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Abstract
Purpose: This study aimed to evaluate the accuracy of deep learning (DL)-
based computed tomography (CT) ventilation imaging (CTVI).
Methods: A total of 71 cases that underwent single-photon emission CT
81mKr-gas ventilation (SPECT V) and CT imaging were included. Sixty cases
were assigned to the training and validation sets, and the remaining 11 cases
were assigned to the test set. To directly transform three-dimensional (3D)
CT (free-breathing CT) images to SPECT V images, a DL-based model was
implemented based on the U-Net architecture. The input and output data were
3DCT- and SPECT V-masked, respectively, except for whole-lung volumes.
These data were rearranged in voxel size, registered rigidly, cropped, and
normalized in preprocessing. In addition to a standard estimation method (i.e.,
without dropout during the estimation process), a Monte Carlo dropout (MCD)
method (i.e., with dropout during the estimation process) was used to calculate
prediction uncertainty. To evaluate the two models’ (CTVIMCD U-Net, CTVIU-Net)
performance, we used fivefold cross-validation for the training and validation
sets. To test the final model performances for both approaches, we applied
the test set to each trained model and averaged the test prediction results
from the five trained models to acquire the mean test result (bagging) for each
approach. For the MCD method, the models were predicted repeatedly (sample
size= 200),and the average and standard deviation (SD) maps were calculated
in each voxel from the predicted results:The average maps were defined as test
prediction results in each fold.As an evaluation index, the voxel-wise Spearman
rank correlation coefficient (Spearman rs) and Dice similarity coefficient (DSC)
were calculated. The DSC was calculated for three functional regions (high,
moderate, and low) separated by an almost equal volume. The coefficient of
variation was defined as prediction uncertainty, and these average values were
calculated within three functional regions. The Wilcoxon signed-rank test was
used to test for a significant difference between the two DL-based approaches.
Results: The average indexes with one SD (1SD) between CTVIMCD U-Net
and SPECT V were 0.76 ± 0.06, 0.69 ± 0.07, 0.51 ± 0.06, and 0.75 ± 0.04
for Spearman rs, DSChigh, DSCmoderate, and DSClow, respectively. The average
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indexes with 1SD between CTVIU-Net and SPECT V were 0.72 ± 0.05, 0.66
± 0.04, 0.48 ± 0.04, and 0.74 ± 0.06 for Spearman rs, DSChigh, DSCmoderate,
and DSClow, respectively. These indexes between CTVIMCD U-Net and CTVIU-Net
showed no significance difference (Spearman rs,p = 0.175;DSChigh,p = 0.123;
DSCmoderate, p = 0.278; DSClow, p = 0.520). The average coefficient of vari-
ations with 1SD were 0.27 ± 0.00, 0.27 ± 0.01, and 0.36 ± 0.03 for the high-,
moderate-, and low-functional regions, respectively, and the low-functional
region showed a tendency to exhibit larger uncertainties than the others.
Conclusion: We evaluated DL-based framework for estimating lung-functional
ventilation images only from CT images.The results indicated that the DL-based
approach could potentially be used for lung-ventilation estimation.
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1 INTRODUCTION

Lung-functional imaging has been reported to provide
beneficial information for radiotherapy (e.g., functional
lung-avoidance radiotherapy treatment planning,1–3

and treatment response modeling4). Functional lung-
avoidance radiotherapy, especially, is used to irradiate
tumors to minimize dose deposition to high-functional
lung regions by using guided functional imaging. The
usefulness of this approach has been reported, and
clinical practices and trials are underway.5,6

Currently, most lung-ventilation and -perfusion imag-
ing methods are based on the use of radioisotopes
or contrast media, such as single-photon emission
computed tomography (SPECT),7 positron emission
tomography (PET),8 magnetic resonance imaging,9 and
dual-energy CT.10 Although these imaging techniques
provide much beneficial information for regional lung
function, they have some disadvantages, including radi-
ation exposure, high cost, relatively low spatial and/or
temporal resolution, and the requirement of special
equipment. Therefore, the routine use of these meth-
ods for radiotherapy is difficult, so a more convenient
approach for lung-functional imaging is needed to per-
form functional lung-avoidance radiotherapy. Recently,
to overcome these shortcomings, image-processing-
based methods have been proposed to quantify the
local lung-ventilation function from four-dimensional
(4D) CT images.11 This CT ventilation imaging (CTVI)
technique is based on a deformable image registra-
tion algorithm that enables quantitation of the local
lung-ventilation function from 4DCT images acquired
for treatment planning. Using this technique, the special
medication or implementations mentioned previously
are unnecessary, so acquiring the lung-ventilation
images becomes more convenient. Thus, 4DCT-based
ventilation imaging has high accessibility and the
potential to be used in radiation oncology departments
because no additional imaging and financial costs for
the treatment protocol are required. In addition, stud-
ies on lung-functional avoidance radiotherapy have
reported the potential of substitutability for clinical ven-

tilation imaging, such as SPECT12,13 and PET,8,14 and
this has been used in some prospective clinical trials
(NCT02528942 and NCT02843568). However, 4DCT
results in higher radiation exposure and imaging cost
compared with three-dimensional (3D) CT.

