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Abstract

Two objectives of the Common Agricultural Policy post-2013 (CAP, 2014–2020) in the Euro-

pean Union (EU) are the sustainable management of natural resources and climate smart

agriculture. To understand the CAP impact on these priorities, the Land Use/Cover statisti-

cal Area frame Survey (LUCAS) employs direct field observations and soil sub-sampling

across the EU. While a huge amount of information can be retrieved from LUCAS points for

monitoring the environmental status of agroecosystems and assessing soil carbon seques-

tration, a fundamental aspect relating to climate change action is missing, namely nitrous

oxide (N2O) soil emissions. To fill this gap, we ran the DayCent biogeochemistry model for

more than 11’000 LUCAS sampling points under agricultural use, assessing also the model

uncertainty. The results showed that current annual N2O emissions followed a skewed dis-

tribution with a mean and median values of 2.27 and 1.71 kg N ha-1 yr-1, respectively. Using

a Random Forest regression for upscaling the modelled results to the EU level, we esti-

mated direct soil emissions of N2O in the range of 171–195 Tg yr-1 of CO2eq. Moreover, the

direct regional upscaling using modelled N2O emissions in LUCAS points was on average

0.95 Mg yr-1 of CO2eq. per hectare, which was within the range of the meta-model upscaling

(0.92–1.05 Mg ha-1 yr-1 of CO2eq). We concluded that, if information on management prac-

tices would be made available and model bias further reduced by N2O flux measurement at

representative LUCAS points, the combination of the land use/soil survey with a well cali-

brated biogeochemistry model may become a reference tool to support agricultural, environ-

mental and climate policies.

Introduction

Following decisions 1445/2000/EC and 2066/2003/EC [1,2], the statistical office of the Euro-

pean Union (Eurostat) has established a regular survey to monitor changes in land use over

time across the European Union (EU). This survey, known as Land Use and Coverage Area
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frame Survey (LUCAS), classified the land use and cover for around 1’000’000 geo-referenced

locations by remote sensing, of which around 25% were control points visited by field survey-

ors (currently, this equates to 270’000 sites) [1]. In 2009, the scope of the survey was extended

by including a topsoil component for 10% of the control points (c. 20’000 samples) that aimed

to create a harmonised and comparable dataset of physical and chemical properties of topsoil

across the EU [3]. In order to monitor the impact of land related policies on soil conditions

and to support new policy development, the soil survey was repeated in 2015 and is planned to

be undertaken about every 3–6 years. This data collection exercise is fundamental to assess the

impact of implemented policies on soil quality, mainly in view of changes in pools of carbon,

nitrogen, phosphorous and base cations, in addition to its function to act as sink for atmo-

spheric carbon dioxide. However, the data do not cover the emission of nitrous oxide (N2O)

which is a highly policy-relevant biogeochemical nitrogen flow in view of climate action (cli-

mate smart agriculture), as it may (partly) offset the effect of soil carbon sequestration actions

[4].

Nitrogen (N) is needed in agricultural systems to produce food, fuel and fiber and, despite

being a major constituent of the atmosphere as dinitrogen, it is only available to plants and

other organisms once it is ‘activated’ [5]. Once activated, reactive N cascades through the envi-

ronment potentially contributing to a number of environmental issues, including air pollution,

soil acidification, fresh and coastal water eutrophication, and global warming [6–8]. Anthro-

pogenic fixation of N through the Haber—Bosch process is today the largest source of new

reactive N, estimated to be near 120 Tg N yr-1 in 2010 [9], of which about 85% is used as agri-

cultural fertilizer (105 Tg N yr-1), with the remaining part used as feedstock for industrial pro-

cesses (http://www.fertilizerseurope.com/). Use of synthetic N fertilizer in Europe was

estimated at 10% of the global use (10.5 Tg N yr-1) in 2010; however, at a continental scale, the

import of N with feed to Europe is at 2.7 Tg N yr-1, representing another significant source of

reactive N [10]. Amongst the consequences of the N-cascade are the emissions of N2O, the

third most important long-lived greenhouse gas, which contributes 5% to global anthropo-

genic radiative forcing [11].

