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Abstract: Continuous flow systems for chemical synthesis
are becoming a major focus in organic chemistry and

there is a growing interest in the integration of biocata-
lysts due to their high regio- and stereoselectivity. Meth-

ods established for 3D bioprinting enable the fast and
simple production of agarose-based modules for biocata-

lytic reactors if thermally stable enzymes are available. We
report here on the characterization of four different cofac-
tor-free phenacrylate decarboxylase enzymes suitable for

the production of 4-vinylphenol and test their applicability
for the encapsulation and direct 3D printing of disk-

shaped agarose-based modules that can be used for com-
partmentalized flow microreactors. Using the most active

and stable phenacrylate decarboxylase from Enterobacter

spec. in a setup with four parallel reactors and a subse-
quent palladium(II) acetate-catalysed Heck reaction, 4-hy-

droxystilbene was synthesized from p-coumaric acid with
a total yield of 14.7 % on a milligram scale. We believe
that, due to the convenient direct immobilization of any
thermostable enzyme and straightforward tuning of the
reaction sequence by stacking of modules with different

catalytic activities, this simple process will facilitate the es-
tablishment and use of cascade reactions and will there-
fore be of great advantage for many research approaches.

Sustainable production processes based on renewable biomass
require biocatalysts with high conversion rates as well as
regio- and stereoselectivity.[1] Enzymes, as nature’s main cata-

lysts, are enabling the realization of such processes. Further-
more, they can be precisely tailored to fit with the process re-

quirements such as substrate spectrum, regio- and stereoselec-
tivity and physicochemical stability by using protein engineer-

ing.[2] To improve biotechnological production processes, indi-
vidual reaction steps can be compartmentalized and arranged

into reaction cascades.[3] This allows high process control even

for chemoenzymatic routes by combining reactions that are
otherwise incompatible due to reaction conditions, product in-

hibition or undesired side reactions.[3a, 4] For the realization of
such compartmentalized biocatalytic processes in continuous

flow, the fast and simple immobilization of enzymes inside the
microstructured flow reactors is an essential step to ensure ef-

ficient spatial separation of different reactions.[5] To enable the

simple rapid prototyping of biocatalytic reaction modules for
compartmentalized flow microreactors, we have recently es-

tablished a fabrication process using direct 3D printing of inex-
pensive biodegradable agarose-based hydrogel bioinks con-

taining thermostable enzymes (Figure 1).[6]

3D printing (also known as additive manufacturing) is a fab-
rication process employing layer-by-layer deposition of materi-

als to produce complex 3D structures with a high flexibility in
design and minimal waste of material,[7] which has found appli-

cations ranging from the aerospace and construction industry
to smart materials, medicine and biotechnology.[8] 3D printing
offers a simple and efficient route to rapid prototyping, the
iterative process of fabricating and evaluating prototypes, dra-

matically reducing turnaround times in process development.
Furthermore, 3D printing facilitates the production of extreme-
ly complex geometries[7] enabling the fabrication of sophisti-
cated reactor designs in chemical and biochemical engineer-
ing.[9]

To enhance the compatibility with biological materials a vari-
ety of methods and materials for extrusion-based 3D bioprint-
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ing can now generate hydrogel structures customized for spe-
cific applications.[10] Enzymes can be entrapped inside these

hydrogels without the need for enzyme-specific adaptations,
offering protection against organic solvents[6] but also modu-

lating the reaction rate through mass transfer limitations, since
the 3D-printed structures are relatively thick.[11] Such issues are

less prevalent when using for example packed-bed reactors

containing 0.1–1 mm Ca-alginate beads, packed-bed nanofiber
reactors or all-enzyme-hydrogel reactors, containing no carrier

material at all,[5a, e, 12] however the capability of the 3D bioprint-
ing for the on-demand production of biocatalytic modules,

only requiring unmodified, thermostable enzymes, has great
potential for fast and simple immobilization approaches.

To extend the earlier proof-of-concept study to other syn-

thetically relevant enzymes, we here report on the 3D printing
of biocatalytic modules to be integrated in a chemoenzymatic

reaction cascade producing 4-hydroxystilbene (3) (Scheme 1).
4-Hydroxystilbene is an important precursor of the pharmaco-

logically relevant class of 2,3-dihydrobenzofuran-based com-
pounds.[13]

To realize the chemoenzymatic reaction cascade (Scheme 1),

we considered prokaryotic phenacrylate decarboxylases (PAD,
EC 4.1.1.102) that can catalyse the formation of 4-vinylphenols

from para-hydroxyphenacrylic acids without the supply of ad-

ditional redox equivalents.[14] Furthermore, unlike other cofac-
tor-dependent PADs, these enzymes do not require a prenylat-

ed flavin cofactor, which typically requires production by co-
expression of the flavin prenyltransferase UbiX.[14, 15] In a

second step of the cascade, the enzymatically produced vinyl-
phenols can then be further functionalized, for example, by aid

of other enzymes,[16] oxidative dimerization[17] or by organome-
tallic coupling reactions[18] as demonstrated here.