In recent years, the use of deep learning (DL) for
several tasks has become popular in radiotherapy,
and particularly, convolutional neural networks (CNNs)
have been primarily used for image processing.15 CNN
consists of multilayered extraction and/or reconstruc-
tion features, and it is possible to perform end-to-end
learning of features at various levels depending on the
tasks. This technique has enabled CNN to provide com-
parable or superior performance to that of conventional
approaches for various tasks, such as segmentation,16

dose prediction,17,18 dose calculation,19 and quality
assurance.20,21 In addition, CNN was applied for lung-
functional image generation and provided performance
superior to that of conventional CTVI techniques.Zhong
et al. transformed inhale and exhale CT images in
4DCT images to lung-ventilation images derived from
CTVI directly.22 Liu et al. transformed 4DCT images to
ventilation images derived from SPECT ventilation (V)
directly.23 On the other hand, Ren et al. proposed and
investigated a method for generating SPECT perfusion
images directly from CT images and showed that the
method could generate perfusion images relatively
accurately only with 3DCT images.24,25 Their results
suggest that 3DCT images contain physiological and
biological information necessary for estimating regional
lung function.

Therefore, this study aimed to evaluate the accu-
racy of DL-based approach for directly transforming
3DCT images to krypton-81m gas (81mKr-gas) SPECT
V images. The clinical SPECT V image was taken
as true data, and the performance was evaluated
qualitatively by visual inspection and quantitatively by
indexes (Spearman rank’s correlation coefficient and
Dice similarity coefficient [DSC]). In addition, to interpret
the prediction results, the prediction uncertainties were
quantified and evaluated using the Monte Carlo dropout
(MCD) approach.26 To the best of our knowledge, this
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TABLE 1 Clinical characteristics of the cases (n = 71): 67
patients had one SPECT/CT image set and 2 patients had 2 images

Characteristics Median (range) or number (%)

Age (years) 72 (16–87)

Sex Male: 18 (24.3%)/female: 53 (75.7%)

Smoking history Yes: 20 (28.2%)/no: 50 (70.4%)/N/A: 1
(1.4%)

Diagnosis Pulmonary hypertension: 30 (42.3%)

Pulmonary embolism: 28 (39.4%)

Systemic lupus erythematosus: 2 (2.8%)

Others: 11 (15.5%)

Note: Others: paroxysmal supraventricular tachycardia, peripheral pulmonary
stenosis, pulmonary arteriovenous fistula, atrial septal defect, severe tricuspid
regurgitation,pulmonary vein stenosis,abdominal aortic aneurysm, transthyretin
amyloid cardiomyopathy.
Abbreviations: CT, computed tomography; SPECT, single-photon emission com-
puted tomography.

is the first study to translate SPECT V images directly
from 3DCT images.

2 MATERIALS AND METHODS

2.1 Patients and imaging

This study was a retrospective analysis approved by
our Institutional Review Board (ERB-C-1811-1). Sixty-
nine patients who underwent lung 81mKr-gas venti-
lation SPECT/CT scans from 2016 to 2021 at our
hospital were enrolled. These patients had all the
required data (e.g., attenuation-corrected SPECT data
and 3DCT images) for analysis. In total, 67 patients had
1 SPECT/CT image and 2 patients had 2 images (ini-
tial and follow-up scan) acquired at a ≥6-month interval
from the initial SPECT/CT examination.The images of a
total of 71 cases were used. Accordingly, 60 cases were
assigned to the training and validation sets randomly,
and the remaining 11 patients were assigned to the test
set for dividing the initial and follow-up scan in the same
dataset to prevent data leakage. Among the 71 cases,
30 had pulmonary hypertension, 28 had pulmonary
embolism, and 2 had systemic lupus erythematosus.
The remaining patients had different types of lung dis-
eases,such as paroxysmal supraventricular tachycardia
and peripheral pulmonary stenosis. The clinical charac-
teristics of the patients are summarized in Table 1.

We acquired 81mKr-gas ventilation images using a
Discovery 670 SPECT/CT scanner (GE Healthcare, Mil-
waukee, Wisconsin). All scans were performed during
the inhalation of 185 MBq of 81mKr-gas.The scans were
acquired across 360◦ in six steps to cover the whole-
lung volume at a frame rate of 20 s/step. An extended
low-energy general-purpose collimator was used, and
attenuation correction was applied for ventilation scans.
All SPECT images were collected as a 64 × 64 × 64
matrix with a pixel spacing of 8.84 × 8.84 × 8.84 mm3

using a 3D-ordered subsets expectation maximization
algorithm.The mean± 1 standard deviation (1SD) of the
non-defect ventilation volume percentage segmented
using the image-specific intensity threshold (set at 50%
of the 90th percentile value within the whole lung)12,14

for all SPECT V images was 68.0% ± 11.1%.
All CT images were acquired on 64-multidetector

row CT scanners (Optima CT 540 or BrightSpeed; GE
Health care, Milwaukee, Wisconsin) that compose the
SPECT/CT system. All CT images were acquired dur-
ing free-breathing and collected as a 512 × 512 matrix
with a pixel spacing of 0.977 × 0.977 mm2 in axial view
with axial spacing of 1.25 mm and reconstructed using
the same filtered back-projection kernel for soft tissue.
The X-ray tube voltage and current were set to 75 kV
and 120 mA, respectively. The radiation exposure of the
CT technique with this scanner was 3.06 mGy in volume
CT dose index.

