth science community, resulting in enhanced discovery and
reusability by experts. They demonstrated that the principles of
ROs can support extensions to generate aggregated resources
leveraging domain-specific knowledge. Hettne et al. [11] used 3
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genomic workflow case studies to demonstrate the use of ROs to
capture methods and data supporting querying and useful ex-
traction of information about the scientific investigation under
observation. The solution was tightly coupled with the Taverna
WMS and hence, if shared, would not be reproducible outside of
the Taverna environment. Other notable efforts to use ROs for
workflow preservation and method aggregation have been un-
dertaken in systems biology [39], in clinical settings [40], and in
precision medicine [41].

Provenance capture and standardization
A range of standards for provenance representation have been
proposed. Many studies have emphasized the need for prove-
nance focusing on aspects such as scalability, granularity, se-
curity, authenticity, modelling, and annotation [14]. They iden-
tify the need to support standardized dialogues to make prove-
nance interoperable. Many of these were used as inputs to ini-
tial attempts at creating a standard Provenance Model to tackle
the often inconsistent and disjointed terminology related to
provenance concepts. This ultimately resulted in the specifi-
cation of the Open Provenance Model (OPM) [42] together with
an open source model for the governance of OPM [43]. Work-
ing towards similar goals of interoperability and standardiza-
tion of provenance for web technologies, the W3C Provenance
Incubator Group [44] and the authors of OPM together set the
fourth provenance challenge at the International Provenance
and Annotation Workshop, 2010 (IPAW’10), that later resulted in
PROV, a family of documents serving as the conceptual model
for provenance capture and its representation, sharing, and ex-
change over the Web [45] regardless of the domain or platform.
Since then, a number of studies have proposed extensions to
this domain-neutral standard. The model is general enough to
be adapted to any field and flexible enough to allow extensions
for specialized cases.

Michaelides et al. [46] presented a domain-specific PROV-
based solution for retrospective provenance to support porta-
bility and reproducibility of a statistical software suite. They
captured the essential elements from the log of a workflow en-
actment and represented them using an intermediate notation.
This representation was later translated to PROV-N and used as
the basis for the PROV Template System. A Linux-specific sys-
tem provenance approach was proposed by Pasquier et al. [47],
who demonstrated retrospective provenance capture at the sys-
tem level. Another project, UniProv, is working to extract infor-
mation from Unicore middleware and transform it into a PROV-
O representation to facilitate the backtracking of workflow en-
actments [48]. Other notable domain-specific efforts leveraging
the established standards to record provenance and context in-
formation are PROV-man [49], PoeM [50], and micropublications
[51]. Platforms such as VisTrails and Taverna have built in ret-
rospective provenance support. Taverna [39] implements an ex-
tensive provenance capture system, TavernaProv [52], using both
PROV ontologies as well as ROs aggregating the resources used
in an analysis. VisTrails [53] is an open source project support-
ing platform-dependent provenance capture, visualization, and
querying for extraction of required information about a work-
flow enactment. Chirigati et al. [37] provide an overview of PROV
terms and how they can be translated from the VisTrails schema
and serialized to PROV-XML. WINGS [54] can report fine-grained
workflow execution provenance as Linked Data using the Open
Provenance Model for Workflows ontology [55], which builds on
both PROV-O and OPM.

All these efforts are fairly recent and use a standardized ap-
proach to provenance capture and hence are relevant to our

work on the capture of retrospective provenance. However, our
aim is a domain-neutral and platform-independent solution
that can be easily adapted for any domain and shared across
different platforms and operating systems.

As evident from the literature, there are efforts in progress
to resolve the issues associated with effective and com-
plete sharing of computational analysis including both the re-
sults and provenance information. These studies range from
highly domain-specific solutions and platform-dependent ob-
jects to open source flexible interoperable standards. CWL
has widespread adoption as a workflow definition standard
and hence is an ideal candidate for portable workflow defini-
tions. The next section investigates existing studies focused
on workflow-centric science and summarizes best-practice
recommendations put forward in these studies. From this
we define a hierarchical provenance and resource-sharing
framework.

Levels of Provenance and Resource Sharing

Various studies have empirically investigated the role of auto-
mated computational methods in the form of workflows and
published best-practice recommendations to support workflow
design, preservation, understandability, and reuse. We summa-
rize a number of these recommendations and their justifica-
tions in Table 1, where each recommendation addresses a spe-
cific requirement of workflow design and sharing. These recom-
mendations can be clustered into broad themes as shown in
Fig. 1. This classification can be made in >1 way, e.g., accord-
ing to how these recommendations are supporting each FAIR
dimension (Findable, Accessible, Interoperable, and Reusable)
[56]. In this study, we have focused on categories with re-
spect to workflow design, prospective provenance, data shar-
ing, retrospective provenance, the computational environment
required/used for an analysis, and better findability and under-
standability of all shared resources.

Sharing “all artefacts” from a computational experiment (fol-
lowing all recommendations and best practices) is a demand-
ing task without any informed guidance. It requires consoli-
dated understanding of the impact of the many different arte-
facts involved in that analysis. This places extra efforts on work-
flow designers, (re)-users, authors, and reviewers and expec-
tations on the community as a whole. Given the numerous
WMSs and differences in how each system deals with prove-
nance documentation, representation, and sharing of these
artefacts, the granularity of provenance information preserved
will vary for each workflow definition approach. Hence, devis-
ing 1 universal but technology-specific solution for provenance
capture and the related resource sharing is impossible. Instead
we propose a generic framework of provenance in Fig. 2 that all
WMSs can benefit from and conform to with minimum technical
overhead.

The recommendations in Table 1 aid in our understanding to
define this framework by classifying the granularity of the prove-
nance and related artefacts where the uppermost level exhibits
comprehensive, reproducible, understandable, and provenance-
rich computational experiment sharing. The purpose of this
framework is 3-fold. First, because of its generic nature it pro-
vides uniformity in the provenance granularity across various
WMSs belonging to different workflow definition approaches.
Second, it provides comprehensive and well-defined guidelines
that can be used by researchers to conduct principled anal-
ysis of the provenance of any published study. Third, due to
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Table 1. Summarized recommendations and justifications from the literature covering best practices on reproducibility, accessibility, interop-
erability, and portability of workflows

R No. Recommendations Justifications

R1-parameters Save and share all parameters used for each
software executed in a given workflow (including
default values of parameters used) [55, 57–59].

Affects reproducibility of results because different
inputs and configurations of the software can
produce different results. Different versions of a tool
might upgrade the default values of the parameters.

R2-automate Avoid manual processing of data, and if using shims
[60], then make these part of the workflow to fully
automate the computational process [57, 59].

This ensures the complete capture of the
computational process without broken links so that
the analysis can be executed without the need for
performing manual steps.

R3-intermediate Include intermediate results where possible when
publishing an analysis [55, 58, 59].

Intermediate data products can be used to inspect
and understand shared analysis when
re-enactment is not possible.

R4-sw-version Record the exact software versions used [57, 59]. This is necessary for reproducibility of results
because different software versions can produce
different results.

R5-data-version If using public data (reference data, variant
databases), then it is necessary to store and share
the actual data versions used [3, 61, 57, 59].

This is needed because different versions of data,
e.g., human reference genome or variant databases,
can result in slightly different results for the same
workflow.

R6-annotation Workflows should be well-described, annotated,
and offer associated metadata. Annotations such as
user-contributed tags and versions should be
assigned to workflows and shared when publishing
the workflows and associated results [8, 12, 55, 62,
63].

Metadata and annotations improve the
understandability of the workflow, facilitate
independent reuse by someone skilled in the field,
make workflows more accessible, and hence
promote the longevity of the workflows.

R7-identifier Use and store stable identifiers for all artefacts
including the workflow, the datasets, and the
software components [62, 63].

Identifiers play an important role in the discovery,
citation, and accessibility of resources made
available in open access repositories.

R8-environment Share the details of the computational environment
[8, 61, 63].

Such details support analysis of requirements
before any re-enactment or reproducibility is
attempted.

R9-workflow Share workflow specifications/descriptions used in
the analysis [8, 55, 58, 63, 64].

The same workflow specifications can be used with
different datasets, thereby supporting reusability.

R10-software Aggregate the software with the analysis and share
this when publishing a given analysis [61, 63, 64].

Making software available reduces dependence on
third-party resources and as a result minimizes
“workflow decay” [65].

R11-raw-data Share raw data used in the analysis [8, 55, 58, 63, 64]. When someone wants to validate published results,
availability of data supports verification of claims
and hence establishes trust in the published
analysis.

R12-attribution Store all attributions related to data resources and
software systems used [55,64].

Accreditation supports proper citation of resources
used.

R13-provenance Workflows should be preserved along with the
provenance trace of the data and results [8, 12, 55,
59, 64].

A provenance trace provides a historical view of the
workflow enactment, enabling end users to better
understand the analysis retrospectively.

R14-diagram Data flow diagrams of the computational analysis
using workflows should be provided [58, 61].

These diagrams are easy to understand and provide
a human-readable view of the workflow.

R15-open-source Open source licensing for methods, software, code,
workflows, and data should be adopted instead of
proprietary resources [58, 59, 63, 64, 66].

This improves availability and legal reuse of the
resources used in the original analysis, while
restricted licenses would hinder reproducibility.

R16-format Data, code, and all workflow steps should be shared
in a format that others can easily understand,
preferably in a system-neutral language [8, 58, 66].

System-neutral languages help achieve
interoperability and make an analysis
understandable.

R17-executable Promote easy execution of workflows without
making significant changes to the underlying
environment [3].

In addition to helping reproducibility, this enables
adapting the analysis methods to other
infrastructures and improves workflow portability.

R18-resource-use Information about compute and storage resources
should be stored and shared as part of the workflow
[61].

Such information can assist users in estimating the
resources needed for an analysis and thereby
reduce the amount of failed executions.

R19-example Example input and sample output data should be
preserved and published along with the
workflow-based analysis [8, 65].

This information enables more efficient test runs of
an analysis to verify and understand the methods
used.