Terrestrial sources of N2O are dominated by microbial production in soils, but the underly-

ing processes are highly complex and depend on the interaction between soil characteristics,

weather, land use and management practices [12]. As a consequence, N2O fluxes from soils are

characterized by an inherently high spatial and temporal variability that makes extrapolation

to annual fluxes at regional or national scale difficult [13,14]. At the same time, field measure-

ments of N2O fluxes are laborious and expensive to carry out, which means that the number of

suitable data sets to derive N2O emission factors is usually insufficient [15]. Accordingly, N2O

emission estimates are amongst the largest source of uncertainty in national greenhouse gas

inventories [16].

Process-based models, with different degrees of complexity, can be used to estimate N2O

emissions from soil in varying ecosystems and, thus, reduce uncertainty around the estimates.

Complex models represent the production, consumption and diffusion of N during the nitrifi-

cation and denitrification processes. The most widely used process-based models to quantify

agricultural GHG emissions for landscapes or regions are DNDC, EPIC/APEX and DayCent,

each of which are regarded as being well validated [17]. However, due to the model complexity,

the volume of input data, the high level of user expertise and computation resources required,

the use of these models for large-scale assessments is limited. Even though these model have

been applied on a national and even continental scale [18], there is a trade-off between model

complexity and data availability, thus making the results at small geographical scales highly

uncertain. This is a clear drawback since the use of default (IPCC tier 1) or soil and land use

dependent emission factors (IPCC tier 2) do not capture in sufficient detail the impacts of land

N2O emissions in agricultural soils of the EU
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use, climate and soil on N2O emissions nor demonstrate the potential for reducing N2O emis-

sions. It is therefore important to develop a methodology that helps to bridge the generic

approach using default or specific IPCC emission factors (tier 1 and 2), and the more sophisti-

cated approach using complex process oriented biogeochemical models (tier 3). Simplified

approaches often consist of running a model on representative sites, then constructing a meta-

model (a second level of abstraction where the input-output relationship is simplified on the

basis of a significant statistical relationship) to upscale the results [19–22]. This allows scenario

analysis and decision support systems to be easily developed at regional levels, since it requires

fewer parameters and shorter computational times than the original model. Despite the rele-

vance of using meta-models, use of the original model represents an advantage as soon as

appropriate input data are available, being a prerequisite for reliable model results.

Within this context, the aim of this research was to demonstrate a framework that can be

used to improve estimates of N2O emissions from agricultural soils at continental scales using

the original DayCent model with adequate input data. We used one of largest land-use/soil

inventory framework in the EU to parameterize the DayCent model with the aim to: 1) provide

N2O soil flux estimates at LUCAS locations, including an assessment of their sensitivity to the

most important parameters; 2) create a meta-model with DayCent inputs and outputs to spa-

tialize the results at regional level and 3) compare regional estimates of N2O emissions derived

directly from LUCAS point simulations with more complex upscaling methodologies. The

final objective is to develop a proposal on how the LUCAS survey could be used to improve

agricultural N2O emission estimates.

Materials and methods

The dataset characteristics and inputs derived, the models integration and the upscaling pro-

cesses are summarized in the flow chart Fig 1. The first step was to run the DayCent

Fig 1. Flow chart showing the datasets utilized and their spatial resolution, the inputs derived, the model

integration and the upscaling process.

https://doi.org/10.1371/journal.pone.0176111.g001
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biogeochemistry model on the LUCAS points that were classified as either arable or grassland,

using direct information from the survey and supported by other EU datasets (Fig 1).

In the second phase, we developed a meta-model from inputs and model outputs based on

the Random Forest regression approach, which was upscaled by a set of spatial predictor vari-

ables, including high resolution spatial layers from published studies. More details of the meth-

odology are provided in the following paragraphs.

LUCAS soil dataset

Through a combination of remote sensing and direct field observations, the LUCAS survey

gathers harmonized data on land use and cover across the EU, together with changes over

time. It includes a soil component based on 10% of the survey’s control points, providing in

2009 approximately 20’000 sampling locations. Topsoil samples (0–20 cm) were taken from all

land use and land cover types, with a slight bias for agricultural areas [3]. The samples were

analysed in a single ISO-certified laboratory for: percentage of coarse fragments, particle size

distribution (% clay, silt and sand content), pH (in CaCl2 and H2O), organic carbon content

(g kg-1), carbonate content g kg-1), phosphorus content (mg kg-1), total nitrogen content

(g kg-1), extractable potassium content (mg kg-1) and cation exchange capacity (cmol(+) kg-1).