2.2 Image preprocessing

The pipeline of the image preprocessing for model
training and evaluation consisted of the following pro-
cesses: parenchyma segmentation, registration, pixel
resampling and resizing, and rescaling or normaliza-
tion. Lung parenchyma segments were automatically
generated from the CT images using 3D slicer software
(https://www.slicer.org: ver. 4.11) extension Chest Imag-
ing Platform (http://www.chestimagingplatform.org)
and modified manually if necessary (e.g., deleting
obvious digestive gas). To minimize the influence of
misalignment between the SPECT V and CT images,
we registered the alignment rigidly on Elastix 5.0.1 using
PyElastix 1.2 (https://github.com/almarklein/pyelastix)
as the python wrapper.To reduce the computational cost
in DL model training, the CT images and lung masks
were down-sampled and cropped into 2.5 × 2.5 × 2.5-
mm3 and 128 × 128 × 128-sized matrices; these
parameters were selected to include the whole-lung
volume in the input data for all patients. Then, the
SPECT V images were up-sampled and cropped under
the same conditions as described previously. Voxel
intensity values in CT are absolute and present impor-
tant information (e.g., a single threshold of −856 HU
indicates emphysematous lesions27). Therefore, to
maintain the relationship along CT values, CT images
were not standardized but rather rescaled linearly using
the following scale to smoothly train the DL-based
model: −999 HU = 0 and −250 HU = 1. Conversely,
voxel intensity values in SPECT imaging are relative
rather than absolute compared with those in CT imag-
ing, and it is possible that they have outliers (i.e., too
high or too low local values). Therefore, to avoid the
influence of outliers during normalization, SPECT V
images were normalized to the median value, which is a
relatively robust index, instead of the mean value of the
whole-lung volumes.These rescaled or normalized data

https://www.slicer.org
http://www.chestimagingplatform.org
https://github.com/almarklein/pyelastix
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F IGURE 1 Model architecture used within the study. This CNN model is based on the U-Net architecture. The masked CT volume is input
into the model, and the masked ventilation volume is output through the encoding and decoding paths. Numbers on the left side and top of the
model represent the volume shape and the number of feature maps in a particular layer, respectively. CNN, convolutional neural network; Conv,
convolutional layer; CT, computed tomography; Trans conv: transposed convolutional layer

volumes were replaced with 0 except for the whole-lung
volumes shown as the input and output in Figure 1. The
previously mentioned processes were implemented
using Python 3.8.8.

2.3 DL framework and training

We implemented a CNN model based on the U-Net
architecture.28 Figure 1 shows the model architecture.
The architecture consists of encoding and decoding
paths as with the general U-Net architecture; the encod-
ing path abstracts and extracts low–high-dimensional
features for input data, and the decoding path trans-
forms the features to other domain output data. The
encoding path consists of the repeated module of two
3 × 3 × 3 convolutions with 1 × 1 × 1 stride and 1 × 1 × 1
padding, each followed by a leaky rectified linear unit
(Leaky ReLU)29 with alpha = 0.30 and a connecting
dropout layer30 with a dropout rate= 0.50 and a 2× 2× 2
max-pooling layer with a 2 × 2 × 2 stride for down-
sampling. At each down-sampling step, we doubled the
number of feature maps. Every step in the decoding
path consisted of a 2 × 2 × 2 transposed convolutions
with a 2 × 2 × 2 stride that halved the number of fea-
ture maps, a concatenation with the feature maps with
corresponding size from the encoding path, and two
3 × 3 × 3 convolutions with a 1 × 1 × 1 stride and
1 × 1 × 1 padding, each followed by Leaky ReLU with
alpha = 0.30 and a connecting dropout layer with a
dropout rate = 0.50. At the final layer, a 1 × 1 × 1 convo-
lution with a 1 × 1 × 1 stride followed by a ReLU31 was
used for output. L2 regularization was set to 1.0 × 10−4

in all trainable layers.The 3D U-Net was implemented in
Keras with a TensorFlow 2.3.0 backend.

In addition to the standard estimation method, an
MCD approach was used to quantify prediction uncer-
tainty. In contrast to the standard method without dropout
during estimation, the MCD approach approximates the
Gaussian process by repeatedly sampling with dropout
during the estimation phase of the model’s weights from
a Bernoulli distribution26 and could obtain a prediction
uncertainty in each case.