This list is not exhaustive; other studies have identified separate issues (e.g., laboratory work provenance and data security) that are beyond the scope of this work.
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Figure 1: Recommendations from Table 1 classified into these categories.

its hierarchical nature, the framework can be leveraged by the
workflow authors to progress incrementally towards the most
transparent workflow-centric analysis. Overall, this framework
will help achieve a uniform level of provenance and resource
sharing with a given workflow-centric analysis guaranteed to
fulfill the respective provenance applications.

Our proposed provenance levels are ordered from general
to specific. In brief, Level 0 is unstructured information about
the overall workflow enactment; Level 1 adds structured ret-
rospective provenance, access to primary data, and executable
workflows; Level 2 enhances the white-box provenance for in-
dividual steps; and Level 3 adds domain-specific annotations
for improved understanding. These levels are described in the
following sub-sections and mapped to the requirements in Ta-
ble 1 that these levels aim to satisfy.

Level 0

To achieve this level, researchers should share the workflow
specifications, input parameters used for a given workflow en-
actment, raw logs, and output data preferably through an open
access repository. This is the least information that could be
shared without exerting any extra effort to support seamless

reuse or understandability of a given analysis. The artefacts
shared at this level would only require uploading of the asso-
ciated resources to a repository without necessarily providing
any supporting metadata or provenance information. Informa-
tion captured at Level 0 is the bare minimum that can be used
for result interpretation.

Workflow definitions based on Level 0 can also potentially be
repurposed for other analyses. As argued by Ludäscher, a well-
written scientific workflow and its graphical representation is it-
self a source of prospective provenance, giving the user an idea
of the steps taken and data produced [67]. Therefore, a well-
described workflow specification indirectly provides prospec-
tive provenance without aiming for it. In addition to the tex-
tual workflow specification, its graphical representation should
also be shared, if available, for better understandability, fulfill-
ing R14-diagram. At this level, reproducing the workflow would
only be possible if the end user devotes extra efforts to under-
stand the shared artefacts and carefully recreate the execution
environment. As open access journals frequently require avail-
ability of methods and data, many published studies now share
workflow specifications and optionally the outputs, thereby
achieving Level 0 and specifically satisfying R1-parameters and
R9-workflow (Table 1). In addition, the resources shared should
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Figure 2: Levels of provenance and resource sharing and their applications.

have open licence starting from Level 0, and this practice pro-
posed by R15-open-source should be adopted at each higher
level.

Level 1

At Level 1, R4-sw-version, R5-data-version, R12-attribution, and R13-
provenance should be satisfied by providing retrospective prove-
nance of the workflow enactment, i.e., a structured represen-
tation of machine-readable provenance that can answer ques-
tions such as “what happened,” “when it happened,” “what
was executed,” “what was used,” “who did this,” and “what
was produced.” Seamless re-enactment of the workflow should
be supported at this level. This is only possible when along
with provenance information, R8-environment and R10-software
are satisfied by potentially packaging the software environment
for analysis sharing or there is enough information about the
software environment to guide the user to reliably re-enact
the workflow. Hence, R17-executable should be satisfied, mak-
ing it possible for the end users to re-enact the shared analy-
ses without making major changes to the underlying software
environment.

In addition to the software availability and retrospective
provenance, access to input data should also be provided, ful-
filling R11-raw-data. These data can be used to re-enact the pub-
lished methods or utilized in a different analysis, e.g., for per-
formance comparison of methods. At Level 1, it is preferable to
provide content-addressable data artefacts such as input, out-
put, and intermediate files, avoiding local paths and file names
to make a given workflow executable outside its local envi-
ronment. The intermediate data artefacts should also be pro-
vided to facilitate inspection of all step results, hence satisfying
R3-intermediate. All resources, including workflow specifications
and provenance, should be shared in a format that is under-

standable across platforms, preferably in a technology-neutral
language as proposed by R16-format.

While software and data can be digitally captured, the hard-
ware and infrastructure requirements also need to be captured
to fulfill R18-resource-use. This kind of information can naturally
vary widely with runtime environments, architectures, and data
sizes [68], as well as rapidly becoming outdated as hardware
and cloud offerings evolve. Nevertheless a snapshot of the work-
flow’s overall execution resource usage for an actual run can be
beneficial to give a broad overview of the requirements and can
facilitate cost-efficient re-computation by taking advantage of
spot-pricing for cloud resources [69].

Level 2

It is a common practice in scientific workflows to modu-
larize the workflow specifications by separating the related
tasks into “sub-workflows” or “nested workflows” [20] to be
incorporated and used in other workflows or be assigned to
compute and storage resources in case of distributed comput-
ing [70]. These modular solutions promote understanding and
reusability of the workflows as researchers are inclined to use
these modules instead of workflow as a whole for their own
computational experiments. An example of a sub-workflow is
the mandatory “preprocessing” [71] needed for the Genome
Analysis ToolKit (GATK) best-practice pipelines used for ge-
nomic variant calling. These steps can be separated into a sub-
workflow to be used before any variant calling pipeline, be it so-
matic or germline.

At Level 1, retrospective provenance is coarse grained, and
as such, there is no distinction between workflows and their
sub-workflows. Ludäscher [67] distinguishes between workflow
provenance as black-box and database provenance as white-box.
The reasoning behind this distinction is that often the steps
in a workflow, especially those based on GUI-based platforms,
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provide levels of abstraction/obscurity to the actual tasks be-
ing implemented. In our previous work we used an empiri-
cal case study to demonstrate that declarative approaches to
workflow definition resulted in transparent workflows with the
fewest assumptions [61]. This resolves the black-box/white-box
issue to some extent, but to further support research trans-
parency, we propose to share retrospective provenance logs for
each nested/sub-workflow, making the details of a workflow en-
actment as explicit as possible and moving a step closer to white-
box provenance. These provenance logs will support the inspec-
tion and automatic re-enactment of targeted components of a
workflow such as a single step or a sub-workflow individually
without necessarily having to re-enact the full analysis. Some
existing make-like systems such as Snakemake support partial
re-enactments but typically rely on fixed file paths for input
data and require manual intervention to provide the specific di-
rectory structure. With detailed provenance logs and the corre-
sponding content-addressable data artefacts, the partial reruns
can be achieved with automatic generation of input configura-
tion setting.

In addition, we propose to include permalinks at Level 2 to
identify the workflows and their individual steps, which fa-
cilitates the inspection of each step and aims to improve the
longevity of the shared resources, hence supporting R7-identifier.
Improving R18-resource-use for Level 2 would include resource
usage per task execution. Along with execution times this can
be useful information to identify bottlenecks in a workflow
and for more complex calculations in cost optimization mod-
els [72]. At this provenance level resource usage data will how-
ever also become more noisy and highly variant on scheduling
decisions by the workflow engine, e.g., sensitivity to cloud in-
stance reuse or co-use for multiple tasks, or variation in data
transfers between tasks on different instances. Thus, Level 2 re-
source usage information should be further processed with sta-
tistical models for it to be meaningful for a user keen to es-
timate the resource requirement for re-enactment of a given
analysis.

Level 3

Levels 0–2 are generic and domain-neutral and can apply
to any scientific workflow. However, domain-specific informa-
tion/metadata about data and processes plays an important
role in better understanding of the analysis and exploitation
of provenance information, e.g., for meaningful queries to ex-
tract information to the domain under consideration [73,74]. The
addition of domain-specific metadata, e.g., file formats, user-
defined tags, and other annotations to generic retrospective
provenance can improve the white-boxness by providing domain
context to the analysis as described in R6-annotations. Anno-
tations can range from adding textual description and tags to
marking data with more systematic and well-defined domain-
specific ontologies such as EDAM [75] and BioSchemas [76] in
the case of bioinformatic workflows. Some studies also propose
to provide example or test data sets, which eventually helps in
analyzing the methods shared and verifying their results (as de-
scribed in R19-example).

At Level 3, the information from previous levels, combined
with specific metadata about data artefacts, facilitates higher
level classification of workflow steps into motifs [77] such as data
retrieval, preprocessing, analysis, and visualization. This level
of provenance, resource aggregation, and sharing can provide a
researcher-centric view of data and enable users to re-enact a
set of steps or full workflow by providing a filtered and anno-

tated view of the execution. This can be non-trivial to achieve
with mainstream methods of workflow definition and sharing
because it requires guided user annotations with controlled vo-
cabularies, but this can be simplified by reusing related tooling
from existing efforts such as BioCompute Objects [41] and Dat-
aCrate [78].

Communicating resource requirements (R18-resource-use) at
Level 3 would involve domain-specific models for hardware use
and cost prediction, as suggested for dynamic cloud costing [79]
in BioSimSpace [80], or predicting assembler and memory settings
through machine learning of variables such as source biome, se-
quencing platform, file size, read count, and base count in the
European Bionformatics Institute (EBI) Metagenomics pipeline [81].
For robustness such models typically need to be derived from
resource usage across multiple workflow runs with varied in-
puts, e.g., by a multi-user workflow platform. Taking advantage
of Level 3 resource usage models might require preprocessing
workflow inputs and calculations in an environment like R or
Python, so we recommend that models be provided with sep-
arate sidecar workflows for interoperable execution before the
main workflow.

By explicit enumeration of the levels of provenance, it
should be possible to quantify and directly assess the effort
required to reuse a workflow and reproduce experiments di-
rectly. The similar effort 5-star Open Data [82] strongly advo-
cates open-licensed structured representation, use of stable
identifiers for data sharing, and following Linked Data princi-
ples to cross-relate data. One challenge in achieving the Open
Data stars is that it necessitates tool support during data pro-
cessing. In our framework we proposed systematic workflow-
centric resource sharing using structured Linked Data repre-
sentation, including recording of the executed data operations.
Hence, our effort compliments the already proposed 5-star
Open Data principles and contributes to further understand-
ing by sharing the computational method following the same
principles.

Requiring researchers to achieve the above-defined levels in-
dividually is unrealistic without guidance and direct technical
support. Ideally, the conceptual meaning of these levels would
be translated into a practical solution utilizing the available re-
sources. However, given the heterogeneity of workflow defini-
tion approaches, it is expected that the proposed framework,
when translated into practical solutions, will result in varying
workflow-centric solutions tied to specific WMSs. To support
interoperability of the workflow-centric analysis achieving the
provenance levels, we propose CWLProv, a format for annotating
resource aggregations equipped with retrospective provenance.
The next section describes CWLProv and the associated stan-
dards that are applied in this process.