Further information and data accessibility can be found at: http://esdac.jrc.ec.europa.eu/

projects/lucas.

For the purpose of this study we included only the agricultural land uses classified as arable/

rotational forage crops (codes B11 to B55 of the LUCAS land cover classification scheme—

LC1) and the grassland categories (E10 and E20).

DayCent model

DayCent, the daily time-step version of the Century biogeochemical model [23], was designed

to simulate soil C dynamics, nutrient flows (N, P, S), and trace gas fluxes (CO2, CH4, N2O,

NOx, N2) between soil, plants and the atmosphere [24]. Sub-models include soil water content

and temperature by layer, plant production and allocation of net primary production (NPP),

decomposition of litter and soil organic matter, mineralization of nutrients, N gas emissions

from nitrification and denitrification, and CH4 oxidation in non-saturated soils. The model is

driven by daily meteorological data, site characteristics and the main agricultural management

practices such as crop rotation, tillage, grazing, irrigation, organic and mineral fertilisation

inputs.

Model inputs and model application

The inputs needed to run the DayCent model were derived by using: 1) information on soil

properties available for LUCAS points (type I), which was considered very accurate and

directly used as input parameters without an uncertainty range; 2) information from official

statistics not available at point-level (type II) and subject to uncertainty analysis, depending on

the sensitivity of modelled N2O emissions to their variation.

Type I information included the initial soil organic carbon content (SOC), particle size dis-

tribution and pH. Hydraulic properties such as field capacity, wilting points and saturated

hydraulic conductivity were estimated using a pedotransfer rule [25], based on texture and

SOC content. Hydraulic properties were corrected for the presence of stones according to the

formula [1-(Rv/100)], where Rv is the rock fragment content by volume. Soil bulk density was

also calculated with an empirically-derived pedotransfer function [26].

Type II information was derived from official statistics (Eurostat, http://ec.europa.eu/

eurostat/web/main/home) and included crop shares at NUTS2 level (administrative borders,

N2O emissions in agricultural soils of the EU
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which represent the EU basic regions for the application of regional policies), livestock density

and irrigated areas at NUTS3 level, and mineral N consumption at national level (Fig 1). The

data on crop shares, irrigated areas and livestock density were used to derive regional crop

rotations, irrigation frequency and organic fertilizer (manure) inputs (see Fig 1). The method-

ology for obtaining those inputs has been described in a recent pan European SOC modelling

study with the Century model [27] and the resulting maps from this study were used. The

amount of mineral N at national level was partitioned according to the regional crop rotations

and agronomical crop requirements (the fertilizer amounts applied at LUCAS points are

reported in S1 and S2 Figs). Since the modelled N2O fluxes are sensitive to N availability, a

probability density function (PDF) with a mean and variance equal to 1 and 0.2, respectively,

was used to generate the uncertainty of N fertilization inputs. The model was run 50 times on

each LUCAS point multiplying the derived inputs by the randomly sampled PDF values (i.e. a

Monte Carlo approach).

As with other widely used biogeochemistry models (e.g. DNDC), the parameter most influ-

encing N2O fluxes in DayCent is the SOC content [28,29]. To avoid poor model performance

in organic soils, LUCAS locations with a SOC content over 20% were excluded. This removed

137 of the 11765 points in the LUCAS agricultural subset (about 1.1%).

The starting year of the simulation was set at 2009 (year of LUCAS sampling), so that initial

SOC values corresponded to the measured ones. The initial passive:total SOC ratio was derived

from a large-scale application of the Century model [27,30], which is highly consistent with

the DayCent model structure and where a long-term spin-up was made, since the passive pool

has a turnover time ranging from 400–2000 years and is not a measurable parameter. To esti-

mate the impact of the uncertainty in SOC initialization on N2O emissions, we ran DayCent

with a ‘passive pool’ distribution multiplying the passive:total SOC ratio with a randomly sam-

pled PDF with a mean and standard deviation of 1 and 0.2, respectively.