To evaluate the model performance robustly,a total of
60 cases for training and validation were divided using a
fivefold cross-validation (CV) procedure: 48 cases were
used for training and 12 cases were used for valida-
tion in each fold. To keep the study as fair as possible,
the model architecture and datasets were fixed in both
approaches (with or without MCD) during the training
process. Adam32 (lr = 5.0 × 10−5, β1 = 0.90, β2 = 0.999,
ε = 1.0 × 10−7) was used for the optimizer, the maxi-
mum train epoch was set to 1000, the batch size was set
to 2, and early stopping (patience = 50) was used. We
used the mean squared error (MSE) as the loss func-
tion. Computation was performed using an Intel Core
i9-9820X @ 3.30 Gz and an NVIDIA TITAN RTX GPU
graphics card with a 24-GB memory.

2.4 Evaluation

From these five trained models in each fold for both mod-
els with or without MCD, we then chose the best per-
formance model on the basis of its validation loss (i.e.,
minimal error) and evaluated the model on the test set.
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To test these final model performances for the model
without MCD (standard model), we applied the test set
to each trained model and averaged the test prediction
results from the five trained models to acquire the mean
test result (bagging) for each approach. For the model
with MCD (MCD model), the model was used to predict
repeatedly (sample of size = 200), and the average and
SDs calculated in each voxel from the predicted results
were the prediction results for each fold.

For quantitative analysis, we calculated Spearman’s
rank correlation coefficient (Spearman rs) to assess the
intensity correlation and the DSC to quantify the similar-
ity of functional geometries for three separated nonover-
lapping functional regions (i.e., high, moderate, and low)
and MSE within the whole lung to evaluate the coinci-
dence of raw intensity values. These functional regions
were defined using the following thresholds: the high-
est 33.3 percentile value, lowest 33.3 percentile value,
and between these values within the whole-lung vol-
ume. These functional regions’ volumes were separated
almost equally.

Spearman’s rs was defined by the following equation:

rs =

∑N
i=1 [(yi − ȳ) ⋅ (pi − p̄)]√∑N

i=1 (yi − ȳ)2
√∑N

i=1 (pi − p̄)2
, (1)

where p̄, ȳ,pi ,and yi denote the average value and value
at voxel i for the CTVI and SPECT V (ground truth),
respectively. N denotes the total number of voxels in the
whole lung.

DSC was defined by the following equation:

DSC (a, b) =
2 |a ∩ b|
|a| + |b| , (2)

where a denotes the volumes of functional lung regions
in CTVI, and b denotes the volumes of the correspond-
ing regions in SPECT V. Statistical differences were
evaluated by the Wilcoxon signed-rank test significant
difference procedure using SciPy v1.6.3.

To compare the existing approach, we calculated
DSC between SPECT V low-functional regions and
low-attenuation (emphysematous lesion) areas derived
from 3DCT. These low-attenuation areas in 3DCT were
defined as low-functional regions using the single upper
threshold limit of −856 HU.27 To keep the evaluation as
fair as possible, SPECT V and CTVI images were seg-
mented so that these volumes were almost equal to the
low-attenuation volumes in 3DCT in each case.

Furthermore, to evaluate the influence of misregistra-
tion between CT and SPECT V, we calculated the DSC
between two masks generated from CT and SPECT
V. The CT masks have been described previously. The
SPECT V masks were generated from SPECT V images
using a lower threshold limit of 15% of the maximum
intensity value of the images,33 and they were modi-

fied manually if necessary (e.g., deleting obvious air-
way deposition). In addition, we evaluated Spearman rs
between the DSC calculated for these two masks and
the quantification indices between SPECT V and CTVI.

For evaluating prediction uncertainty, SDs were cal-
culated. Furthermore, to minimize the influence of large
or small prediction values, the voxel-wise coefficient of
variation map was defined as the scaled uncertainty
map, and the SDs were divided by the average values
per voxel. For quantitative evaluation, the average val-
ues in three functional regions were calculated.

3 RESULTS

3.1 Fivefold cross-validation

Table 2 summarizes the results of the voxel-wise
Spearman rs and DSCs in the high-, moderate-, and
low-functional regions (DSChigh, DSCmoderate, DSClow,
respectively) obtained between CTVI with MCD (CTVI
MCD U-Net) and SPECT V and between CTVI without
MCD (CTVI U-Net) and SPECT V within the whole-
lung volume for 11 test cases. For the average value
of each fold, the average similarity metrics with 1SD
between CTVIMCD U-Net and SPECT V were 0.73 ±

0.07, 0.67 ± 0.07, 0.48 ± 0.06, and 0.73 ± 0.05 for
the Spearman rs, DSChigh, DSCmoderate, and DSClow,
respectively. The average similarity metrics with 1SD
between CTVIU-Net and SPECT V were 0.71 ± 0.06,
0.65 ± 0.04, 0.47 ± 0.04, and 0.73 ± 0.06 for the Spear-
man rs, DSChigh, DSCmoderate, and DSClow, respectively.
Compared with CTVIU-Net, CTVIMCD U-Net exhibited bet-
ter performance in every evaluation index and showed
comparable or superior performance in each fold with no
statistically significant difference, excluding Spearman
rs and DSChigh in the second fold.Moreover, for the aver-
age value of each fold, the average MSE with 1SD val-
ues were 0.11 ± 0.04 and 0.15 ± 0.05 for CTVIMCD U-Net
and CTVIU-Net, respectively. Compared with CTVIU-Net,
CTVIMCD U-Net exhibited better performance in every
evaluation index and showed superior performance in
each fold with statistically significant difference, exclud-
ing those in the fifth fold.