Since the printing of biocatalytic active reactor models re-
quires an initial heating step at 60 8C for 15 min, thermostable

enzymes are required, which can be obtained by utilizing natu-
rally occurring thermostable enzymes[6, 19] or enzymes thermo-

stabilized by protein engineering.[6, 19a, 20] To broaden the spec-

trum of available biocatalysts and to identify suitable PAD en-
zymes, we directly compared the enzymatic activity and ther-

mostability of four different enzymes (Table S1) under identical
conditions. To this end, we expressed and purified (Figure 2 A)

the previously described EsPAD[21] from Enterobacter spec. and
LpPAD[22] from Lactobacillus plantarum as well as LbPAD from

Lactobacillus brevis, a close homologue of an already described

enzyme[23] (Figure S1), and the not yet described BmPAD from
Bacillus megaterium.

To enable direct comparison of the four PAD variants, their
substrate specificity and activity were initially studied. Thus,

trans-cinnamic acid, the simplest phenacrylic acid without any
aromatic substitution, and the hydroxy-substituted phenacrylic

acids, p-coumaric acid (1) and caffeic acid (5), were tested as

substrates. Their enzymatic activity at 28 8C was determined by
the decrease in absorbance at the substrate-specific wave-

lengths of 274, 294 and 311 nm, respectively. As expected, all
four PAD enzymes only showed activity with the para-hydroxy-

substituted phenacrylic acids, p-coumaric acid and caffeic acid,
confirming that the para-hydroxy functional group is essential

for the formation of the para-quinone methide intermediate,
which leads to decarboxylation of the substrate.[14] The activity
of all four enzymes was found to be on the same order of

magnitude under the conditions examined here (Figure 2 B
and Table S2), with EsPAD converting p-coumaric acid (1) three

times faster than LbPAD, and LpPAD converting caffeic acid (5)
twice as fast as BmPAD.

Since the activities of all enzymes are in the same range, we

focused on the enzyme thermostability as the essential param-
eter for the intended use in the 3D printing process. Therefore,

the temperature-dependent loss of activity of the enzymes
was characterized by incubating 1 mm enzyme solutions for

10 min at variable temperatures in the range between 30–
80 8C. The remaining enzyme activity was then determined at

Figure 1. Manufacturing process of agarose-based, compartmentalized biocatalytic flow reactors. The enzyme is mixed with a liquid agarose solution (at
42 8C) and immediately cooled down on ice and then stored at 8 8C. Using a 3D printer, the bioink is melted at 60 8C and printed onto a cooled substrate on
which the bioink solidifies to form biocatalytic modules. These are integrated into flow reactors that are transfused with a substrate solution to facilitate con-
tinuous synthesis. The reactor productivity can be adjusted by variable numbers of reaction modules.[6]

Scheme 1. Synthesis of 4-hydroxystilbene (3) from p-coumaric acid (1) em-
ploying a phenacrylate decarboxylase (EsPAD) in a flow reactor setup and a
subsequent Heck reaction using palladium(II) acetate.
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25 8C using p-coumaric acid as substrate. Plots of the resulting

activities against incubation temperature allowed to determine
T50 values, defined as the temperature at which 50 % of the ini-

tial enzyme activity still remained (Figure 2 C and Figures S2–
S5). From these analyses, EsPAD was found to be the most
thermostable enzyme, which also showed the highest activity

with p-coumaric acid as substrate.
To confirm that the determined T50 value is a well suited

measure for prediction of the applicability of the enzymes for
the 3D printing process, agarose bioinks were prepared from

the four enzymes (2 mm) and used for printing of reaction
modules (0.97 nmol enzyme per module) with geometries as

described previously.[6] By employment of the flow reactor
setup (Figure 3 A), the reaction modules were perfused with
0.125 mm p-coumaric acid in reaction buffer at a constant flow

rate of 12.5 mL min@1. Samples of the reactor outflow were
taken at regular time intervals and analysed by HPLC (Fig-

ure S6). As expected from the T50 measurements, the reactor
modules containing LpPAD, BmPAD or LbPAD produced no de-

tectable amounts of 4-vinylphenol from p-coumaric acid,

whereas the EsPAD-containing modules (with 38:15 %
enzyme activity remaining after the printing process) convert-

ed up to 78 % of the available p-coumaric acid under these
conditions (Figure 3 B). The observed time-dependent decrease

of the conversion rate has been observed before and is related
to the leaching of the encapsulated enzyme.[6]