CWLProv 0.6.0 and Utilized Standards

Here we present CWLProv, a format for the methodical rep-
resentation of workflow enactment, associated artefacts, and
capturing and using retrospective provenance information.
Keeping in view the recommendations from Table 1, e.g.,
R15-open-source and R16-format, we leverage open source,
domain-independent, system-neutral, interoperable, and most
importantly community-driven standards as the basis for
the design and formatting of reproducible and interopera-
ble workflow-based ROs. The profile description in this sec-
tion corresponds to CWLProv 0.6.0 [83] (see [84] for the latest
profile).

https://w3id.org/cwl/prov
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Figure 3: Left: A snapshot of part of a GATK workflow described using CWL. Two steps named as “bwa-mem” and “samtools-view” are shown, where the former links to

the tool description executing the underlying tool (BWA-mem for alignment) and provides the output used as input for samtools. Right: Snapshot of BWA-mem.cwl
and the associated Docker requirements for the exact tool version used in the workflow execution.

Applied standards and vocabularies

We follow the recommendation “Reuse vocabularies, preferably
standardized ones” [85] from best practices associated with data
sharing, representation, and publication on the Web to achieve
consensus and interoperability of workflow-based analyses.
Specifically we integrate CWL for workflow definition, ROs for re-
source aggregation, and the PROV-Data Model (PROV-DM) to sup-
port the retrospective provenance associated with workflow en-
actment. The key properties and principles of these standards
are described below.

Common Workflow Language
CWL [6] provides declarative constructs for workflow structure
and command line tool interface definition. It makes minimal
assumptions about base software dependencies, configuration
settings, software versions, parameter settings, or indeed the ex-
ecution environment more generally [61]. The CWL object model
supports comprehensive recording and capture of information
for workflow design and execution. This can subsequently be
published as structured information alongside any resultant
analysis using that workflow.

CWL is a community-driven standard effort that has been
widely adopted by many workflow design and execution plat-
forms, supporting interoperability across a set of diverse plat-
forms. Current adopters include Toil, Arvados, Rabix [86],
Cromwell [87], REANA, and Bcbio [88], with implementations for
Galaxy, Apache Taverna, and AWE currently in progress.

A workflow in CWL is composed of “steps,” where each
step refers either to a command line tool (also specified us-
ing CWL) or another workflow specification incorporating the

concept of “sub-workflows.” Each “step” is associated with “in-
puts” that are composed of any data artefact required for the
execution of that step (Fig. 3). As a result of the execution of
each step, “outputs” are produced that can become (part of) “in-
puts” for the next steps, making the execution data-flow ori-
ented. CWL is not tied to a specific operating system or platform,
which makes it an ideal approach for interoperable workflow
definitions.

Research Object
An RO encapsulates all of the digital artefacts associated with a
given computational analysis contributing towards preservation
of the analysis [89], together with their metadata, provenance,
and identifiers.

The aggregated resources can include but are not limited
to input and output data for analysis results validation, com-
putational methods such as command line tools and workflow
specifications to facilitate workflow re-enactment, attribution
details regarding users, retrospective as well as prospective
provenance for better understanding of workflow require-
ments, and machine-readable annotations related to the arte-
facts and the relationships between them. The goal of ROs
is to make any published scientific investigation and the pro-
duced artefacts “interoperable, reusable, citable, shareable, and
portable.”

The 3 core principles [90] of the RO approach are to sup-
port “identity,” “aggregation,” and “annotation” of research arte-
facts. They look to enable accessibility of tightly coupled, in-
terrelated, and well-understood aggregated resources involved
in a computational analysis as identifiable objects, e.g., us-
ing unique (persistent) identifiers such as DOIs and/or ORCIDs.
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Figure 4: Core concepts of the PROV Data Model. Adapted from W3C PROV Model

Primer [92].

The RO approach is well aligned with the idea of interoper-
able and platform-independent solutions for provenance cap-
ture of workflows because of its domain-neutral and platform-
independent nature.

While ROs can be serialized in several different ways, in this
work we have reused the BDBag approach based on BagIt (see

box), which has been shown to support large-scale workflow
data [91]. This approach is also compatible with data-archiving
efforts from the NIH Data Commons, Library of Congress, and
the Research Data Alliance. The specialized workflow-centric
RO in this study encompasses the components mentioned
in the previous paragraph annotated with various targeted
tools and a PROV-based workflow provenance profile to capture
the detailed retrospective provenance of the CWL workflow
enactment.

PROV Data Model
The W3C developed PROV, a suite of specifications for uni-
fied/interoperable representation and publication of provenance
information on the Web. The underlying conceptual PROV-DM
[15] provides a domain-agnostic model designed to capture fun-
damental features of provenance with support for extensions to
integrate domain-specific information (Fig. 4).

We use mainly 2 serializations of PROV for this study, PROV-
Notation (PROV-N) [93] and PROV-JSON [94]. PROV-N is designed
to achieve serialization of PROV-DM instances by formally rep-
resenting the information using a simplified textual syntax to
improve human readability. PROV-JSON is a lightweight interop-
erable representation of PROV assertions using JavaScript con-
structs and data types. The key design and implementation
principles of these 2 serializations of PROV are in compliance
with the goals of this study, i.e., understandable and interoper-
able, and hence are a natural choice to support the design of

Figure 5: Schematic representation of the aggregation and links between the components of a given workflow enactment. Layers of execution are separated for clarity.
The workflow specification and command line tool specifications are described using CWL. Each individual command line tool specification can optionally interact
with Docker to satisfy software dependencies. [A] The RO layer shows the structure of the RO including its content and interactions with different components in the

RO and [B] the CWL layer.
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an adaptable provenance profile. For completeness we also ex-
plored serializing the provenance graph as PROV-XML [95], as
well as PROV-O [96], which provides a mapping to Linked Data
and ontologies, with potential for rich queries and further inte-
gration using a triple store. One challenge here is the wide vari-
ety of OWL and RDF formats; we opted for Turtle, N-Triples, and
JavaScript Object Notation for Linked Data (JSON-LD) but con-
cluded that requiring all of these PROV and RDF serializations
would be an unnecessary burden for other implementations of
CWLProv.

CWLProv research object

The provenance framework defined in the previous section can
be satisfied by using a structured approach to share the iden-
tified resources. In this section, we define the representation
of data and metadata to be shared for a given workflow enact-
ment, stored as multiple files in their native formats. The folder
structure of the CWLProv RO complies with the BagIt [9] format
such that its content and completeness can be verified with any
BagIt tool or library (see box What is BagIt?). The files used and
generated by the workflow are here considered the data payload;
the remaining directories include metadata of how the workflow
results were created. We systematized the aggregated resources
into various collections for better understanding and accessibil-
ity for a CWL workflow execution (Fig. 5).

data/
data/ is the payload collection of the RO; in CWLProv this con-
tains all input and output files used in a given workflow enact-
ment. Each data file should be labelled and identified based on
a hashed checksum rather than derived from its file path dur-
ing workflow execution. This use of content-addressable reference
and storage [97] simplifies identifier generation for data and
helps to avoid local dependencies, e.g., hard-coded file names.
However, the workflow execution engine might use other unique
identifiers for file objects. It is advised to reuse such identifiers
to avoid redundancy and to comply with the system/platform
used to run the workflow.

workflow/
CWLProv ROs must include a system-independent executable
version of the workflow under the workflow/ folder. When
using CWL, this sub-folder must contain the complete exe-
cutable workflow specification file, an input file object with pa-
rameter settings used to enact the workflow and an output
file object generated as a result of workflow enactment. The
latter contains details of the workflow outputs such as data
files produced by the workflow but may exclude intermediate
outputs.

To ensure RO portability, these file objects may not ex-
actly match the file names at enactment time, as the
absolute paths of the inputs are recommended to be re-
placed with relativized content-addressed paths within the
RO; e.g., /home/alice/exp15/sequence.fa is replaced with
../data/b1/b1946ac92492d2347c6235b4d2611184. The input
file object should also capture any dependencies of the input
data files, such as .bam.bai indexes neighbouring .bam files.
Any folder objects should be expanded to list contained files
and their file names at time of enactment.

In the case of a CWL workflow, cwltool can aggregate the CWL
description and any referenced external descriptions (such as

sub-workflows or command line tool descriptions) into a single
workflow file using cwltool --pack. This feature is used in our
implementation (details in section Practical Realization of CWL-
Prov) to rewrite the workflow files, making them re-executable
without depending on workflow or command line descriptions
on the file system outside the RO. Other workflow definition ap-
proaches, WMS, or CWL executors should apply similar features
to ensure that workflow definitions are executable outside their
original file system location.

What is BagIt?
BagIt is an Internet Engineering Task Force Internet Stan-
dard (RFC8493) [9] that defines a structured file hierarchy
for the purpose of digital preservation of data files. BagIt
was initiated by the US Library of Congress and the Califor-
nia Digital Library and is now used by libraries and archives
to ensure safe transmission and storage of datasets using
“bags.”
A bag is indicated by the presence of bagit.txt and a
payload of digital content stored as files and sub-folders
in the data/ folder. Other files are considered tag files
to further describe the payload. All the payload files are
listed in a manifest with checksums of their byte content,
e.g., manifest-sha256.txt and equivalent for tag files in
tagmanifest-sha256.txt. Basic metadata can be provided
in bag-info.txt as key-value pairs.
A bag can be verified to be complete if all the files listed in the
manifests exist and is also considered valid if the manifest
matches the checksum of each file, ensuring that they have
been correctly transferred.
BDBag (Big Data bag) [91] is a profile of BagIt that adds an
RO [98] metadata/manifest.json in JSON-LD [99] format to
contain richer Linked Data annotations that may not fit well
in bag-info.txt, e.g., authors of an individual file. BDBags
can include a fetch.txt to reference external resources us-
ing ARK MinIDs or HTTP URLs, allowing bags that contain
large files without necessarily transferring their bytes.

snapshot/
snapshot/ comprises copies of the workflow and tool specifica-
tions files “as-is” at enactment time, without any rewrites, pack-
ing, or relativizing as described above.