Atmospheric N deposition data were obtained from average values (2006–2010) of the

EMEP model (rv 4.5) [31] results, providing spatially distributed (50 km2 resolution) wet and

dry deposition. Meteorological data were taken from the E-OBS gridded dataset (http://www.

ecad.eu/download/ensembles/downloadversion11.0.php#datafiles). The dataset provided daily

data of maximum and minimum temperature and precipitation on a grid of 0.25˚ resolution.

The model was run from 2009 to 2014 but the outputs were taken after 2010, allowing a

one-year equilibrium of the fast N and SOC pools and water status in the soil profile. About

11’628 points distributed in two land uses (arable and grassland) were simulated, for a total of

581’400 runs considering the uncertainty analysis. A Linux server with 24 core and 64GB of

RAM allowed a reasonable computational time of about 11 hours.

Crops simulation and validation

For the arable land use, the following crops were available in the DayCent model: winter and

spring barley, winter and spring wheat, forage and grain maize, oilseed rape, potato, sugar

beet, soybean, sunflower, pulses and cotton. The planting and harvesting date for each crop

was based on the crop calendar map, available at the SAGE Center (https://nelson.wisc.edu/

sage/data-and-models/crop-calendar-dataset/index.php) [32].

The LUCAS survey does not provide information about the specific management, therefore

conventional agro-techniques were assumed to be in place; these included a primary (mould-

board) and secondary tillage and mineral N application split in two events (depending on crop

type).

Crops yields at NUTS2 level were collected from the Eurostat portal and used as compari-

son with modelled yields, the latter aggregated at the same NUTS2 level. Crop yields from

N2O emissions in agricultural soils of the EU
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Eurostat were converted first to dry matter, utilizing the moisture content indicated by the

“Eurostat Handbook for Annual Crop Statistics” and, second, to carbon (multiplying by 0.45)

to match the same modelled units. Consequently, some calibration was made on the ‘potential

above ground production coefficient’ for maize, potato, and sugar beet in order to reduce the

deviation with measured data. All other crop parameters, including those controlling SOC

decomposition or N fluxes were default values as given in the DayCent library.

Regional upscaling

Two methods were applied to extend the results from LUCAS points to the whole agricultural

area at the level of administrative regions (NUTS2) (Fig 1):

1. multiplication of average N2O emission rates simulated at all LUCAS points in each region,

with its total agricultural area derived from the Corine Land Cover;

2. application of a meta-model by a Random Forest regression, trained to predict N2O emis-

sions with a subset of variables.

In the latter approach, firstly, the Random Forest was developed from simulation inputs

and outcomes and, secondly, it was applied regionally using two different sets of spatial predic-

tor variables to assess the uncertainty associated with input data.

The ‘RandomForest’ library of R-core (https://www.r-project.org/) was used to predict N2O

annual fluxes (kg N ha-1 yr-1) from the following predictors: clay (%), sand (%), SOC stock

(Mg C ha-1), PTR (passive to total SOC ratio), soil pH, N-org (annual organic N fertilization),

N-min (annual mineral N fertilization), atmospheric N deposition, NPP (net primary produc-

tion), MxAT (maximum annual temperature), MnAT (minimum annual temperature), rain

(annual precipitation). To evaluate the meta-model performances, the dataset derived from

DayCent outcomes was split into a training and testing data, randomly sampling 75% of the

original records.

The upscaling of the fitted Random Forest model was done by: 1) a meta-model MT1,

where most of the spatial predictors were taken from the pan European SOC modelling appli-

cation, previously developed with Century model [27,30] and 2) a meta-model MT2, where

the two most explaining variables (SOC stock and clay content, see Results) were substituted

in MT1 by the corresponding high resolution soil maps from the ISRIC repository (http://

www.isric.org/content/soilgrids) [33].

In upscaling the model results (see Fig 1), use was made of soil data as given in the Euro-

pean soil database (ESDB; http://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-

soil-properties) and climate data as given by WorldClim (http://www.worldclim.org/current).

The difference (Var) in meta-model predictions were evaluated against the direct aggrega-

tion of LUCAS point simulations as follow:

Varn¼ ðMTn� LCSnÞ=LCSn � 100 ð1Þ

were MT is the average N2O emission of all inferred pixels at NUTS2 level (n) and LCS is the

average of LUCAS-DayCent simulated values in the respective NUTS2 regions.

