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Comparison of the similarity 
between two quantum images
You‑hang Liu*, Zai‑dong Qi & Qiang Liu

Comparing the similarity between digital images is an important subroutine in various image 
processing algorithms. In this study, we present three quantum algorithms for comparing the 
similarity between two quantum images. These algorithms are applied to binary, grey and color 
images for the first time. Without considering the image preparation, the proposed algorithms achieve 
exponential acceleration than the existing quantum and classical methods in all three cases. At the 
end of this paper, an experiment based on the real quantum computer of IBMQ and simulations verify 
the effectiveness of the algorithms.

After Google realizing “quantum supremacy” in 20191, quantum computing has aroused the great interest of 
the public. Exploiting quantum mechanics such as superposition and entanglement, quantum computing shows 
an overwhelming computing power advantage in some certain problems. Nonetheless, on account of the few 
quantum algorithms, these problems were extremely limited for more than a decade after the concept of the 
quantum computer was first proposed by Richard Feynman in 19822. Nowadays, after decades of development, 
both quantum computer hardware and architecture have got some revolutionary breakthrough3–6, and quantum 
computing has entered a new era called “Noisy Intermediate-Scale Quantum (NISQ)”7. Researches on quantum 
algorithms also obtained some remarkable results8–12. Thanks to increasing demand for efficient image processing 
algorithms, quantum image processing (QImP) is one of the hot topics.

For QImP, the first issue to be addressed is how to represent an image in a quantum computer. In recent years, 
a variety of quantum image representation (QImR) methods have been developed, such as quantum lattice13, 
entangled image14, flexible representation of quantum images (FRQI)15, a novel enhanced quantum representation 
of digital images (NEQR)16 and their variants17,18. The former two QImR methods were proposed in an early stage 
and did not benefit from quantum speed-up19. Compared with FRQI, NEQR and its variants have advantages in 
both image preparation and color processing16,20, which is vital in today’s computer vision technology.

Based on different QImR methods, various QImP algorithms were proposed to solve problems in different 
fields of image processing, e.g. edge detection19,21, image watermarking22–25, image scaling26,27, and etc. As for 
assessing the similarity between two quantum images, most researches were based on FRQI and its variants28–31. 
There was a research comparing images based on NEQR and its variant, a novel quantum representation of 
color digital images (NCQI), by using quantum amplitude amplifier and estimation in 201920. Nevertheless, the 
main component of quantum amplitude amplifier, an oracle which only flips the amplitude sign of the searched 
input, still needs to be given as a black box to the algorithm32,33. In addition, the binarization of grey and color 
images in20 is slightly deficient due to the lack of available quantum circuits. In this paper, we present three novel 
algorithms on comparing the similarity between two quantum images based on NEQR and its variants. Our 
algorithms consist entirely of general quantum gate set, benefit from additional quantum accelerations, and are 
readily applicable on binary, grey, and color quantum images.

In the rest of this paper, we briefly described the representation methods based on NEQR and NCQI in 
“NEQR and NCQI” section. The proposed algorithms were presented in “Compare the similarity between two 
quantum images” section. In “Algorithm complexity” section, we analyzed the time complexity of our algorithms 
and gave a comparison with classical image processing and existing quantum methods. Finally, several experi-
ment results were given in “Calculation results” section to illustrate the validity of the algorithms.

NEQR and NCQI
In this research, the representation of binary and grey images is based on NEQR, and the representation of color 
images is based on NCQI.

NEQR.  Supposing an image is composed of 2n × 2n pixels and has a grey range of 2q , it can be represented 
as16:
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|CYX > encodes the grey-scale value and |YX > encodes the pixel positions. The length of |CYX > is q for rep-
resenting a grey range of 2q . Binary images can be regarded as a special case taking q = 1. After converting to 
binary format, the length of |YX > is 2n.