It is recommended to use snapshot resources only for
validity-checking results and for understanding the workflow
enactment because these files might contain absolute paths
or be host-specific and thus may not be possible to re-enact
elsewhere. Preserving these files untouched may neverthe-
less retain information that could otherwise get lost, e.g.,
commented-out workflow code, or identifiers baked into file
names.

A challenge in capturing snapshot files is that they typically
live within a file system hierarchy, which can difficult to replicate
accurately, and may have internal references to other files. In our
implementation we utilize cwltool --print-deps to find indi-
rectly referenced files and store their snapshots in a flat folder.

metadata/
Each CWLProv RO must contain an RO manifest file
metadata/manifest.json and 2 sub-directories metadata/logs

and metadata/provenance. The RO manifest, part of the BDBag
[91] profile, follows the JSON-LD structure defined for Research
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Object Bundles [98] and can provide structured Linked Data for
each file in the RO, such as file type and creation date. Further
detail about the manifest file contents is documented on GitHub
as CWLProv specification [83].

Any raw log information from the workflow enactment
should be made available in metadata/logs. This typically in-
cludes the actual commands executed for each step. Similar
to the snapshot files, log files may however be difficult to pro-
cess outside the original enactment system. An example of
such processing is CWL-metrics [100], which post-processes cwl-
tool log files to capture runtime metrics of individual Docker
containers.

Capturing the details of a workflow execution requires
rich metadata in provenance files (see section Retrospec-
tive Provenance Profile). These should exist in the sub-folder
metadata/provenance. It is recommended to make the availabil-
ity of a primary provenance file mandatory, which should con-
form with the PROV-N [93] format. This file describes the top-
level workflow execution. As described in Level 2 (Section Lev-
els of Provenance and Resource Sharing), it is quite possible
to have nested workflows. In that case, a separate provenance
file for each nested workflow execution should be included in
this folder. If there are additional formats of provenance files
such as PROV-JSON [94], PROV-XML [95], PROV-O [96], etc., then
these should be included in the said folder, with a declara-
tion using conformsTo to declare their formats in the RO man-
ifest being mandatory. The nested workflow profile should be
named such that there is a link between the respective step in
the primary workflow and the nested workflow, preferably using
unique identifiers.

Because the PROV-DM has a generalized structure, there
might be some provenance aspects specific to particular work-
flows that are hard to capture by only using PROV-N; hence, on-
tologies such as wfdesc [101] can be used to describe the abstract
representation of the workflow and its steps. Use of wfprov [102]
to capture some workflow provenance aspects is also encour-
aged. Alternative extensions such as ProvOne [103] can also be
utilized if the WMS or workflow executor is using these exten-
sions already.

CWLProv reuses Linked Data standards like JSON-LD [99],
W3C PROV [15], and Research Object [11]. A challenge with
Linked Data in distributed and desktop computing is how to
make identifiers that are absolute Uniform Resource Identifiers
(URIs) and hence globally unique. For example, for CWLProv a
workflow may be executed by an engine that does not know
where its workflow provenance will be stored, published, or fi-
nally integrated. To this end CWLProv generators should use
the proposed arcp [104] URI scheme to map local file paths
within the RO BagIt folder structure to absolute URIs for use
within the RO manifest and associated PROV traces. Consumers
of CWLProv ROs that do not contain an arcp-based External-
Identifier should generate a temporary arcp base to safely re-
solve any relative URI references not present in the CWLProv
folder. Implementations processing a CWLProv RO may convert
arcp URIs to local file:/// or http:// URIs depending on how
and where the CWLProv RO was saved, e.g., using the “arcp.py”
library [105].

Retrospective provenance profile

As stated earlier, the primary provenance file should con-
form to the PROV-N [93] serialization of the PROV data model
and may optionally use ontologies specific to the workflow

execution. The key features used in the structure of the
retrospective provenance profile for a CWL workflow enact-
ment in CWLProv are listed in Table 2. These features are
not tied to any platform or workflow definition approach
and hence can be used to document retrospective prove-
nance of any workflow irrespective of the workflow definition
approach.

The core mapping is following the PROV data model as in
Fig. 4: the PROV Activity represents the duration of a workflow
run, as well as individual step executions, which used file and
data (Entity), which again may be wasGeneratedBy previous step
activities. The workflow engine (e.g., cwltool) is the Agent con-
trolling these activities according to the workflow definition
(Plan).

PROV is a general standard not specific to workflows, and it
lacks features to relate a plan (i.e., a workflow description) with
sub-plans and workflow-centric retrospective provenance ele-
ments, e.g., specific workflow enactment and its related steps
enactment. We have used wfdesc and wfprov to represent a few
elements of prospective and retrospective provenance, respec-
tively. In addition, the provenance profile documented details
of all the uniquely identified activities, e.g., workflow enactment
and related command line tool invocations, and their associ-
ated entities (e.g., input and output data artefacts, input con-
figuration files, workflows, and command line tool specifica-
tions). The profile also documents the relationship between ac-
tivities such as which activity (workflow enactment) was respon-
sible for starting and ending another activity (command line tool
invocation).

As described in Section Levels of Provenance and Resource
Sharing, to achieve maximum white-box provenance, the inner
workings of a nested workflow should also be included in the
provenance trace. If a step represents a nested workflow, a sep-
arate provenance profile is included in the RO. Moreover, in
the parent workflow trace, this relationship is recorded using
“has provenance” as an attribute of the Activity step, which refers
to the profile of the nested workflow.

Practical Realization of CWLProv

CWLProv [83] provides a format that can be adopted by any
workflow executor or platform, provided that the underly-
ing workflow definition approach is at least as declarative
as CWL; i.e., it captures the necessary components described
in Section Applied Standards and Vocabularies. In the case
of CWL, as long as the conceptual constructs are common
amongst the available implementations and executors, a work-
flow enactment can be represented in CWLProv format. To
demonstrate the practical realization of the proposed model
we consider a Python-based reference implementation of CWL
cwltool.

cwltool is a feature-complete reference implementation of
CWL. It provides extensive validation of CWL files, as well as
offering a comprehensive set of test cases to validate new mod-
ules introduced as extensions to the existing implementation.
Thus it provides the ideal choice for implementing CWLProv
for provenance support and resource aggregation. The existing
classes and methods of the implementation were utilized to
achieve various tasks such as packaging of the workflow and all
associated tool specifications together. In addition, the
existing Python library prov [106] was used to create a
provenance document instance and populate it with the
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Table 2. Fulfilling recommendations with the CWLProv profile of W3C PROV, extended with RO Model’s wfdesc (prospective provenance) and
wfprov (retrospective provenance)

PROV type Subtype Relation Range Recommendation

Plan wfdesc:Workflow wfdesc:hasSubProcess wfdesc:Process R9-workflow
wfdesc:Process

Activity wfprov:WorkflowRun wasAssociatedWith wfprov:WorkflowEngine R8-environment
ë hadPlan wfdesc:Workflow R9-workflow, R17-executable

wasStartedBy wfprov:WorkflowEngine R8-environment
ë atTime ISO8601 timestamp R13-provenance

wasStartedBy wfprov:WorkflowRun R9-workflow
wasEndedBy wfprov:WorkflowEngine R8-environment

ë atTime ISO8601 timestamp R13-provenance
wfprov:ProcessRun wasStartedBy wfprov:WorkflowRun R10-software

ë atTime ISO8601 timestamp R14-provenance
used wfprov:Artifact R11-raw-data

ë role wfdesc:InputParameter R1-parameters
wasAssociatedWith wfprov:WorkflowRun R9-workflow

ë hadPlan wfdesc:Process R17-executable, R16-format
wasEndedBy wfprov:WorkflowRun R13-provenance

ë atTime ISO8601 timestamp R13-provenance
SoftwareAgent wasAssociatedWith wfprov:ProcessRun R8-environment

ë cwlprov:image docker image id R4-sw-version
SoftwareAgent wfprov:WorkFlowEngine wasStartedBy Person ORCID R12-attribution

label cwltool --version R4-sw-version
Entity wfprov:Artefact wasGeneratedBy wfprov:Processrun R3-intermediate,

R7-identifier
ë role wfdesc:OutputParameter R1-parameters

Collection wfprov:Artefact hadMember wfprov:Artefact R3-intermediate
Dictionary hadDictionaryMember wfprov:Artefact

ë pairKey filename R7-identifier

Indentation with ë indicates n-ary relationships, which are expressed differently depending on PROV syntax. Namespaces: http://www.w3.org/ns/prov# (default),
http://purl.org/wf4ever/wfdesc# (wfdesc), http://purl.org/wf4ever/wfprov# (wfprov), https://w3id.org/cwl/prov# (cwlprov).

required artefacts generated as the workflow enactment
proceeds.

It should be noted that we elected to implement CWLProv
in the reference implementation cwltool instead of the more
scalable and production-friendly CWL implementations like Toil
[107], Arvados [108], Rabix [86], CWL-Airflow [109], or Cromwell
[87]. An updated list of implementations is available at the CWL
[110]. Compared to cwltool these generally have extensive sched-
uler and cloud compute support, and extensions for large data
transfer and storage, and should therefore be considered for
any adopters of the CWL. In this study we have however fo-
cused on cwltool because its code base was found to be easy
to adapt for rich provenance capture without having to mod-
ify subsystems for distributed execution or data management,
and as a reference implementation better informing us on how
to model CWLProv for the general case rather than being tied
into execution details of the more sophisticated CWL workflow
engines.

CWLProv support for cwltool is built as an optional module,
which, when invoked as “cwltool --provenance ro/ workflow.cwl
job.json,” will automatically generate an RO with the given folder
name “ro/” without requiring any additional information from
the user. Each input file is assigned a hash value and placed in
the folder “ro/data,” making it content-addressable to avoid local
dependencies (Fig. 6).

To avoid including information about attribution without
consent of the user, we introduce an additional flag “ --enable-
user-provenance.” If a user provides the options --orcid and

--full-name, this information will be included in the provenance
profile related to user attribution. Enabling “ --enable-user-
provenance” and not providing the full name or ORCID will store
user account details from the local machine for attribution, i.e.,
the details of the agent that enacted the workflow.