Results

Crop yield

The simulated yields of the main crops were generally in good agreement with published

regional EU statistics, with an overall Root Mean Square Error (RMSE) of 0.9 Mg C ha-1

(Fig 2). Some NUTS2 regions were over-represented by LUCAS sites, especially for wheat,

N2O emissions in agricultural soils of the EU
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barley and oilseed crops. Other than for sugar beet, the deviation from the 1:1 line was noted

in NUTS regions with a lower number of simulated values (and hence of LUCAS points), indi-

cating a possible lack of statistical representativeness rather than a model bias. The Mean

Absolute Error (MAE), which is less sensitive to outliers than RMSE, was 0.67 Mg C ha-1.

Estimated soil N2O fluxes

The DayCent model simulates direct N2O fluxes from soils accounting for all emissions

derived from the biogeochemical cycling of different N sources (inorganic and organic fertil-

izer, biological soil and crop fixation, N depositions, mineralization of soil organic carbon and

plant litter).

Annual soil N2O fluxes followed a skewed distribution with mean and median values of

2.27 and 1.71 kg N ha-1 yr-1, respectively (1st and 3rd quartiles of 1.18, 2.63 kg N ha-1 yr-1).

Fig 2. Simulated crop yields and comparison with Eurostat values, aggregated at NUTS2 level. The size of points

represents the number of simulations for the following crops within each NUTS2 region. RMSE = root mean square error:

MAE = mean absolute error.

https://doi.org/10.1371/journal.pone.0176111.g002
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Geographically, lower emission rates were simulated in the Mediterranean regions where val-

ues below 1 kg N ha-1 yr-1 were frequent in Spain, Central-Southern Italy and Greece (Fig 3).

Emission in eastern countries ranged mostly between 1 and 2 kg N ha-1 yr-1, while values

above 3 kg N ha-1 yr-1 were often present in central Europe, UK and Ireland. Almost 8% of the

LUCAS points displayed stimulated emissions higher than 5 kg N ha-1 yr-1.

The uncertainty of the estimates was low in the Mediterranean and Eastern Europe, gener-

ally increasing with the emission rates elsewhere (Fig 4).

Fig 3. Simulated soil N2O-N emission rates (kg ha-1 yr-1) in LUCAS points.

https://doi.org/10.1371/journal.pone.0176111.g003
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Random Forest performance and upscaling

The Random Forest model explained a large part of the variance (89.3%) in the DayCent

results, with lower RMSE in the training dataset and slightly higher in the validation dataset

(0.27 and 0.59 kg N ha-1 yr-1, respectively) (Fig 5). The most important variable in the model,

defined as the increase in mean of the squared prediction error when that variable is randomly

permuted (%IncMSE), was the SOC stock (115.6%), followed by the clay content (90.0%), NPP

(71.6%) and proportion of labile carbon (68.8%). Annual precipitation was ranked as the least

important.

Fig 4. Model uncertainty of simulated soil N2O-N emission rates (kg ha-1 yr-1) in LUCAS points.

https://doi.org/10.1371/journal.pone.0176111.g004
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The application of the Random Forest model with the spatially continuous predictors gave

spatial patterns and magnitudes of N2O emissions that were consistent with those resulting

from simulations for LUCAS points (see Fig 6 for MT1). The cumulated emission in arable

and grassland land use of EU28 countries simulated with MT1 amounted to 0.41 (0.076 2σ) Tg

yr-1 of N2O-N, corresponding to 170.6 (±31.6) Tg of CO2eq per year (using a Global Warming

Potential of 265 at a time horizon of 100 years). The MT2 model resulted in a higher cumu-

lated N2O emission equal to 195.0 Tg yr-1 of CO2eq, due to the higher SOC stock estimated by

the ISRIC. Moreover, the direct upscaling of LUCAS-DayCent simulations by the agricultural

land area coming from the Corine Land Cover gave a total emission of 157.7 Tg yr-1 of CO2eq,

but it did not account for Croatia, Romania and Bulgaria excluded in 2009 LUCAS sampling.

With the MT1 approach, 80 out of 234 NUTS2 resulted in emission variations (see Eq 1)

outside a ±20% interval compared to the direct upscaling of LUCAS mean emissions at

NUTS2. With the MT2 approach, that value was raised to 105 (Fig 7). Both meta-models

highlighted some common regions (NL12, NL11, GR43, BE35, ES11, ES52, PT16, SE33,

UKM6) where emissions varied by more than 50%.