NCQI.  Supposing a RGB color image is composed of 2n × 2n pixels and every RGB component has a range of 
2q , then it can be represented as17:

|YX > encodes the pixel positions and |RYX > , |GYX > , |BYX > encodes the red-scale, green-scale, and blue-
scale value respectively. The length of |RYXGYXBYX > is 3q, indicating that the range of red, green and blue is 2q 
respectively. After converting to binary format, the length of |YX > is 2n.

Compare the similarity between two quantum images
After preparing two quantum images into qubits 1 (img-qubits1) and qubits 2 (img-qubits2) based on NEQR or 
NCQI, similarity assessment between these two images is summarized into three steps, as shown in Fig. 1. In the 
following, we present the detailed information for the applications on binary, grey, and color images.

Binary images. 

Algorithm 1  Compare the similarity between two binary images.

Step 1:	� Compare all qubits in img-qubits1 and img-qubits2 one by one and generate auxiliary qubits 1 
(AuxBit1);

Step 2:	� Compress all-1 qubit strings |11 . . . 11 > of AuxBit1 into |1 > of a single qubit (AuxBit2);
Step 3:	� Measure AuxBit2 and calculate the similarity s with s = p× 22n , where p is the probability of getting 

|1 > and 22n is the size of images.

Binary images have only two pixel values, namely 0 and 1, which could be regarded as a special case of NEQR. 
Thus, when comparing two pixels, there are only two results, totally the same and completely different.

As pixel values are represented using binary qubits in NEQR, it’s intuitive to think of comparing the pixel 
value qubits and the position qubits simultaneously. Only candidates having totally identical qubit strings have 
a contribution to the final result. The step 1 is to compare all qubits in img-qubits1 and img-qubits2 one by one 
and generate auxiliary qubits 1 (AuxBit1). Focusing on comparison between two qubits (one from imag-qubits1, 
and the other from the same site of imag-qubits2), if qubits for comparing are identical, the auxiliary qubit is 
set to 1; if different, the auxiliary qubit is set to 0, as shown in the truth table (Table 1). This operation is realized 
with two Control-Not (C-Not) gates and one NOT (X) gate, as shown in Fig. 2a.

It can be proved that the probability of getting all-1 qubit string (the following is written as |11 . . . 11 > 
for simplification) in measuring Auxbit1 equals s

22n
 , where 22n is the total number of pixels in a single image. 

Please refer to supplementary information for the detailed process. However, because of the ineluctable errors 
included in a real quantum computer, there may exist 22n+1 possible results maximally in measuring AuxBit1, 
and |11 . . . 11 > is only one of them. Precise measurement of so numerous qubits is technically difficult and may 
introduce non-ignorable readout error34.
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Figure 1.   Three steps in comparing the similarity between two quantum images. Different colors represent 
qubits carrying different functions. The dot on endpoint indicates a multi qubits string. M represents 
measurement operation.
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As the only state we focus on is |11 . . . 11 > in measuring AuxBit1, the other results just offer some redundant 
information. Thus, we could design a quantum circuit which compresses |11 . . . 11 > to |1 > and the other states 
to |0 >.

The step 2 is to propagate the probability of getting |11 . . . 11 > in measuring AuxBit1 to the probability of 
getting |1 > in another single qubit measurement. This operation can be achieved by using the Control-Not gate 
that takes multi qubits as its control condition, which reverses the target qubit only if all control qubits are in 
|1 > . Construction of such multi-qubits controlled operation using general quantum gate set is introduced in35. 
Generally, defining a controlled operation Ca(U) acting on a + 1 qubits, it can be written as:

2b, where auxiliary qubits 3 (AuxBits3) have a length of 2n and auxiliary qubit 2 (AuxBit2) is the target single 
qubit we finally wanted.