The workflow and command line tool specifications are ag-
gregated in 1 file to create an executable workflow and placed in
folder “ro/workflow.” This folder also contains transformed input
job objects containing the input parameters with references to
artefacts in the ro/data based on relativizing the paths present in
the input object. These 2 files are sufficient to re-enact the work-
flow, provided the other required artefacts are also included
in the RO and comply with the CWLProv format. The cwltool
control flow [111] indicates the points when the execution of
the workflow and command line tools involved in the workflow
enactment start, end, and how the output is reported back.
This information and the artefacts are captured and stored in
the RO.

When the execution of a workflow begins, CWLProv exten-
sions to cwltool generate a provenance document (using the
prov library), which includes default namespaces for the work-
flow enactment “activity.” The attribution details as an agent
are also added at this stage if user provenance capture is en-
abled, e.g., to answer “who ran the workflow?” Each step of the
workflow can correspond to either a command line tool or an-
other nested workflow referred to as a sub-workflow in the CWL
documentation. For each nested workflow, a separate prove-
nance profile is initialized recursively to achieve a white-box

http://www.w3.org/ns/prov
http://purl.org/wf4ever/wfdesc
http://purl.org/wf4ever/wfprov
https://w3id.org/cwl/prov
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Figure 6: High-level process flow representation of retrospective provenance capture.

finer-grained provenance view as explained in Section Levels
of Provenance and Resource Sharing. This profile is continu-
ally updated throughout the nested workflow enactment. Each
step is identified by a unique identifier and recorded as an ac-
tivity in the parent workflow provenance profile, i.e., the “pri-
mary profile.” The nested workflow is recorded as a step in the
primary profile using the same identifier as the “nested work-
flow enactment activity” identifier in the respective provenance
profile. For each step in the activity, the start time and associ-
ation with the workflow activity are created and stored as part
of the overall provenance to answer the question “when did it
happen?”

The data used as input by these steps are either provided by
the user or produced as an intermediate result from the previ-
ous steps. In both cases, the Usage is recorded in the respective
provenance profile using checksums as identifiers to answer the
question “what was used?” The non-file input parameters such
as strings and integers are stored “as-is” using an additional op-
tional argument, prov:value. Upon completion, each step typi-
cally generates some data. The provenance profile records the
generation of outputs at the step level to record “what was pro-
duced?” and “which process produced it?” Once all steps com-
plete, the workflow outputs are collected and the generation of
these outputs at the workflow level is recorded in the prove-
nance profile. Moreover, by using the checksum of these files
generated by the cwltool, content-addressable copies are saved
in the folder ro/data. The provenance profile refers to these files
using the same checksum such that they are traceable or can
be used for further analysis if required. The workflow specifi-
cation, command line tool specifications, and JSON job file are
archived in the ro/snapshot folder to preserve the actual workflow
history.

This prototype implementation provides a model and guid-
ance for workflow platforms and executors to identify their
respective features that can be utilized in devising their own
implementation of CWLProv.

Achieving recommendations with provenance levels

Table 3 maps the best practices and recommendations from Ta-
ble 1 to the Levels of Provenance (Fig. 2). The shown methods and
implementation readiness indicate to which extent the recom-
mendations are addressed by the implementation of CWLProv
(detailed in this section).

Note that other approaches may solve this mapping differ-
ently. For instance, Nextflow [112] may fulfill R18-resource-use at
Provenance Level 2 because it can produce trace reports with
hardware resource usage per task execution [113], but not for the
overall workflow. While a Nextflow trace report is a separate CSV
file with implementation-specific columns, our planned R18-
resource-use approach for CWL is to combine CWL-metrics [114],
permalinks, and the standard GFD.204 [115] to further relate re-
source use with Level 1 and Level 2 provenance within the CWL-
Prov RO.

In addition to following the recommendations from Table 1
through computational methods, the workflow authors are also
required to exercise best practices for workflow design and author-
ing. For instance, to achieve R1-parameters the workflow must be
written in such a way that parameters are exposed and docu-
mented at the workflow level, rather than hard-coded within
an underlying Python script. Similarly, while the CWL format
supports rich details of user annotations that can fulfill R6-
annotation, for these to survive into an RO at execution time, such
annotation capabilities must actually be used by workflow au-
thors instead of unstructured text files.

It should be a goal of a scientific WMS to guide users to-
wards achieving the required level of the provenance framework
through automation where possible. For instance, a user may in
the workflow have specified a Docker container image without
preserving the version, but the provenance log could still record
the specific container version used at execution time, achieving
R4-sw-version retrospectively by computation rather than relying
on a prospective declaration in the workflow definition.
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Table 3. Recommendations and provenance levels implemented in
CWLProv

Recommendation
Level

0
Level

1
Level

2
Level

3 Methods

R1-parameters • • CWL, BP
R2-automate • CWL, Docker
R3-intermediate • PROV, RO
R4-sw-version • • CWL, Docker, PROV
R5-data-version • • CWL, BP
R6-annotation • ∗ CWL, RO, BP
R7-described • CWL, RO
R7-identifier • • • RO, CWLProv
R8-environment ∗ ∗ GFD.204
R9-workflow • • • CWL, wfdesc
R10-software • • CWL, Docker
R11-raw-data • • CWLProv, BP
R12-attribution • RO, CWL, BP
R13-provenance • • PROV, RO
R14-diagram � ∗ CWL, RO
R15-open-source • CWL, BP
R16-format • • CWL, BP
R17-executable � • CWL, Docker
R18-resource-use ∗ ∗ CWL, GFD.204
R19-example ∗ � RO, BP

BP: best practices need to be followed manually; CWL: Common Workflow
Language and embedded annotations; CWLProv: additional attributes in PROV;

PROV: W3C Provenance model; RO: RO model and BagIt; wfdesc: prospective
provenance in PROV.
• Implemented.
� Partially implemented.

∗Implementation planned/ongoing.

CWLProv Evaluation with Bioinformatics
Workflows

CWLProv as a standard supports syntactic, semantic, and prag-
matic interoperability (defined in Section Interoperability) of a
given workflow and its associated results. We have defined a
“common data format” for workflow sharing and publication such
that any executor or WMS with CWL support can interpret this
information and make use of it. This ensures the syntactic inter-
operability between the workflow executors on different com-
puting platforms. Similarly the “content” of the shared aggre-
gation artefact as a workflow-centric RO is unambiguously de-
fined, thus ensuring uniform representation of the workflow
and its associated results across different platforms and ex-
ecutors, hence supporting semantic interoperability. With Level
3 provenance satisfied providing domain-specific information
along with level 0–2 provenance tracking, we posit that CWLProv
would be able to accomplish pragmatic interoperability by provid-
ing unambiguous information about the “context,” “application,”
and “use” of the shared/published workflow-centric ROs. Hence,
extension of the current implementation (described in section
Practical Realization of CWLProv) in future to include domain-
rich information in the provenance traces and the CWLProv RO
will result in pragmatic interoperability.

To demonstrate the interoperability and portability of the
proposed solution, we evaluate CWLProv and its reference im-
plementation using open source bioinformatics workflows avail-
able on GitHub from different research initiatives and from
different developers. Conceptually, these workflows are selected
for evaluation owing to their extensive use in real-life data
analyses and variety of the input data. Alignment workflow is

included in the evaluation because it is one of the most time-
consuming yet mandatory steps in any variant calling workflow.
Practically, choosing the workflows by these particular groups
out of numerous existing implementations is justified in each
section below.

RNA-seq analysis workflow

RNA sequencing (RNA-seq) data generated by next-generation
sequencing platforms is composed of short sequence reads that
can be aligned to a reference genome, where the alignment re-
sults form the basis of various analyses such as quantitating
transcript expression and identifying novel splice junctions and
isoforms and differential gene expression [116]. RNA-seq experi-
ments can link phenotype to gene expression and are widely ap-
plied in multi-centric cancer studies [20]. Computational anal-
ysis of RNA-seq data is performed by different techniques de-
pending on the research goals and the organism under study
[117]. The workflow [118] included in this case study has been
defined in CWL by one of the teams [119] participating in the
NIH Data Commons initiative [120], a large research infrastruc-
ture program aiming to make digital objects (such as data gen-
erated during biomedical research and software/tools required
to utilize such data) shareable and accessible and hence aligned
with the FAIR principles [56].

This workflow (Fig. 7), designed for the pilot phase of the NIH
Data Commons initiative [121], adapts the approach and param-
eter settings of Trans-Omics for Precision Medicine (TOPMed)
[122]. The RNA-seq pipeline originated from the Broad Institute
[123]. There are 5 steps in the workflow: (i) Read alignment us-
ing STAR [124] produces aligned BAM files including the genome
BAM and transcriptome BAM. (ii) The genome BAM file is pro-
cessed using Picard MarkDuplicates [125], producing an updated
BAM file containing information on duplicate reads (such reads
can indicate biased interpretation). (iii) SAMtools index [126] is
then used to generate an index for the BAM file, in preparation
for the next step. (iv) The indexed BAM file is processed further
with RNA-SeQC [127], which takes the BAM file, human genome
reference sequence, and Gene Transfer Format (GTF) file as in-
puts to generate transcriptome-level expression quantifications
and standard quality control metrics. (v) In parallel with tran-
script quantification, isoform expression levels are quantified by
RSEM [128]. This step depends only on the output of the STAR
tool, and additional RSEM reference sequences.

For testing and analysis, the workflow author provided ex-
ample data created by down-sampling the read files of a TOPMed
public access data set [130]. Chromosome 12 was extracted from
the Homo Sapien Assembly 38 reference sequence and provided
by the workflow authors. The required GTF and RSEM reference
data files are also provided. The workflow is well documented,
with a detailed set of instructions for the steps performed to
down-sample the data also provided for transparency. The
availability of example input data, use of containerization for
underlying software, and detailed documentation are important
factors in choosing this specific CWL workflow for CWLProv
evaluation.

Alignment workflow

Alignment is an essential step in variant discovery workflows
and considered an obligatory preprocessing stage according to
best practices by the Broad Institute [71]. The purpose of this
stage is to filter low-quality reads before variant calling or
other interpretative steps [131]. The workflow for alignment is
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Figure 7: Portion of an RNA-seq workflow generated by CWL viewer [129].