To improve the system towards full conversion, we increased

the enzyme concentration inside the bioink to 100 mm EsPAD.
Under these reaction conditions, 30 mL of 1 mm p-coumaric
acid were converted over 40 h with efficiencies of up to 98 %

(Figure S7). After this process optimization, we could simply
parallelize four identical flow reactors, each equipped with a
100 mm EsPAD reactor module (48.3 nmol enzyme per module,
Figures 3 C and S8). This increase in scale by numbering-up led

to a conversion of 35 mg p-coumaric acid (1) to 4-vinylphenol
(2) in a total volume of 211 mL and with an average total turn-

over of 590 4-vinylphenol molecules per enzyme.

Following to extraction of the collected outflows and a
quick chromatographic purification of the raw product, solid 4-

vinylphenol (2) was obtained with an isolated yield of 54 %
(Figure 3 D). According to the reaction shown in Scheme 1, the

purified 4-vinylphenol (2) was then coupled with iodobenzene
(4) by using a palladium-catalysed Heck reaction. This led to

the formation of 4-hydroxystilbene (3), obtained as white crys-

tals in a total yield of about 15 % (Figure 3 D).
In summary, we here demonstrate for the first time that un-

modified EsPAD can be used in the production of bioinks,
which are suitable for direct 3D printing of reactor modules

using additive manufacturing processes without post-process-
ing steps. We also directly compared four different phenacryl-

Figure 2. A) EsPAD (20 kDa, lane 1), LpPAD (22 kDa, lane 2), BmPAD (20 kDa,
lane 3) and LbPAD (23 kDa, lane 4) were produced as pure enzymes, as indi-
cated by the Coomassie stained 15 % SDS tris-glycine polyacrylamide gel. M:
PageRuler Prestained Protein Ladder (Thermo Scientific). B) Enzymatic activi-
ty of all four PAD enzymes at 28 8C with p-coumaric acid (1) (filled bars) and
caffeic acid (5) (empty bars) as substrate. C) Average thermal inactivation
curves with 95 % confidence interval of all four purified PAD enzymes after
10 min incubation and their corresponding T50 values (for individual data
sets see Figures S2–S5). Analyses B and C were carried out in technical dupli-
cates and biological triplicates.

Figure 3. A) Schematic setup of the flow reactor for flow experiments with
one reactor module. B) Conversion of p-coumaric acid (1) in a biocatalytic
flow setup employing EsPAD containing reaction modules at a constant flow
rate of 12.5 mL min@1 to 4-vinylphenol (2) quantified by HPLC in the outflow.
Inset : 3D-printed reactor modules prior to assembly into the reactor. White
bar indicates 10 mm. In a reaction employing 0.125 mm substrate, conver-
sion rates of 50–78 % were observed for more than 10 h after an initial equi-
libration phase. The standard deviation indicates two independent experi-
ments. C) Flow reactor setup of one out of four parallel reactors to produce
4-vinylphenol. The flow reactor next to the 50 mL collection tube is perfused
with substrate solution by a syringe pump. For more detailed information
see Figure S8. D) The purified 4-vinylphenol (2) (top) and, after subsequent
Heck-coupling, the purified 4-hydroxystilbene (3) (bottom) are obtained as
white crystals.
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ate decarboxylases and identified EsPAD as the enzyme with
the highest thermostability and the greatest turnover of the

PAD enzymes tested. After optimization of reaction parame-
ters, 3D-printed modules were readily prepared and used for

continuous flow production of 4-vinylphenol (2) from p-cou-
maric acid (1). Scale-up of the reaction was conveniently

achieved by numbering-up of the reactors without further pro-
cess optimization. Such processes can be integrated into che-

moenzymatic reaction cascades, as shown here using the ex-

ample of the subsequent palladium-catalysed formation of 4-
hydroxystilbene (3). As shown here, new enzyme classes can

be easily screened for enzymes compatible with the 3D bio-
printing presented. The high modularity as well as scalability

of the reactor system and the ease of its manufacturing can
then be utilized to introduce these new enzyme classes into
flow reaction systems.
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