3.2 Bagging performance evaluation

Figures 2 and 3 show SPECT V, CTVIMCD U-Net,
CTVIU-Net, masked CT coronal-plane images, and scat-
ter plots between SPECT V and each CTVI within whole-
lung volume for typical patients. The figures show two
examples: one with relatively good agreement between
DL-based CTVI and SPECT V and the other with rel-
atively poor agreement between DL-based CTVI and
SPECT V. Compared with CTVIU-Net, CTVIMCD U-Net
showed greater similarity with SPECT V. The low-
functional region (orange arrows) was predicted better



4358 VENTILATION MAPPING FROM 3DCT USING CNN

TABLE 2 The prediction performance for the 11 test cases for each of the 5 models in each model with or without MCD (MCD U-Net and
U-Net) trained by fivefold cross-validation

Dice similarity coefficient
Spearman rs High Moderate Low

First fold CTVIMCD U-Net 0.73 ± 0.07 0.67 ± 0.08 0.48 ± 0.06 0.73 ± 0.05

CTVIU-Net 0.70 ± 0.06 0.64 ± 0.04 0.46 ± 0.04 0.73 ± 0.06

Second fold CTVIMCD U-Net 0.74 ± 0.05 0.68 ± 0.06 0.49 ± 0.05 0.74 ± 0.04

CTVIU-Net 0.70 ± 0.07 0.63 ± 0.04 0.45 ± 0.04 0.73 ± 0.06

Third fold CTVIMCD U-Net 0.74 ± 0.06 0.67 ± 0.07 0.48 ± 0.06 0.74 ± 0.05

CTVIU-Net 0.73 ± 0.05 0.65 ± 0.05 0.47 ± 0.04 0.75 ± 0.04

Fourth fold CTVIMCD U-Net 0.72 ± 0.07 0.67 ± 0.08 0.47 ± 0.06 0.72 ± 0.05

CTVIU-Net 0.71 ± 0.06 0.64 ± 0.04 0.46 ± 0.04 0.73 ± 0.06

Fifth fold CTVIMCD U-Net 0.73 ± 0.07 0.68 ± 0.06 0.48 ± 0.04 0.73 ± 0.05

CTVIU-Net 0.72 ± 0.06 0.66 ± 0.04 0.47 ± 0.04 0.73 ± 0.06

Average CTVIMCD U-Net 0.73 ± 0.07 0.67 ± 0.07 0.48 ± 0.06 0.73 ± 0.05

CTVIU-Net 0.71 ± 0.06 0.65 ± 0.04 0.47 ± 0.04 0.73 ± 0.06

Abbreviations: CTVI, computed tomography ventilation imaging; MCD, Monte Carlo dropout.

F IGURE 2 Typical cases of coronal slices showing relatively good performance based on the Spearman rs values between SPECT V and
CTVIs of both models. The top row shows the SPECT V on the left, followed by the ventilation predictions of the CTVIMCD U-Net and the scatter
plot between SPECT V and CTVIMCD U-Net within whole-lung volume. The bottom row shows the masked CT on the left, followed by the
ventilation predictions of the CTVIU-Net and the scatter plot between SPECT V and CTVIU-Net within whole-lung volume. Orange arrows indicate
the defect regions of SPECT V. The ventilation values for viewing were normalized to give the 99th percentile value of 1 and the 1st percentile
value of 0. CT, computed tomography; CTVI, computed tomography ventilation imaging; MCD, Monte Carlo dropout; SPECT V, single-photon
emission computed tomography ventilation

by CTVIMCD U-Net than by CTVIU-Net. Although most of
the whole lung showed good agreement, both models
with or without MCD tended toward functional overesti-
mation.

Figure 4 compares the Spearman rank correlation
coefficients and DSCs for three functional regions
between CTVIMCD U-Net and CTVIU-Net methods and
SPECT V for the 11 test cases. The average similarity
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F IGURE 3 Typical cases of coronal slices showing relatively poor performances based on the Spearman rs values between SPECT V and
CTVIs of both models. The top row shows the SPECT V on the left side, followed by the ventilation predictions of the CTVIMCD U-Net and the
scatter plot between SPECT V and CTVIMCD U-Net within whole-lung volume. The bottom row shows the masked CT on the left side, followed by
the ventilation predictions of the CTVIU-Net and the scatter plot between SPECT V and CTVIU-Net within whole-lung volume. Orange arrows
indicate the defect regions of SPECT V. The ventilation values for viewing were normalized to give the 99th percentile value of 1 and the 1st
percentile value of 0. CT, computed tomography; CTVI, computed tomography ventilation imaging, MCD, Monte Carlo dropout; SPECT V,
single-photon emission computed tomography ventilation