Figure 8: Alignment workflow representation generated by CWL viewer.

designed to operate on raw sequence data to produce analysis-
ready BAM files as the final output. The typical steps followed
include file format conversions, aligning the read files to the ref-
erence genome sequence, and sorting the resulting files. The
CWL alignment workflow [132] included in this evaluation (Fig. 8)
is designed by Data Biosphere [133]. It adapts the alignment
pipeline [134] originally developed at Abecasis Lab, University of
Michigan [135]. This workflow is also part of the NIH Data Com-
mons initiative (as RNA-seq Analysis Workflow) and comprises 4
stages. First, “Pre-align” accepts a CRAM file (a compressed for-
mat for BAM files developed by EBI [136]) and human genome
reference sequence as input and, using underlying software util-
ities of SAMtools such as view, sort, and fixmate, returns a list of
fastq files, which can be used as input for the next step. The next
step “Align” also accepts the human reference genome as input
along with the output files from “Pre-align” and uses BWA-mem
[137] to generate aligned reads as BAM files. SAMBLASTER [138]
is used to mark duplicate reads and SAMtools view to convert
read files from SAM to BAM format. The BAM files generated af-
ter “Align” are sorted with “SAMtool sort.” Finally these sorted
alignment files are merged to produce a single sorted BAM file
using SAMtools merge in the “Post-align” step. The authors pro-
vide an example CRAM file, Homo Sapien Assembly 38 reference
genome, along with its index files, to be used as inputs for test-
ing and analysis of the workflow.

Somatic variant calling workflow

Variant discovery analysis for high-throughput sequencing
data is a widely used bioinformatics technique, focused on
finding genetic associations with diseases, identifying somatic
mutations in cancer, and characterizing heterogeneous cell
populations [139]. The preprocessing explained for the Alignment

workflow is part of any variant calling workflow as reads are
classified and ordered as part of the variant discovery process.
Numerous variant calling algorithms have been developed
depending on the input data characteristics and the specific
application area [131]. Somatic variant calling workflows are
designed to identify somatic (non-inherited) variants in a
sample—generally a cancer sample—by comparing the set
of variants present in a sequenced tumour genome to a
non-tumour genome from the same host [140]. The set of
tumour variants is a super-set of the set of host variants, and
somatic mutations can be identified through various algo-
rithmic approaches to subtracting host familial variants. Each
somatic variant calling workflow typically consists of 3 stages:
preprocessing, variant evaluation, and post-filtering.

The somatic variant calling workflow (Fig. 9) included in this
case study was designed by Blue Collar Bioinformatics (bcbio)
[141], a community-driven initiative to develop best-practice
pipelines for variant calling, RNA-seq, and small RNA anal-
ysis workflows. According to the documentation, the goal of
this project is to facilitate the automated analysis of high-
throughput data by making the resources quantifiable, analyz-
able, scalable, accessible, and reproducible. All the underlying tools
are containerized, facilitating software use in the workflow.
The somatic variant calling workflow defined in CWL is avail-
able on GitHub [142] and equipped with a well-defined test
dataset.

Evaluation activity

This section describes the evaluation of cross-executor
and cross-platform interoperability of CWLProv. To test
cross-executor interoperability, 2 CWL executors, cwltool and
toil-cwl-runner, were selected. toil-cwl-runner is an open source
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Figure 9: Visual representation of the bcbio somatic variant calling workflow (adapted from [143]). The subworkflow images are generated by CWL viewer .

Python workflow engine supporting robust cross-platform
workflow execution on cloud and high-performance comput-
ing environments [107]. The 2 operating system platforms
utilized in this analysis were MacOS and Ubuntu Linux. For
the Linux OS, a 16-core Linux instance with 64 GB RAM
was launched on the Australian National eResearch Collab-
oration Tools and Resources (NeCTAR) research cloud [144].
To cater to the storage requirements, a 1000-GB persistent
volume was attached to this instance. For MacOS, a local
system with 16 GB RAM, 250 GB storage, and 2.8-GHz Intel
Core i7 processor was used. These platforms were selected

to cater to the required storage and compute resources of
the workflows described above. The reference genome pro-
vided with Alignment Workflow was not down-sampled, and
hence this workflow required the most resources among the 3
evaluated.

This evaluation does not include details of the installation
process for cwltool, toil-cwl-runner, and Docker on the systems de-
scribed above. To create CWLProv ROs during workflow execu-
tion, it is necessary to use the CWL reference runner (cwltool)
until this practice spreads to other CWL implementations. More-
over, it is assumed that the software container (Docker) should
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Table 4. CWLProv evaluation summary and status for the 3 bioinfor-
matics case studies

Enact-produce RO with Re-enact using RO with Status

cwltool on MacOS toil-cwl-runner on MacOS �
cwltool on Linux �

toil-cwl-runner on Linux �
cwltool on Linux toil-cwl-runner on Linux �

cwltool on MacOS �
toil-cwl-runner on MacOS �

also be installed on the system to use the workflow definitions
aggregated in a given CWLProv RO.

In addition, the resource requirements (identified in R18-
resource-use and discussed in Section Discussion and Future Di-
rections) should also be satisfied by choosing a system with
enough compute and storage resources for successful enact-
ment. The systems used in this case study should be a ref-
erence when selecting a system because inadequate compute
and storage resources such as insufficient RAM or number of
cores will hinder the successful re-enactment of workflows
using these ROs. The hardware requirements may also vary
if a different dataset is used as input to re-enact the work-
flow using the methods aggregated in the RO. In that case,
the end user must ensure the availability of adequate com-
pute and storage resources by choosing a system that meets
specifications [145].

Because the CWLProv implementation is demonstrated for
one of the executors (cwltool), currently a CWLProv RO for any
workflow can only be produced using cwltool. Hence, in this
activity the workflows are initially enacted using just cwltool
(Table 4). The outline of the steps performed to analyse CWL-
Prov for each case study is as follows.

I) The workflow was enacted using cwltool to produce an RO on a
MacOS computer.

1) The resulting RO and aggregated resources were used to re-
enact the workflow using toil-cwl-runner on the same Ma-
cOS computer;

2) The RO produced in step I was transferred to the cloud-based
Linux instance used in this activity;

3) On the cloud-based Linux environment and only utilizing
the resources aggregated in the RO, the workflow was re-
enacted using cwltool and toil-cwl-runner.

II) The workflow was enacted using cwltool to produce an RO on
Linux.

1) The resulting RO and aggregated resource were utilized to
re-enact the workflow using toil-cwl-runner on the same
cloud-based Linux instance;

2) The RO produced in step II was transferred to the MacOS com-
puter used in this activity;

3) On the MacOS computer and only utilizing the resources ag-
gregated in the RO, the workflow was re-enacted using
cwltool and toil-cwl-runner.

The CWLProv ROs produced as a result of this activity are
published on Mendeley Data [146–148] with mirrors on Zenodo.

Evaluation results

The steps described above were taken to produce ROs, which
were then used to re-enact the workflows (outlined in Table 4),
without any further changes required. This demonstration illus-
trated the syntactic and semantic interoperability of the work-
flows across different systems. It shows that both CWL ex-

ecutors were able to exchange, comprehend, and use the in-
formation represented as CWLProv ROs. The current imple-
mentation described in section Practical Realization of CWL-
Prov does not resolve Level 3. Hence, the inclusion of domain-
specific annotations referring to scientific context to address
pragmatic interoperability is identified as a crucial future di-
rection and further detailed in section Discussion and Future
Directions.

CWLProv and interoperability
CWL already builds on technologies such as JSON-LD [99] for
data modeling and Docker [26] to support portability of the run-
time environments. The portability and interoperability as ba-
sic principles of the underlying workflow definition approach
for any workflow-centric analysis implies that the analysis
should also be portable and interoperable. However, the work-
flow definition/specification alone is insufficient when dealing
with command line tool specifications, data, and input con-
figuration files used in the analysis if these are not readily
available.

CWLProv ensures availability of these resources for a given
analysis conforming to the framework defined in Section CWL-
Prov 0.6.0 and utilized standards. The input configurations are
saved as primary-job.json in folder workflow/ and refer to the in-
put data contained in the payload data/ folder of the given RO.
In this way, availability of data aggregated with the analysis is
made possible. Existing features of cwltool are used to generate
the CWL workflow specification file containing all of the com-
mand line tool specifications referred to in the workflow speci-
fication and placed in the same workflow/ folder.

One might argue that copying a folder tree might serve the
same purpose, but in that case we again will be relying on users
to exert a substantial amount of effort beyond the actual analy-
sis; i.e., they would have to carefully structure their directories
to be aligned with the workflow creators. Instead CWL encour-
ages researchers to use container technologies such as Docker,
Singularity, or software packaging systems like Debian (Med) or
Bioconda to ensure availability of underlying tools as recom-
mended by numerous studies [8,55,63, 64,149]. This practice fa-
cilitates the preservation of methods utilized in data-intensive
scientific workflows and enables verification of the published
claims without requiring the end user to do any manual
installation and configuration. Examples of tools available via
Docker containers used here are the alignment tool (BWA-mem)
used in the Alignment workflow and STAR aligner used in the
RNA-seq workflow.

Evaluating provenance profile
The retrospective provenance profile generated as part of CWL-
Prov for each workflow enactment can be examined and queried
to extract the required subset of information. Provenance analyt-
ics is a separate domain and a next step after provenance collec-
tion in the provenance life cycle [150]. Often provenance data are
queried using specialized query languages such as SQL SPARQL
or TriQL depending on the storage mechanism used. Query op-
erations can combine information from prospective and retro-
spective provenance to understand computational experiments
better.