After obtaining the probability of getting |1 > in measuring Auxbit2, we can get the similarity between two 
binary images by multiplying this probability with 22n . The factor of 22n comes from operations on quantum 
superposition states. Expanding the comparison to the whole Hilbert space means we compare each of the bases 
in img-qubits1 with all the bases in img-qubits2, which results in the numerator being the number of identical 
pixels, but the denominator being square of the number of total pixels.

Grey images. 

Algorithm 2  Compare the similarity between two grey quantum images with a grey range of 
2q.

Step 1:	� Compare the former b pixel value qubits and all pixel position qubits of img-qubits1 and img-qubits2 
one by one, where b is an integer less than q, and generate auxiliary qubits 4 (AuxBit4);

Step 2:	� Compress all-1 qubit strings |11 . . . 11 > of AuxBit4 into |1 > of a single qubit (AuxBit5);

(3)Ca(U)|x1x2x3 . . . xa−1xaxa+1 >= |x1x2x3 . . . xa−1xa > Ux1x2x3...xa−1xa |xa+1 >

Table 1.   Truth table for comparing two qubits. The value of AuxBit1[i] would be set to 1 only if the values of 
img-qubits1[i] and img-qubits2[i] are the same.

img-qubits1[i] img-qubits2[i] AuxBit1[i]

0 0 1

0 1 0

1 0 0

1 1 1

Figure 2.   (a) The quantum circuit for comparing qubits from img-qubits1 and img-qubits2. This circuit 
defines the mapping between two NEQR image strings and AuxBit1. The output is XNOR of two input. (b) The 
quantum circuit that compresses |11…11 > to |1 > and the other states to |0 > . This circuit equals the Control-Not 
gate conditioning on the whole AuxBit1. The qubits with the same color as in Fig. 1 have the same function.
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Step 3:	� Measure AuxBit5 and calculate the similarity s with s = p× 22n , where p is the probability of getting 
|1 > and 22n is the size of images.

Grey images have a much wider application than binary images in classical image processing. In this part, an 
algorithm for comparing the similarity between two grey quantum images is given. The algorithm is similar to 
the processing of binary images, except that pixel value qubits compared in step 1 need to be selected.

For illustration, we will take q = 4 at first, and then move on to a more general case. After preparing two 
grey images in a quantum computer, the quantum state for representing these two images could be written as:

 where |CY1X1 > and |CY2X2 > has 16 possible states respectively for q = 4 , as shown in Fig. 3a.
A vital point for comparing the similarity between grey quantum images is to select proper pixel value qubits 

of img-qubits1 and img-qubits2 for comparison. Nevertheless, there may exist some drawbacks if inappropri-
ate qubits are selected. For instance, if we compare all qubits of img-qubits1 and img-qubits2, pixels have no 
contribution to the similarity even if they are only slightly different; if we compare the second and the forth 
pixel value qubits, states like |0000 > and |1010 > are considered identical even if their grey values vary greatly.

A qubits selection strategy is presented to avoid these drawbacks. The strategy is to select the former b qubits 
of |CY1X1 > and |CY2X2 > for comparison. As shown in Fig. 3b–e, if the former 4, 3, 2, 1 qubits are compared, 
pixels are considered identical if they are in the same red rectangle. For a smaller b, each red rectangle contains 
more similar pixels. The qubits used for comparison are underlined for clarity.

As for the common grey quantum images having a grey range of 2q , the selection of the former b pixel 
value qubits indicates a preset of the threshold of 2q−b . From 0 to 2q , every 2q−b pixel values are consid-
ered identical. That is to say, the 2q grey range is divided into 2b groups, and all pixel values in the range of 
[k2q−b, (k + 1)2q−b − 1 ], where k = 0, 1, 2 . . . 2b − 1 , are considered identical in comparison.

After step 1, the AuxBit4 was generated based on the quantum state in (4). AuxBit4 has an all-1 qubit string 
only if the pixel positions are the same and the pixel values are in the same group. Based on the similar analysis 
in supplement information, the probability of getting the all-1 qubit string in measuring AuxBit4 is equal to 
s
22n

 , where s is the similarity between two grey images. After step 2, we propagate this intermediate result to the 
probability of getting |1 > in measuring AuxBit5, and the similarity can be calculated by multiplying this prob-
ability with 22n.