Discussion

Considering the objectives of the current CAP programme (2014–2020), the creation of a stan-

dardized land use and soil monitoring framework [3] is a fundamental step for monitoring the

sustainability of agricultural systems and their environmental status as oriented by given poli-

cies and associated instruments. LUCAS soil information has been demonstrated to produce

new high-resolution soil properties layers [34] or be useful to validate soil organic carbon

inventories [27,35]. The latter are certainly a key component to monitoring policies that aim

Fig 5. Random Forest meta-model evaluation (meta-model vs DayCent N2O rates) in the training (left) and testing

dataset (right).

https://doi.org/10.1371/journal.pone.0176111.g005
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to sequester CO2, and thus contributing to meeting greenhouse gases emission reduction tar-

gets in agriculture, as defined in the proposal to integrate the land use sector into the EU2030

Climate and Energy Framework. However, the inclusion of N2O emissions assessment is a req-

uisite for evaluating the full greenhouse gas balance of climate mitigation actions, due to the

high climate relevance of N2O [36], but also in its role in depleting stratospheric ozone [37].

Stations with continuous N2O measurements or discrete air sampling sites can be used in

top-down estimates of European N2O emissions [38]. Inverse models are continuously

improving both in terms of spatial resolution and decreasing uncertainty and have shown

Fig 6. Map of soil N2O-N emissions based on Random Forest upscaling to a 1 km2 grid with the meta-model MT1. Administrative

borders represent the EU basic regions (NUTS2) for the application of regional policies.

https://doi.org/10.1371/journal.pone.0176111.g006
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that—at the national scale—uncertainties of agricultural N2O emissions estimated with the

simple IPCC methods might be lower than generally assumed [38]. However, both top-down

and IPCC methods will not be able to provide fine-grained estimates of N2O emission fluxes

caused by environmental change, land use change, or changing management practices.

A better link between N2O emissions and changes in management and environmental con-

ditions can be obtained by the use of biogeochemistry models, which are often run and/or cali-

brated against measured data at site level [39,40] and spatially upscaled by the use of meta-

models [22,41]. However, the large variability in environmental conditions poses a challenge

for process-based models if the number of experimental data used for their calibration is insuf-

ficient and do not cover the whole range of environmental conditions in the model application

area [42]. Experimental field sites monitoring N2O fluxes from agricultural soils are usually

financed by short-term projects of a few years and long-term time series are almost non-

existent. While the number of available measurements is continuously increasing, for instance

in Mediterranean regions [43], a thorough validation of regional estimates of N2O fluxes calcu-

lated with process-based model for agricultural soils in Europe is still missing.

In our study, the DayCent model predicted average N2O emissions of 2.27 (median

1.71) kg N ha-1 yr-1 in LUCAS points, corresponding to 2.2 kg N ha-1 yr-1 with the meta-model

upscaling (MT1). These numbers are consistent with other model integrations such as INTE-

GRATOR [44] and MITERRA [45], that report N2O emissions of 1.1–2.4 (in arable land) and

2 kg N ha-1 yr-1 in the agricultural area of EU27 for the year 2000, respectively. Based on the

above results and the outputs of other models (IDEAg, IMAGE, UNFCC), the most recent

‘European Nitrogen Assessment’ [46] reported total N2O emission rates for EU27 ranging

between 0.33 and 0.43 Mt N yr-1, which are similar to our estimations of 0.41 and 0.47 Mt

N yr-1 with MT1 and MT2, respectively. Moreover, total N2O emissions of 170.6 (±31.6) Tg of

CO2eq per year were higher than the direct N2O emissions from agricultural soils in the EU

reported to the UNFCCC in 2015, averaging about 130 Tg of CO2eq. for the last decade [47]

but based on lower tier accounting methodologies.