F IGURE 4 Boxplot and strip plot showing the bagged prediction performance for the 11 test cases for each of the 5 CNN models (MCD
U-Net and U-Net) trained by fivefold cross-validation. The Spearman rs values are shown on the left, followed by the DSChigh, DSCmoderate, and
DSClow values between SPECT V and the two DL models. * p < 0.001. CNN, convolutional neural network; DSC, dice similarity coefficient; MCD,
Monte Carlo dropout; n.s., not significant; SPECT V, single-photon emission computed tomography ventilation
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TABLE 3 Prediction performance for the bagging and fivefold CV averaging results for 11 test cases for each of the 5 CNN models (MCD
U-Net and U-Net) trained by fivefold CV

Dice similarity coefficient
Method Spearman rs High Moderate Low

CTVIMCD U-Net Bagging 0.76 ± 0.06 0.69 ± 0.07 0.51 ± 0.06 0.75 ± 0.04

Average CV 0.73 ± 0.07 0.67 ± 0.07 0.48 ± 0.06 0.73 ± 0.05

CTVIU-Net Bagging 0.72 ± 0.05 0.66 ± 0.04 0.48 ± 0.04 0.74 ± 0.06

Average CV 0.71 ± 0.06 0.65 ± 0.04 0.47 ± 0.04 0.73 ± 0.06

Abbreviations: CNN, convolutional neural network; CTVI, computed tomography ventilation imaging; CV, cross-validation; MCD, Monte Carlo dropout.

metrics with 1SD between CTVIMCD U-Net and SPECT
V were 0.76 ± 0.06, 0.69 ± 0.07, 0.51 ± 0.06, and
0.75 ± 0.04 for the Spearman rs, DSChigh, DSCmoderate,
and DSClow, respectively. The average similarity met-
rics with 1SD between CTVIU-Net and SPECT V were
0.72 ± 0.05, 0.66 ± 0.04, 0.48 ± 0.04, and 0.74 ± 0.06
for the Spearman rs, DSChigh, DSCmoderate, and DSClow,
respectively. Compared with CTVIU-Net, CTVIMCD U-Net
had better performance with no statistically significant
difference.Furthermore, the average MSE with 1SD val-
ues were 0.09 ± 0.04 and 0.12 ± 0.05 for CTVIMCD U-Net
and CTVIU-Net, respectively. Compared with CTVIU-Net,
CTVIMCD U-Net exhibited better performance with statis-
tically significant difference.The DSC values for SPECT
V were 0.48 ± 0.19, 0.47 ± 0.17, and 0.10 ± 0.07
for CTVIMCD U-Net, CTVIU-Net, and low-attenuation areas
in 3DCT, respectively. Therefore, compared with low-
attenuation areas, both CTVIMCD U-Net and CTVIU-Net
showed better performance. Moreover, the Spearman
rs between DSC for the two masks (i.e., generated
from CT or SPECT V) and the quantification indices
between CTVIMCD U-Net and SPECT V were 0.19, 0.23,
0.35, and 0.02 for Spearman rs, DSChigh, DSCmoderate,
and DSClow, respectively. Conversely, the Spearman rs
between DSC from these two masks and the quantifi-
cation index between CTVIU-Net and SPECT V were
0.14, 0.32, 0.30, and −0.15 for Spearman rs, DSChigh,
DSCmoderate, and DSClow, respectively. There was no
tendency toward significantly worse prediction accuracy
for the cases with relatively poor registration between
CT and SPECT.

Table 3 summarizes the results of the voxel-wise
Spearman rs values and DSCs in the high-, moderate-,
and low-functional regions obtained between the CTVI
MCD U-Net and CTVI U-Net methods and SPECT V within
the whole-lung volume for 11 test cases for comparison
with bagging and CV average results. The best perfor-
mance of each result was CTVIMCD U-Net with bagging,
followed by CTVIMCD U-Net with averaged CV results,
CTVIU-Net with bagging, and CTVIU-Net with averaged
CV results in descending order. The range of improve-
ment of the bagging technique between the aver-
aged CV results was larger for CTVIMCD U-Net than for
CTVIU-Net.

3.3 Uncertainty evaluation

Figure 5 shows the SPECT V, CTVIMCD U-Net, scaled
uncertainty, and masked CT images for a typical case in
the coronal plane. The figure shows a tendency toward
larger uncertainty on the lung edge (e.g., diaphragm)
than in the center and larger uncertainty in the dorsal
than ventral lung. The average SD values within the
whole-lung volume were 0.40 ± 0.01, 0.30 ± 0.01, and
0.19 ± 0.01 in the high-, moderate-, and low-functional
regions, respectively. Conversely, the average scaled
uncertainties within the whole-lung volume were 0.27 ±
0.00,0.27± 0.01,and 0.36± 0.03 in the high-,moderate-
,and low-functional regions, respectively.Compared with
the high- and moderate-functional regions, the low-
functional region showed larger scaled uncertainty.