Color images. 

Algorithm 3  Compare the similarity between two color quantum images with the RGB com‑
ponent range of 2q.

(4)
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Figure 3.   (a) The 16 possible states of pixel value qubits under the condition of q = 4. (b–e) Selecting the former 
4,3,2,1 qubits for comparison. The qubit strings in the same red rectangle are considered identical.
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Step 1:	� Compare the former bR , bG , bB ( bR , bG , bB are integers less than q) RGB component qubits and all pixel 
position qubits of img-qubits1 and img-qubits2 one by one, and generate auxiliary qubits 6 (AuxBit6);

Step 2:	� Compress all-1 qubit strings |11 . . . 11 > of AuxBit6 into |1 > of a single qubit (AuxBit7);
Step 3:	� Measure AuxBit7 and calculate the similarity s with s = p× 22n , where p is the probability of getting 

|1 > and 22n is the size of images.

Color images could convey more information and are much more common in our daily life than binary and 
grey images. In this subsection, an algorithm for comparing the similarity between two color images is given. The 
algorithm is similar to Algorithm 2, except that instead of selecting the former b pixel value qubits of |CY1X1 > 
and |CY2X2 > , we proposed to select the former bR , bG , bB qubits of |RY1X1 > , |GY1X1 > , |BY1X1 > and |RY2X2 > , 
|GY2X2 > , |BY2X2 > for comparison.

After preparing two color images in a quantum computer, the quantum state for representing these two 
images could be written as:

|RY1X1GY1X1BY1X1RY2X2GY2X2BY2X2 > has a length of 6q and |Y1X1Y2X2 > has a length of 4n.
Based on the similar analysis in “Grey images” section, as for the color image having the RGB compo-

nent range of 2q , the selection of the former bR , bG , bB RGB component qubits for comparison indicates a 
preset of the threshold of 2q−bR , 2q−bG , 2q−bB . By setting these thresholds, the red, green, blue ranges are 
divided into 2bR , 2bG , 2bB groups, and all RGB component qubits in the range of [kR2q−bR , (kR + 1)2q−bR − 1 ], 
[kG2

q−bG , (kG + 1)2q−bG − 1  ] ,  [kB2
q−bB , (kB + 1)2q−bB − 1  ] ,  w h e r e  kR = 0, 1, 2 . . . 2bR − 1  , 

kG = 0, 1, 2 . . . 2bG − 1 , kB = 0, 1, 2 . . . 2bB − 1 , are considered identical in comparison.
After step 1, the AuxBit6 was generated based on the quantum state in (5). AuxBit6 has an all-1 qubit string 

only if the pixel positions are the same and the RGB component values are in the same group respectively. Based 
on the similar analysis in supplement information, the probability of getting the all-1 qubit string in measur-
ing AuxBit6 is equal to s

22n
 , where s is the similarity between two color images. After step 2, we propagate this 

intermediate result to the probability of getting |1 > in measuring AuxBit7, and the similarity can be calculated 
by multiplying this probability with 22n.

Algorithm complexity
The following discussion of complexity is based on two 2n × 2n binary images, two 2n × 2n grey images with 
grey range of 2q , and two 2n × 2n color images with RGB component range of 2q . Intuitively, the classical way to 
calculate the number of identical pixels is to compare every pixel at the same position. As the comparison must 
be taken one pixel by one pixel, it would take no more than O(22n) complexity to complete the calculation for 
two classical images.