Fig 7. Percentage of variation in average N2O emissions between DayCent simulations at LUCAS sites and

regional meta-model values for MT1 (upper) and MT2 (lower), at NUTS2 level. The blue line is the 0 value, while the

black lines -20 and +20%. Labelled NUTS2 show variation >50% between average meta-model emissions compared to

LUCAS points, with all green bars within the black lines meaning that the variation is within ±20%.

https://doi.org/10.1371/journal.pone.0176111.g007
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Certainly, our results incorporate different types of uncertainty associated with different

methodological steps. Firstly, the process-based model uncertainty. Even though DayCent is

one of the most used process-based models for estimating N2O fluxes [48,49], calibration of

the model at experimental field sites in Europe is scarce and the model-bias is therefore largely

unknown. The Random Forest approach was able to explain most of the variance with very

low RMSE both in the training and testing dataset. In agreement with Perlman et al. [21] and

Giltrap et al. [22], who developed a meta-model based on DNDC simulations, SOC content

was the most explaining variable. This indicates a common model sensitivity to SOC of the

most widely used biogeochemistry models, which seems partially supported by meta-analysis

[50], as other factors such as pH or air temperature can have the same magnitude in response.

In fact, the trade-off between increasing model complexity and additional parameters uncer-

tainty followed by high computational time is likely the main constrain for fast modification of

existing codes [51].

Secondly, the model input uncertainty. This uncertainty is high at LUCAS point level due

to the lack of information on management practices. Although this aspect cannot be addressed

as data are missing, the use of probability density functions can help to quantify the associated

variance.

Input uncertainty is also added in the Random Forest upscaling process. When we changed

the two most explaining variables (i.e. SOC and clay) in the spatial dataset, we obtained a 14%

difference in total N2O emission at EU level, mainly due to the higher SOC stock values in

MT2 compared to MT1 (S3 Fig).

At NUTS2 level, DayCent-LUCAS simulations and the two meta-models provided com-

parable information as variation was below 20% in the majority of the regions. The NUTS2

are administrative borders which represent the EU basic regions for the application of

regional policies, therefore policy decisions are often evaluated on indicators aggregated at

that territorial level. Under this perspective, simulations on LUCAS points may be represen-

tative for EU policy support, with possible exception in a few NUTS2 regions where both

meta-models indicated a substantial bias. For instance, in the NL12 NUTS region, one of the

areas with the highest variation, the six LUCAS sampling points were all close to the coast-

line; in addition, the average SOC stock on those locations was only one third of the esti-

mates from both [30] and ISRIC datasets. This indirect verification may help to assess

LUCAS representativeness that could be evidently improved by increasing the number of

soil sample points or verifying potential sources of bias (point location/classification, analysis

errors, etc.).

Conclusion

There is substantial orientation in the EU to finance the LUCAS survey supporting various

policy areas (agricultural, climate and environmental policies), in view of the multiple uses

that such kind of data can provide (e.g. assess environmental changes, update European soil

maps, validate soil models). We demonstrated how a model framework can be very useful to

complement LUCAS information with N2O emissions. Some improvements are needed to

retrieve more information about actual management practices that we tried to encompass by

quantifying the associated uncertainty. Furthermore, a combination of intensive flux measure-

ment sites to calibrate process-based models would be essential to increase model accuracy.

This might enable the LUCAS survey to become not only a reference benchmark for monitor-

ing environmental status and its change, but possibly also a supporting tool for reporting obli-

gations, such as those under the UNFCCC. Definitely, a land use/soil survey framework

feeding a state-of the-art and well calibrated biogeochemistry model has the potential to

N2O emissions in agricultural soils of the EU

PLOS ONE | https://doi.org/10.1371/journal.pone.0176111 April 27, 2017 13 / 16

https://doi.org/10.1371/journal.pone.0176111


become a powerful tool to support environmental policies affecting land use and management

in the EU.
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39. Álvaro-Fuentes J, Arrúe JL, Bielsa A, Cantero-Martı́nez C, Plaza-Bonilla D, Paustian K. Simulating cli-

mate change and land use effects on soil nitrous oxide emissions in Mediterranean conditions using the

Daycent model. Agric Ecosyst Environ. 2016;

40. Molina-Herrera S, Haas E, Klatt S, Kraus D, Augustin J, Magliulo V, et al. A modeling study on mitigation

of N2O emissions and NO3 leaching at different agricultural sites across Europe using Landsca-

peDNDC. Sci Total Environ. 2016; 553: 128–140. https://doi.org/10.1016/j.scitotenv.2015.12.099

PMID: 26909705

41. Follador M, Leip A, Orlandini L. Assessing the impact of cross compliance measures on nitrogen fluxes

from European farmlands with DNDC-EUROPE. Environ Pollut. 2011; 159: 3233–3242. https://doi.org/

10.1016/j.envpol.2011.01.025 PMID: 21315499

42. Leip A, Busto M, Corazza M, Bergamaschi P, Koeble R, Dechow R, et al. Estimation of N2O fluxes at

the regional scale: data, models, challenges. Curr Opin Environ Sustain. Elsevier B.V.; 2011; 3:

328–338.