4 DISCUSSION

In this study, we evaluated the DL-based framework
that translates 3DCT images to lung-ventilation images
directly. Our DL-based model had moderate or high per-
formance, indicating that the DL-based approach was
effective for lung-ventilation estimation mapping from
3DCT. To the best of our knowledge, this is the first
study to evaluate the DL-based approach for transform-
ing 3DCT to SPECT V.

Our results showed that the DL approach had
moderate or high performance for lung-ventilation esti-
mation; the average similarity metrics with 1SD between
CTVIMCD U-Net and SPECT V were 0.76 ± 0.06, 0.69
± 0.07, 0.51 ± 0.06, and 0.75 ± 0.04 for Spearman
rs, DSChigh, DSCmoderate, and DSClow, respectively. Liu
et al. implemented the DL-based approach to transform
4DCT (two or ten phases) to 99mTc-gas SPECT V
images.23 They showed that use of 10 phases had bet-
ter performance than 2 phases. They showed that the
average similarity metrics with 1SD when using 10/2
phases were 0.73 ± 0.16/0.71 ± 0.17, 0.83 ± 0.07/0.83
± 0.07, 0.61 ± 0.10/0.59 ± 0.10, and 0.74 ± 0.10/0.72
± 0.10 for Spearman rs, DSChigh, DSCmoderate, and
DSClow, respectively. Although the trend of our results
was similar to that of their results, our results were
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F IGURE 5 Typical cases of prediction of CTVIMCD U-Net in coronal slices. The anterior slice is shown on the top row, followed by the near,
center, and posterior slices. The SPECT V is shown on the left, followed by CTVIMCD U-Net, the scaled uncertainty for the CTVIMCD U-Net, and
masked CT. The ventilation values for viewing were normalized to give the 99th percentile value of 1 and 1st percentile value of 0. CT, computed
tomography; CTVI, computed tomography ventilation imaging; MCD, Monte Carlo dropout; SPECT V, single-photon emission computed
tomography ventilation

slightly inferior to theirs, which could have been caused
by the following two factors: First, it is possible that
4DCT images contain more physiological and biological
information necessary for estimating lung-ventilation
function than 3DCT images. Second, the differences in
patient characteristics (patients with mainly circulatory
disease vs. patients with esophagus or lung cancer)
could have affected the results. Ren et al. implemented
the DL-based approach to transform 3DCT to SPECT
perfusion images and investigated the influence of dif-
ferent model architectures and preprocessing.24,25 They
reported that there were some cases in which the low-
functional region was predicted to be a high-functional
region, which can be partly attributed to the low occur-
rence and small volume of the low-functional regions
compared with high-functional regions. Our results
showed similar trends (Figures 3 and 4). The percent-
age of non-defect ventilation volume segmented and
calculated in our SPECT V images was 68.0% ± 11.1%,
and our datasets had larger non-defect ventilation
regions than defect regions. Thus, our DL model might
have been affected by the distributions of ventilation
regions and tended to the estimate low-functional region
to be a high-functional region.

This study showed that CTVIMCD U-Net had better
predictive performance with the bagging technique than
CTVIU-Net:0.76 ± 0.06 versus 0.72 ± 0.05 for Spearman
rs, 0.69 ± 0.07 versus 0.66 ± 0.04 for DSChigh, 0.51 ±

0.06 versus 0.48 ± 0.04 for DSCmoderate, and 0.75 ±

0.04 versus 0.74 ± 0.06 for DSClow. The DSCmoderate
is always worse compared with DSChigh and DSClow.
It could be caused by a technical issue in the evalu-
ation method. We selected the evaluation approach
with three nonoverlapping functional regions (i.e., high,
moderate, and low) divided equally in volume based
on threshold limits. This approach has generally been
used in lung-ventilation studies,34,35 is suggested for
use in functional lung-avoidance radiotherapy treat-
ment planning,36 and shows a similar tendency. In
this approach, high- and low-functional regions were
defined by a single lower/upper threshold limit. Con-
versely, moderate-functional regions were defined by
two threshold limits. Therefore, moderate-functional
regions might have been more influenced by the bor-
der uncertainty compared with high- and low-functional
regions; therefore, the DSC value in moderate-functional
regions might be always the worst.

In addition, CTVIMCD U-Net showed an increased
range of performance between bagging and fivefold CV
averaged results compared to CTVIU-Net: 0.03 versus
0.01 for Spearman rs, 0.02 versus 0.01 for DSChigh,
0.03 versus 0.01 for DSCmoderate, and 0.02 versus 0.01
for DSClow. The difference in performance could be
caused by the difference in influences of the ensemble
effect. The number of samples for estimation with the
MCD model was set to 200 in each fold, bagging (i.e.,
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averaging) the prediction results of 5 models from
CV. Therefore, the influence of the ensemble effect
was greater for the MCD model than for the standard
model (1000 models vs. 5 models). Furthermore, these
influences were observed for fivefold CV averaging
results.