The complexity of a quantum algorithm is usually defined as the number of universal gates used to accom-
plish the function20,36. As shown in Fig. 2a, comparing two single qubits in step 1 costs two CNOT gates and 
one X gate. Since the comparison is acted on 2+ 4n qubits for Algorithm 1, the number of basic gates costed in 
step 1 is no more than 3× (2+4n)

2 = 3+ 6n . As shown in Fig. 2b, step 2 needs 2n Toffoli gates and one CNOT 
gate. Since Toffoli gate can be constructed with six CNOT gates and ten single gates35, the number of basic gates 
costed in step 2 is no more than 1+ 32n . Thus, we need (3+ 6n)+ (1+ 32n) = 4+ 38n gates maximally to 
complete Algorithm 1. Taking into account the complexity of two binary images preparation20, the complexity 
of comparing the similarity between two binary quantum images is O

(

2n22n
)

+O(38n).
For Algorithm 2, the comparison is acted on 2b+ 4n qubits in step 1. Therefore, the number of basic gates 

costed in step 1 is no more than 3b+ 6n , and the number of basic gates costed in step 2 is no more than 
16× (b+ 2n− 1)+ 1 = 16b+ 32n− 15 . Thus, we need (3b+ 6n)+ (16b+ 32n− 15) = 19b+ 38n− 15 
gates maximally to complete Algorithm 2. Taking into account the complexity of two grey images preparation20, 
the complexity of comparing the similarity between two grey quantum images is O

(

2qn22n
)

+O(19b+ 38n).
For Algorithm  3, the comparison is acted on 2bR + 2bG + 2bB + 4n qubits in step 1. There-

fore, the number of basic gates costed in step 1 is no more than 3bR + 3bG + 3bB + 6n , and the 
number of basic gates costed in step 2 is no more than 16bR + 16bG + 16bB + 32n− 15 . Thus, we 
n e e d  (   3bR+3bG+3bB+6n)+(16bR + 16bG + 16bB + 32n− 15) = 19bR+19bG+19bB+38n−15 
gates maximally to complete Algorithm  3. Taking into account the complexity of two color images 
preparation17, the complexity of comparing the similarity between two color quantum images is 
O
(

6q + 4n+ 12qn22n
)

+O(19bR + 19bG + 19bB + 38n).
The time complexity of previous quantum algorithms that compare the similarity between two quantum 

images based on NEQR or NCQI is given in Table 2. In order to reflect the advantage of the proposed algorithms, 
the data in Table 2 don’t contain the complexity of image preparation as this process is constant in almost all 
QImP algorithms. The complexity of SAB_PV, SAG_SAB_PV, SAC_SAB_PV depends on the expectation of the 
precision of results and the data in Table 2 are from an instance given in20. In addition, because b , bR , bG , and bB 
are integers less than q, the complexity of Algorithms 2 and 3 in Table 2 reflects the maximum complexity taking 
b, bR, bG , bB = q . Even in this worst case (all pixel value qubits are compared), an exponential acceleration is still 
achieved than the previous algorithms.
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Calculation results
In the following, some calculation results of binary, grey, and color images are given based on either real quantum 
computer or simulations.

Experiment result of binary images.  The best method for validating a quantum algorithm is to run it 
on a real quantum computer. IBMQ Experience offers several real quantum computers which can be accessed by 
public via cloud, and there have been demonstrations of various quantum algorithms based on these quantum 
computers38–40. The similarity between three binary images is calculated using IBM_Manila. IBM_Manila is a 
real quantum computer with five qubits and 32 quantum volume41. The average CNOT gate error of IBM_Manila 
is 0.8106% and the average single qubit readout error of IBM_Manila is 2.102% (updated aperiodically)42.

Due to the limited qubits of IBM_Manila, we have to make some simplifications in order to apply Algorithm 1. 
The simplifications include: the binary images for comparison have only 2 pixels, a pixel value qubit is reused as 
part of Auxbit1, and the Auxbit1 is measured directly for calculating the similarity. The binary images used for 
experiments are shown in Fig. 4.