43. Cayuela ML, Aguilera E, Sanz-Cobena A, Adams DC, Abalos D, Barton L, et al. Direct nitrous oxide

emissions in Mediterranean climate cropping systems: Emission factors based on a meta-analysis of

available measurement data. Agric Ecosyst Environ. 2016;

44. Reinds GJ, Heuvelink GBM, Hoogland T, Kros J, De Vries W. Estimating nitrogen fluxes at the Euro-

pean scale by upscaling INTEGRATOR model outputs from selected sites. Biogeosciences. 2012; 9:

4527–4536.

45. Velthof GL, Oudendag D, Witzke HP, Asman W a H, Klimont Z, Oenema O. Integrated assessment of

nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE. J Environ Qual. 2009; 38:

402–417. https://doi.org/10.2134/jeq2008.0108 PMID: 19202011

46. de Vries W, Leip A, Reinds GJ, Kros J, Lesschen JP, Bouwman AF. Comparison of land nitrogen bud-

gets for European agriculture by various modeling approaches. Environ Pollut. 2011; 159: 3254–3268.

https://doi.org/10.1016/j.envpol.2011.03.038 PMID: 21570167

47. EEA. Annual European Union greenhouse gas inventory 1990–2014 and inventory report 2016. In:

EEA Report No 15/2016 [Internet]. 2016 [cited 21 Feb 2017]. http://www.eea.europa.eu/publications/

european-union-greenhouse-gas-inventory-2016

48. Del Grosso SJ, Parton WJ, Mosier a R, Walsh MK, Ojima DS, Thornton PE. DAYCENT national-scale

simulations of nitrous oxide emissions from cropped soils in the United States. J Environ Qual. 2006;

35: 1451–1460. https://doi.org/10.2134/jeq2005.0160 PMID: 16825465

49. Del Grosso SJ, Ogle SM, Parton WJ, Breidt FJ. Estimating uncertainty in N 2 O emissions from U. S.

cropland soils. Agriculture. 2010; 24: 1–12.

50. Shcherbak I, Millar N, Robertson GP. Global metaanalysis of the nonlinear response of soil nitrous

oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci. 2014; 111: 9199–9204. https://doi.org/

10.1073/pnas.1322434111 PMID: 24927583

51. Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. Nitrous oxide

emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc

Lond B Biol Sci. 2013; 368: 20130122. https://doi.org/10.1098/rstb.2013.0122 PMID: 23713120

N2O emissions in agricultural soils of the EU

PLOS ONE | https://doi.org/10.1371/journal.pone.0176111 April 27, 2017 16 / 16

https://doi.org/10.1016/j.scitotenv.2015.12.099
http://www.ncbi.nlm.nih.gov/pubmed/26909705
https://doi.org/10.1016/j.envpol.2011.01.025
https://doi.org/10.1016/j.envpol.2011.01.025
http://www.ncbi.nlm.nih.gov/pubmed/21315499
https://doi.org/10.2134/jeq2008.0108
http://www.ncbi.nlm.nih.gov/pubmed/19202011
https://doi.org/10.1016/j.envpol.2011.03.038
http://www.ncbi.nlm.nih.gov/pubmed/21570167
http://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2016
http://www.eea.europa.eu/publications/european-union-greenhouse-gas-inventory-2016
https://doi.org/10.2134/jeq2005.0160
http://www.ncbi.nlm.nih.gov/pubmed/16825465
https://doi.org/10.1073/pnas.1322434111
https://doi.org/10.1073/pnas.1322434111
http://www.ncbi.nlm.nih.gov/pubmed/24927583
https://doi.org/10.1098/rstb.2013.0122
http://www.ncbi.nlm.nih.gov/pubmed/23713120
https://doi.org/10.1371/journal.pone.0176111