The focus of this paper is not in-depth provenance analyt-
ics, but we have demonstrated the application of the provenance
profile generated as part of CWLProv. We have developed a com-
mand line tool and Python API “cwlprov-py” [151] for CWLProv RO
analytics to interpret the captured retrospective provenance of
CWL workflow enactment. This API currently supports the fol-
lowing use cases.
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Table 5. Runtime comparison for the workflow enactments done cross-executor and cross-platform

Workflow
Linux MacOS

cwltool toil-cwl-runner cwltool toil-cwl-runner

RNA-Seq Analysis
Workflow

With Prov Without Prov Without Prov With Prov Without Prov Without Prov
4m30.289s 4m0.139s 3m46.817s 3m33.306s 3m41.166s 3m30.406s

Alignment Workflow 28m23.792s 24m12.404s 15m3.539s – 162m35.111s 146m27.592s
Somatic Variant Calling
Workflow

21m25.868s 19m27.519s 7m10.470s 17m26.722s 17m0.227s ∗∗

∗∗ This could not be tested because of a Docker mount issue on MacOS: https://github.com/DataBiosphere/toil/issues/2680.
– This could not be tested because of the insufficient hardware resources on the MacOS test machine; hence. step I of the evaluation activity could not be performed

for this workflow.

Given a CWLProv RO:

� Workflow Runs As each RO can contain >1 workflow run if
sub-workflows are utilized to group related tasks into 1 work-
flow. In that case, the provenance traces are stored in sep-
arate files for each workflow run. cwlprov-py identifies the
workflow enactments including the sub-workflows (if any)
and returns the workflow identifiers annotated with the step
names. The user can select the required trace and explore
particular traces in detail.

� Attribution Each RO is assumed to be associated with a sin-
gle enactment of the primary workflow and hence assumed
to be enacted by 1 person. As discussed previously, CWLProv
provides additional flags to enable user provenance capture.
A user can provide their name and ORCID details that can
be stored as part of an RO. cwlprov-py displays attribution
details of the researcher responsible for the enactment (if en-
abled) and the versions of the workflow executor utilized in
the analysis.

� Input/Output of a Process Provenance traces contain associ-
ations between the steps/workflows and the data they used
or generated. A user interested in a particular step can iden-
tify the inputs used and outputs produced linked explicitly to
that process using cwlprov-py. This option works using indi-
vidual step identifiers (level 1) as well as nested workflows
(level 2), facilitating reuse of intermediate data even if the
original workflow author did not explicitly expose these as
workflow outputs.

� Partial Reruns Rerunning or reusing only desired parts
of a given workflow has been emphasized [20] as impor-
tant to evaluate the workflow process or validate the pub-
lished results associated without necessarily re-enacting the
workflow as a whole. cwlprov-py uses the identifier of the
step/workflow to be rerun, parses the provenance trace to
identify the inputs required, and ultimately creates a JSON
input object with the associated input parameters. This in-
put object can then be used for partial reruns of the desired
step/workflow, making segmented analysis possible even for
CWLProv consumers who do not have sufficient hardware re-
sources for re-executing more computationally heavy steps.

While the above explores some use cases for consuming and
reusing workflow execution data, we have not explored this in
full detail. Further work could develop more specific user sce-
narios and perform usability testing with independent domain
experts who have not seen the executed workflow before.

An important point of CWLProv is to capture sufficient infor-
mation at workflow execution time, so that post-processing (po-
tentially by a third party) can support unforeseen queries with-

out requiring instrumentation at workflow design time. For in-
stance, cwlprov runtimes calculates average runtime per step
(requiring capture of start/stop time of each step iteration), while
cwlprov derived calculates derivation paths back to input data
(requiring consistent identifiers during execution). Further work
could build a more researcher-oriented interface based on this
approach, e.g., hardcoded data exploration for a particular work-
flow.

Temporal and spatial overhead with provenance
Table 5 shows the runtimes for the 3 workflow enactments using
cwltool and toil-cwl-runner on Linux and MacOS with and with-
out enabling provenance capture as described in the evaluation
activity section. These workflows were enacted at least once be-
fore this time calculation; hence, the timing does not include
the time for Docker images to be downloaded. On a new sys-
tem, when these workflows are being rerun for the first time, the
Docker images will be downloaded and may take significantly
longer than the time specified here, especially in case of the So-
matic Variant Calling workflow because of the image size.

Runtime and storage overheads are important for
provenance-enabled computational experiments. The choice
of different operating systems and provenance capture mech-
anisms such as operating-system–level, application-level, or
workflow-level as well as input/output workload, interception
mechanism, and fine-grained information capture are key for
provenance [152,153].

In our case study, a substantial time difference can be seen
for the alignment workflow that used the most voluminous
dataset, hence producing a sizable RO as well. This was due to
the RO-generation where data were aggregated within the RO.
The difference between the provenance-enabled enactment vs
the enactment without provenance is barely noticeable for the
other 2 workflow enactments with the smaller datasets. The dis-
cussion about handling the big “-omics” data such as human
genome reference sequence, its index files, and other database
files (e.g., dbsnp) in Section Discussion and Future Directions
provides a possible solution to avoid such overheads.

In addition, noticeable time difference between the cwltool
and toil-cwl-runner enactments is because of the default parallel
vs serial job execution in the case of toil-cwl-runner and cwltool,
respectively. The “scatter” operation in CWL, when applied to
≥1 input parameters of a workflow step or a sub-workflow, sup-
ports parallel execution of the associated processes. Parallelism
is also available without “scatter” when separate processes have
all their inputs ready. If sufficient compute resources are avail-
able, these jobs will be enacted concurrently; otherwise they are
queued for subsequent execution. Compute-intensive steps of a

https://github.com/DataBiosphere/toil/issues/2680
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workflow can benefit from scatter features for parallel execution
by reducing the overall runtime. Both alignment and somatic
variant calling workflows utilize the scatter feature to enable
higher degrees of parallel job execution in the case of toil-cwl-
runner, which explains the time difference for the cross-executor
of these 2 workflows. The difference is negligible for the RNA-
Seq workflow, which is composed of serial jobs with compara-
tively small test data.

Output comparison across enactments
We compared the workflow outputs after each enactment to
observe the concordance and/or discordance (if any) for the
workflow enactment results produced across the platforms and
across the executors. As CWLProv RO refers to the data with
hashed checksums, these checksums are utilized for the result
comparison. The comparison was made between the output files
generated by the different enactments against a single “truth-set”
output file available and checksum in the respective Git reposi-
tories.

The checksum of the output data generated cross-platform
and cross-executor comparison data as a result of the initial
enactments and reruns using the CWL ROs to elicit the con-
cordance in all but 1 cases. The “correctness” as well as agree-
ment of these outputs given different execution environments
(e.g., platform and executor) held true except for the Alignment
workflow. The Alignment workflow produced varying outputs
after every execution even with the same executor and plat-
form. The output of the alignment algorithm, “BWA mem,” used
in this workflow was non-deterministic because it depended on
the number of threads –t and the seed length –K, which affected the
output produced. While the seed length in this case was set to a
constant value, the number of threads varied depending on the
availability of hardware resources at runtime, thereby resulting
in varying output for the same input files.

Discussion and Future Directions

This section discusses the current and future work with refer-
ence to enriched provenance capture and smart resource aggre-
gation, and enhancements to both the CWLProv standard and
implementation.

Compute and storage resources

The CWLProv format encapsulates the data and workflow def-
initions involved in a given workflow enactment along with its
retrospective provenance trace. CWL as a standard provides con-
structs to declare basic hardware resource requirements such
as minimum and maximum cores, RAM, and reserved file sys-
tem storage required for a particular workflow enactment. The
workflow authors can provide this information in the “require-
ments” or “hints” section as “ResourceRequirement.” These require-
ments/hints can be declared at workflow or individual step level
to help platforms/executors to allocate the required resources.
This information indirectly stores some aspects of prospective
view of provenance with respect to hardware requirements of
the underlying system used to enact a workflow. Currently this
information is only available if declared as part of workflow
specification. In future, we plan to include these requirements
as part of provenance for a given workflow such that all such in-
formation is gathered in one space and users are not required
to inspect multiple sources to extract this information. This in-
formation can then be used as a precondition for potential suc-
cessful enactment of a given workflow.

Because CWLProv is focused on retrospective provenance
capture of workflow enactment, we plan to include provenance
information about the compute and storage resources utilized
in a given enactment to fulfill R18-resource-use. We believe that
documenting these resources will allow users to analyse their
environment and resource allocations before execution, as op-
posed to trial-and-error methods that may result in multiple
failed enactments of a given workflow. Despite the importance
of this factor, most existing provenance standards surprisingly
lack dedicated constructs to represent the underlying hard-
ware resource usage information as part of prospective or ret-
rospective provenance. In the case of complex workflows us-
ing distributed resources, where each step could be executed
on a different node/server, including all this information in a
single PROV profile will clutter the profile and render it po-
tentially incomprehensible. Therefore, we plan to add a sepa-
rate Usage Record document in the RO conforming to GFD.204
[115] to describe Level 1 (and potentially Level 2) resource us-
age in a common format independent of actual execution
environment.

Capturing such resource usage records requires a tighter in-
tegration with the execution platform, so we consider this fu-
ture work better suited for a cloud-based CWL engine like Toil
or Arvados because the reference implementation cwltool does
not exercise fine-grained control of its task execution. Detailed
raw log files can also be provided as Level 0 provenance, as we
have demonstrated with cwltool, but these will by their nature
be custom per execution platform and thus should be consid-
ered unstructured. Some related work already exploring this
approach is cwl-metrics [114], which analyses raw cwltool log
files in combination with detailed Docker invocation statistics
using the container monitoring tool Telegraf. Ongoing collabo-
ration is exploring adding these metrics as additional prove-
nance to the CWLProv RO with summaries in PROV and GFD.204
formats.