A quantum circuit example is given in Fig. 5. Q0 and q1 are used for representing image a. Q2 and q3 are used 
for representing image b. After images were prepared, q4 is used for comparing pixel value qubits of image a and 

Table 2.   Complexity of different quantum methods for comparing the similarity between two quantum 
images based on NEQR and its variant. The complexity of image preparation is not contained in this table.

Algorithms Image style Complexity

Algorithm 1 Binary O(38n)

Algorithm 2 Grey O(19q + 38n)

Algorithm 3 Color O(57q + 34n)

Classical method Binary/grey/color O(22n)

SAB_PV20

(t = n+ 5) Binary O
(

64n23n
)

SAG_SAB_PV20

(t = n+ 5) Grey O
(

2qn22n
)

+O
(

48q2
)

+O
(

64n23n
)

SAC_SAB_PV20

(t = n+ 5) Color O
(

12qn22n
)

+O
(

6q3
)

+O
(

64n23n
)

Algorithm in37 Binary/grey O(28n22n)

Figure 4.   Three binary images used for calculating similarity. The image representation states are shown below 
the images. The pixel value qubits are underlined. Probability amplitudes are not given for simplification.

Figure 5.   Quantum circuit for comparing similarity between image a and b in Fig. 4.
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b. Due to the lack of more qubits, q0 is reused for comparing pixel position qubits of image a and b. For the same 
reason, q0 and q4 are measured directly for calculating the similarity between image a and b.

For IBM_Manila, the number of runs of circuits can be selected from 1 to 8192. In more runs, we can get 
results closer to expectations. The circuit in Fig. 5 was run 8192 times on IBM_Manila, and the numbers of get-
ting |11 > in measuring q0 and q4 were counted. In an instance, the numbers of getting |11 > were 1810. Thus, 
the similarity between image a and b was calculated as 18108192 × 2 = 44.19% . The similarity between image a and c, 
image b and c was calculated similarly, and the results were 8.40% and 46.44%. There is a notable margin between 
the calculation results and expectations. This is mainly because of the readout error and imperfect quantum gates. 
In addition, the limitation of physical links between qubits on a real quantum chip also introduces additional 
SWAP gates when compiling quantum circuits43.

Simulation result of grey images.  On account of the limited qubits and fidelities, it is unlikely to run a 
complex quantum circuit on the real quantum computer and obtain a satisfied result presently. IBMQ Experi-
ence also offers several simulators that have been frequently used for demonstration of quantum algorithms44–46. 
IBMQ_qasm_simulator is a general-purpose simulator for simulating quantum circuits both ideally and subject 
to noise modeling42.

Similarities between three grey quantum images (Fig. 6) are calculated using IBMQ_qasm_simulator. The 
example of preparing image d and e is given in Fig. 7. The other part of the algorithm can be generated with 
reference to Fig. 2 and is omitted in Fig. 7 for clarity. For IBMQ_qasm_simulator, the number of runs of circuits 
can be selected from 1 to 8192. In order to get results closer to expectations, the quantum circuits were run 8192 
times. The similarity results are shown in Table 3. If all pixel value qubits are compared, there is not so significant 
difference between the three similarity results. By selecting the first pixel value qubit for comparison, we can get 
an obvious maximum similarity when comparing image d and e, which is consistent with expectation as they 

Figure 6.   Three grey images used for calculating similarities. The image representation states are shown below 
the images. The pixel value qubits are underlined. Probability amplitudes are not given for simplification.

Figure 7.   Quantum circuit for preparing image d and e in Fig. 6. Q0 to q5 are qubits representing image d. Q8 
to q13 are qubits representing image e. Other qubits are ancillary qubits used for helping preparation. The other 
part of the algorithm is omitted for clarity.
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both look like number “0” but image f looks like number “2”. Other similarity results also have an increment by 
transforming the comparison on all pixel value qubits to on the first pixel value qubit.