The scaled uncertainties were 0.27 ± 0.00, 0.27
± 0.01, and 0.36 ± 0.03 in the high-, moderate-, and
low-functional regions, respectively. Compared with
the high- and moderate-functional regions, the low-
functional regions had larger scaled uncertainties. As
mentioned previously, the low-functional regions could
not be estimated well because many patients showed
normal function, and the number of patients showing
deficits was small. In addition, as shown in Figure 5, the
uncertainty tended to be large at the lung periphery and
near the diaphragm. The blurring around the diaphragm
was particularly large and could have been caused
by breathing and heartbeat as well as by the variabil-
ity in lung shapes among the patients. The blurring
problem might be mitigated by aligning the sizes of
pulmonary parenchyma in SPECT and CT images well.
Furthermore, the improvement of SPECT images using
respiratory-gated motion correction37 during image
acquirement might be effective.

Although our results showed the potential of DL-
based approach for lung-ventilation estimation map-
ping, there were several limitations in this study.First,our
datasets have bias in patient background. Generally, DL
is strongly affected by the bias of the datasets.Although
our results showed that the DL-based model had mod-
erate or high performance in this study, it is unknown
whether the models trained by our datasets can be
adapted for those who are undergoing radiotherapy
and different patient backgrounds. Our datasets were
different from clinical population receiving radiotherapy
generally (e.g., in terms of non-defect ventilation volume
and gender). The percentage of the non-defect ventila-
tion volume was 68.0% ± 11.1%,and the datasets had a
larger percentage of non-defect ventilation volume than
the clinical population with early-stage primary non–
small-cell lung cancer (53.7% ± 15.5%) in the previous
study.12 This occurred because our datasets consisted
of cases showing non-defect ventilation regions (e.g.,
pulmonary hypertension and pulmonary embolism). In
addition, the datasets had gender imbalance because
of the bias of the clinical population in our hospital
patient cohort, as it is different from the clinical popula-
tion (male > female) receiving radiotherapy treatments
such as for lung cancer. Further studies are necessary
to investigate the effect of data characteristics, and we
will expand the data pool with more datasets. Second,
the model architecture and hyper parameters were not
completely optimized for the lung-ventilation estimation
mapping task. In this study, the model architecture
was based on the standard U-Net model for image
generation in medical imaging, and the hyper param-

eters were set to general parameters (i.e., optimizer:
Adam, dropout rate: 0.50). Although we only used a
relatively general model and hyper parameters, we did
not consider any optimization, such as adding layers
or tuning hyper parameters. Therefore, the optimization
of the model architecture and hyper parameters may
improve the estimation performance. Third, positional
errors between SPECT V and 3DCT were observed in
our dataset. Although the 3DCT and SPECT V images
were acquired during the same examination series,
differences in patient positions and/or anatomical
geometries (e.g., lung shape and diaphragm position)
between SPECT V and 3DCT were observed because
of changes in the breathing patterns during SPECT
and/or 3DCT imaging.To minimize the influence of these
errors,we registered SPECT V and 3DCT images rigidly
at preprocessing, and the registration accuracy for each
patient was checked visually. However, the influences of
changes in breathing patterns between the SPECT V
and 3DCT images were not completely eliminated, and
there was some possibility that data were affected in the
training and/or prediction process by these mismatches.
Further studies are necessary to investigate the influ-
ence of these mismatches. Finally, the approach for
uncertainty quantification employed in this study was the
simplest method (i.e., calculating only the SD). There-
fore,we did not calibrate the quality of uncertainty quan-
tification and only calculated SDs as epistemic uncer-
tainty (not aleatoric uncertainty).Although this approach
has been used in previous medical-imaging studies,38,39

it has some limitations as described previously. Further
studies are necessary to estimate more sophisticated
uncertainty quantification for DL-based frameworks
that translate lung-ventilation images from 3DCT
images.

This pulmonary ventilation mapping prediction tool
might be useful for adaptive lung-functional avoid-
ance radiotherapy planning. Yuan et al. reported that
changes in pulmonary regional ventilation and perfusion
functions were sometimes observed by SPECT V/Q
during the course of radiotherapy because of tumor
shrinkage.40 Kipritidis et al. also reported inter-fractional
changes in pulmonary regional ventilation functions
captured by CTVI based on cone-beam (CB) CT over
a course of radiotherapy, supporting the feasibility for
adaptive lung-ventilation-avoidance radiotherapy.41 Our
results showed that the DL-based approach was effec-
tive for lung-ventilation estimation mapping from CT.
Therefore, this approach could be potentially applied
for CBCT to lung-ventilation translation. CBCT is often
acquired for positional alignment during the course
of radiation treatment, and it might be possible to
monitor these inter-fractional pulmonary functional
changes in a simpler way. This DL-based approach
could also be potentially used for adaptive functional
lung-avoidance radiotherapy and treatment response
modeling.
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5 CONCLUSIONS

We evaluated the performance and uncertainty of DL-
based frameworks that translated 3D lung-ventilation
images from 3DCT images. Our results suggested that
the DL-based approach was effective for lung-ventilation
estimation mapping from 3DCT.
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