Provenance profile augmented with domain knowledge

CWLProv benefits from existing best practices proposed by nu-
merous studies (Table 1) and includes defined standards for
workflow representation, resource aggregation, and provenance
tracking (Section Applied Standards and Vocabularies). We posit
that the principle of following well-defined data and metadata
standards enables explicit data sharing and reuse. In order to
include rich metadata for bioinformaticians to produce spe-
cialized ROs for bioinformatics to achieve CWLProv Level 3 as
defined in section Levels of Provenance and Resource Shar-
ing, we are investigating reuse of concepts from the BioCom-
pute Object project [41]. This domain-specific information is
not necessary for computation and execution but for under-
standability of the shared resources. We encourage workflow
authors to include such metadata and external identifiers for
data and underlying tools, e.g., EDAM identifiers for the re-
sources used in designing a given workflow. The plan is to ex-
tract these annotations and represent them in the retrospec-
tive provenance profile in CWLProv to ultimately achieve prag-
matic interoperability by providing domain-specific scientific
context of the experiments. Domain-specific information is es-
sential in determining the nature of inputs, outputs, and con-
text of the processes linked to a given workflow enactment
[73]. This information can be captured in the RO if and only if
the workflow author adds it in the workflow definition; thus,
achieving CWLProv Level 3 depends on the individual work-
flows.
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Big -omics data

While aggregating all resources as 1 downloadable object im-
proves reproducibility, the size of the resulting RO is an impor-
tant factor in practice. On one hand, completeness of the re-
sources contributes towards minimizing the workflow decay phe-
nomenon by least dependence on availability of third-party re-
sources. On the other hand, the nature of -omics data sizes
can result in hard-to-manage workflow-centric ROs also lead-
ing to the spatial and temporal overheads as discussed in
evaluation.

One solution is archiving the big datasets in online reposito-
ries or data stores and including the existing persistent identi-
fiers and checksums in the RO instead of the actual data files,
as previously demonstrated with BDBags [91,154]. While CWL
executors like toil-cwl-runner can be configured to deposit data
in a shared repository, the cwltool reference implementation ex-
plored in this study can only write to the local file system. Ex-
ternal references raise the risk of unavailability of data at a later
time. Therefore we recommend including the data in the RO if
sufficient network and storage resources are available. Future
work may explore post-processing CWLProv ROs to replace large
data files with references to stable data repositories, producing
a slimmer RO for transfer where individual data items can be re-
trieved on demand, as well as reducing data duplication across
multiple related ROs.

Improving CWLProv efficiency with selective
provenance capture

Shim refers to an adaptor step to resolve format incompatibil-
ity issues between 2 workflow tasks [60], typically converting
the previous output into an acceptable format for the next step.
For example in our case study RNA-seq workflow, RNA-SeQC re-
quires an indexed BAM file, whereas the output of STAR or Picard
MarkDuplicates only comprises the BAM file alone. Hence, a shim
step executing SAMtools index makes the aligned reads analy-
sis ready for RNA-SeQC. Compared to the more analytical steps,
the provenance of such shim steps is not particularly interest-
ing for domain scientists, and in many cases their intermediate
data would effectively double the storage cost with little infor-
mation gain because such data can be reliably recreated by re-
applying the predictable transformation step (considering it as
a pure function without side effects). Another type of ignorable
steps could be purely diagnostic: which outputs are used pri-
marily during workflow design to verify tool settings. A work-
flow engine does not necessarily know which steps are “boring”
(the CWL 1.1 specification will add a hint WorkReuse for this pur-
pose), and our proof-of-concept implementation will dutifully
store provenance from all steps.

To improve efficiency, future CWLProv work could add
options to ignore capturing outputs of specified shim steps
or to not store files larger than a particular size. Similarly a
scientist or a WMS may elect to only capture provenance at a
particular provenance level (see Section Levels of Provenance
and Resource Sharing). Provenance captured under such set-
tings would be “incomplete” (e.g., PROV would say RNA-SeQC
consumed an identified BAM index file, but the corresponding
bytes would not be stored in the RO); thus, it is envisioned that
this can be indicated in the RO manifest as a variant of the
CWLProv profile identifier to give the end user clear indication
of what to expect in terms of completeness, so that tools like
cwlprov-py could be extended to recreate missing outputs,

verifying their expected checksums, or collapse provenance
listing of “boring” steps to improve human tractability.

Enforcement of best practices—an open problem

Recommendations and best practices from the scientific com-
munity are proposed frequently, to guide researchers to design
their computational experiments in such a way as to make their
research reproducible and verifiable. Not only the best prac-
tices for workflow design, but also for resource declaration, soft-
ware packaging, and configuration management are put forward
[149] to avoid dependence on local installations and manual pro-
cesses of dependency management. The term “better software,
better research” [155] can also be applied to and adapted for the
workflow design process.

Declarative approaches to workflow definition such as CWL
facilitate and encourage users to explicitly declare everything
in a workflow, improving white-box view of the retrospective
as well as prospective provenance. Such workflows should pro-
vide insights of the complete process followed, to produce a data
artefact resolving the black-boxness often associated with the
workflow provenance. However, it is entirely up to researchers
to leverage these approaches to produce well-defined workflows
with explicit details facilitating enriched capture of the prove-
nance trace at the appropriate level, and this can require consid-
erable effort and consistency on the workflow designer’s behalf.
For instance, the alignment workflow used in this case study
embeds bash scripts into the CWL tool definition, therefore re-
quiring another layer to be penetrated for provenance infor-
mation extraction. Despite using CWL for the workflow defini-
tion and CWLProv for provenance capture, the provenance trace
will be missing critical information, making it coarse-grained,
and the raw logs capturing the enactment will also not be as
informative.

The 3 criteria defined by Cohen-Boulakia et al. [20] to be
followed by workflow designers are modularized specifications,
unified representation, and workflow annotations. CWL facili-
tates a modular structure to workflow definitions by coupling
similar steps to subworkflows; and, as an interoperable standard,
CWL provides a common platform moving towards resolution
of the heterogeneity of the workflowj specification languages.
In addition, users can add standardized domain-specific an-
notations to data and workflows incorporating the constructs
defined by external ontologies (e.g., EDAM) to enhance under-
standing of the shared specification and the resources it refers
to. All these features can be used to design better workflows
and maximize the information declaration, resulting in seman-
tically rich and provenance-complete CWLProv ROs, and should
thus be expressed clearly in user guides [156] for workflow
authors.

The usability of any CWLProv RO directly relies on the choice
of practices followed by the researchers to design and com-
municate their computational analyses. Workflow-centric ini-
tiatives similar to “software carpentry” [157] and “code is science”
[158] are one possible way to organize training and publicize
best practices. Community-driven efforts to further consolidate
the understanding of requirements to make a given workflow
explicit and understandable should be made. Not only aware-
ness about the workflow design is needed, but also the availabil-
ity of the associated resources should be emphasized, e.g., soft-
ware as containers or software packages, big datasets in public
repositories, and preprocessing/post-processing as part of work-
flow. Without putting proposed best practices into actual prac-
tice, complete communication and hence the reproducibility of
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a workflow-centric computational analysis is likely to remain
challenging.

Conclusion

The comprehensive sharing and communication of the compu-
tational experiments used to achieve a scientific objective es-
tablishes trust in published results. Shared resources are some-
times rendered ineffective by incomplete provenance, hetero-
geneity of platforms, unavailability of software, and limited ac-
cess to data. In this context, the contributions of the present
study are 4-fold. First, we have provided a comprehensive sum-
mary of the recommendations put forward by the community
regarding workflow design and resource sharing. Second, we de-
fine a hierarchical provenance framework to achieve homogene-
ity in the granularity of the information shared, with each level
addressing specific provenance recommendations.

Third, we leverage the existing standards best suited to de-
fine a standardized format, CWLProv, for methodical represen-
tation of workflow enactments, provenance, and the associ-
ated artefacts used. Finally, to demonstrate the applicability
of CWLProv, we extend an existing workflow executor (cwltool)
to provide a reference implementation to generate interopera-
ble workflow-centric ROs, aggregating and preserving data and
methods to support the coherent sharing of computational anal-
yses and experiments.

With any published scientific research, statements such as
“methods and data are available upon request” should no longer
be acceptable in a modern open-science–driven research com-
munity. Considering on one hand the collaborative nature and
emerging openness of bioinformatics research and on the other
hand the heterogeneity of workflow design approaches, it is es-
sential to provide open access to the structured representation
of the data and methods used in any scientific study to achieve
interoperable solutions facilitating reproducibility of science.

Provenance capture and its subsequent use to support pub-
lished research transparency should not be treated as an af-
terthought but rather as a standard practice of utmost prior-
ity. With adoption of well-defined standards for provenance and
declarative workflow definition approaches, the assumption of
black-box provenance often associated with workflows can be
addressed. The workflow authors should be encouraged to fol-
low well-established and consensus best practices for workflow
design and software environment deployment. In conclusion,
we do not require new standards, new WMSs, or indeed new
best practices; instead the focus should be to implement, uti-
lize, and reuse existing mature community-driven initiatives to
achieve consensus in representing different aspects of compu-
tational experiments.

Availability of source code and requirements

CWLProv is implemented as part of the CWL reference imple-
mentation cwltool:

� Project name: cwltool (RRID:SCR 015528)
� Project home page: https://github.com/common-workflow-

language/cwltool
� Version: 1.0.20181012180214 [13]
� Operating system(s): Platform independent
� Programming language: Python 3.5 or later (RRID:SCR 00839

4)
� Other requirements: Docker (RRID:SCR 016445) recom-

mended
� License: Apache License, Version 2.0

The CWLProv profile documents the use of W3C PROV in an
RO to capture a CWL workflow run:

� Project name: CWLProv profile
� Project home page: https://w3id.org/cwl/prov
� Version: 0.6.0 [83]
� Operating system(s): Platform independent
� License: Apache License, Version 2.0

The CWLProv Python Tool can be used to explore CWLProv
ROs on the command line:

� Project name: CWLProv Python Tool (cwlprov-py)
� Project home page: https://github.com/common-workflow-

language/cwlprov-py
� Version: 0.1.1 [151]
� Operating system(s): Platform independent
� Programming language: Python 3.5 or later (RRID:SCR 00839

4)
� License: Apache License, Version 2.0

Availability of supporting data and materials

CWLProv ROs of CWL workflow executions are published in
Mendeley Data and mirrored to Zenodo.

� CWL run of Somatic Variant Calling Workflow (CWLProv 0.5.0
RO) [148]
https://zenodo.org/record/2841641

� CWL run of Alignment Workflow (CWLProv 0.6.0 RO) [147]
https://zenodo.org/record/2632836

� CWL run of RNA-seq Analysis Workflow (CWLProv 0.5.0 RO)
[146]
https://zenodo.org/record/2838898

The CWLProv Python Tool can be used to explore the above
ROs.

The data and methods supporting this work are also available
in the GigaScience repository, GigaDB [159].
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