Simulation result of color images.  Color images used for experiments are 8-bits per RGB channel and 
composed of 128× 128 pixels (Fig.  8). Thus, it needs (8× 3+ 7× 2)× 2 = 76 qubits for representing two 
images. Even if only Auxbit6 is included, the Algorithm 3 needs 114 qubits at least to be simulated. Such quan-
tum system has exceeded the capability of gate-based simulators.

In order to simulate the evolution of quantum states in the algorithm, some simplifications have to be made 
from Algorithm 3. Firstly, in step1, instead of multiplying the bases with unitary matrices which have the enor-
mous dimensions, the Auxbit6 was generated directly according to its truth table (Table 1). Secondly, the number 
of Auxbit6 being |11 . . . 11 > was counted for statistical analysis of the expected probability of getting |11 . . . 11 > 
in measuring Auxbit6. Finally, instead of step3, this probability was used for calculating the similarities. Similar 
simplifications are also used in20.

The simulation was carried out on a laptop with Core i7-8565U CPU and 16 GB RAM. The pixel values and 
positions of sample images were extracted using the open-source software OpenCv. The subsequent calculations 
were based on the array computing package NumPy with python. The calculation results for three different 
selections of bR , bG , and bB are given in Table 4. In all cases, image g and h have the largest similarity, which is 
consistent with prediction as they look the most similar visually. Image i and j also have a similarity more than 
50% when bR , bG , bB = 1 . This similarity has a rapid decrease when bB is increased to 2. However, it doesn’t fall 

Table 3.   Similarities between three sample grey images.

All pixel value qubits are compared

Similarity between image d and e 53.13%

Similarity between image e and f 40.23%

Similarity between image d and f 41.02%

The first pixel value qubit is compared

Similarity between image d and e 86.13%

Similarity between image e and f 54.30%

Similarity between image d and f 54.69%

Figure 8.   Four color images used for calculating similarities.

Table 4.   Similarities between Four color images.

bR = 1 , bG = 1 , bB = 1

g and h g and i g and j h and i h and j i and j

85.27% 14.90% 16.58% 14.73% 16.37% 53.42%

bR = 1 , bG = 2 , bB = 1

g and h g and i g and j h and i h and j i and j

81.60% 12.65% 13.57% 12.37% 13.42% 49.09%

bR = 1 , bG = 1 , bB = 2

g and h g and i g and j h and i h and j i and j

78.87% 10.49% 11.40% 10.23% 10.98% 30.87%
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so quickly when bG is increased to 2. We suppose that this is due to the large proportion of blue part in image i 
and j resulting in the great impact of blue components on similarity.

Conclusion
In this study, three novel algorithms are proposed to compare the similarity between two quantum images. 
The algorithms are suitable for binary, grey, and color images respectively. Compared with existing methods, 
especially with the algorithms also based on NEQR and NCQI20,37, our work has the following contributions.

Firstly, under the condition that the image preparation is not included, the proposed algorithms can achieve 
exponential acceleration than the previous and classical methods.

Secondly, the binarization of grey and color images in20 is slightly deficient due to the lack of available quan-
tum circuits. Our study introduces a novel method for comparing the similarity between two binary, grey or color 
images, which not only benefits from extra acceleration, but also makes a progress in assessing the similarity of 
grey and color images based on NEQR and NCQI.

Finally, although it is a primitive demonstration with binary images that have only two pixels, this is the first 
time to compare the similarity between two quantum images on a real quantum computer to the best of our 
knowledge.

This study is a preliminary attempt of the practical application of quantum computing in the image processing 
field. Experiment and simulation results have indicated the effectiveness of the algorithms. However, circuit depth 
and connectivity limit the application of our algorithms on a near-term quantum computer. As shown in Table 4, 
an inappropriate selection of pixel value qubits in comparing color images may also cause a significant decrease 
of results. A qubits selection strategy with a circuit optimization remains to be developed for future studies.
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