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Abstract
The real-time assessment of mental workload (MWL) is critical for development of intelligent human–machine cooper-

ative systems in various safety–critical applications. Although data-driven machine learning (ML) approach has shown

promise in MWL recognition, there is still difficulty in acquiring a sufficient number of labeled data to train the ML

models. This paper proposes a semi-supervised extreme learning machine (SS-ELM) algorithm for MWL pattern classi-

fication requiring only a small number of labeled data. The measured data analysis results show that the proposed SS-ELM

paradigm can effectively improve the accuracy and efficiency of MWL classification and thus provide a competitive ML

approach to utilizing a large number of unlabeled data which are available in many real-world applications.

Keywords Mental workload � Operator functional state � Physiological signals � Time–frequency analysis �
Semi-supervised learning

Introduction

Automation, automatic control system, and artificial intel-

ligence (AI) techniques have been widely applied to vari-

ous fields, but there is still a long way for the current

automation and AI technologies to achieve fully-automated

control for many real-world complex and uncertain sys-

tems. In this connection, human–machine systems (HMS)

are still ubiquitous in most safety–critical application

domains (Lal and Craig 2001). Compared with machines,

human operators are more susceptible to the impact of

external disturbances or their own psychophysiological

fluctuations (Bobko et al. 1998). Therefore, it is not sur-

prising that human factors play a significant part in the

performance of HMS. In recent years, researchers from

different disciplines have investigated how to maintain the

optimum Operator Functional State (OFS) to ensure the

successful performance of the tasks in the HMS context

(Hollender et al. 2010).

The operator’s mental workload (MWL) is an essential

dimension of the multi-dimensional construct of OFS. The

MWL can be considered as a quantitative variable for

measurement of mental status of human operator, which

reflects the mental demand for operators to accomplish the

tasks (Cain 2007). For operators, unduely high or low

psychological or mental load is detrimental to the per-

formance of HMS. In order to mitigate this problem,

researchers proposed Adaptive Automation (AA) strategy.

The AA system can adaptively allocate the tasks between

operators and the machines based on the estimated levels of

operators’ MWL. MWL measurement approaches can be

roughly divided into three categories (Mahfouf et al. 2007):

(1) subjective assessment; (2) task performance measures;

and (3) physiological data based assessment. Compared

with the former two approaches, the last approach is fea-

tured by continuous on-line measurement. ElectroEn-

cephaloGram (EEG), ElectroCardioGram (ECG) and

ElectroOculoGram (EOG) have been widely used for

MWL recognition (Zhang et al. 2013a, b, 2016; Wang et al.
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2018; Zeng et al. 2018; Lamti et al. 2019; Mora-Sánchez

et al. 2020). In this paper, we evaluate the operator MWL

by using physiological signals and a semi-supervised

learning technique in order to enhance the accuracy and

efficiency of high-risk MWL detection.

The rest of this paper is organized as follows. ‘‘Litera-

ture review’’ section reviews briefly the state of the art of

MWL detection and semi-supervised learning research. In

‘‘Semi-supervised learning method’’ section, we describe

the Semi-Supervised Extreme Learning Machine (SS-

ELM) method. ‘‘Feature extraction algorithms’’ section

develops two physiological feature extraction algorithms.

The data acquisition experiment and data processing

method are described in ‘‘Data acquisition and data pre-

processing’’ section. ‘‘Classification results and discus-

sion’’ section presents the MWL classification results of the

proposed Semi-Supervised Learning (SSL) technique,

along with some meaningful discussions. Finally ‘‘Con-

clusion’’ section concludes the paper.

Literature review

Real-time MWL recognition

Under high MWL, the operator may ignore some important

information, which would have a negative even catas-

trophic impact on the normal operation of the HMS (Wil-

son and Russell 2003b, 2007). Therefore, we have to study

how to maintain the optimal OFS in safety–critical HMSs

in public transport (driving, rail, shipping, aviation, and

aerospace), nuclear engineering, and other similar fields.

OFS can be defined as the variable capacity of the operator

for effective task performance in complex and uncertain

task environment as well as the limitations imposed by

cognitive and physiological processes (Hockey 2003). The

MWL, which is closely correlated to the transient cognitive

demand, is a crucial dimension of OFS (Hockey 1997).

Real-time risky MWL detection system relates the

operator’s real-time operational state to load level. There

are three types of measures for MWL detection (Cannon

et al. 2012): subjective rating, task performance measures,

and physiological markers. MWL is traditionally evaluated

by the operator’s subjective rating usually composed of

several different rating scales. The rating scales are usually

filled out during or after the experiment, then their statistics

(e.g., mean) are used to derive a single WML index. One of

the most typical subjective rating is the NASA-TLX

questionnaire, which consists of six indicators, including

psychological demand, physical demand, time demand,

effort, and frustration (Hart and Staveland 1988). Among

them, the task load index (TLI) is the weighted average of

the six indicators. Another traditional method is to use

performance measures. The two conventional methods are

usually only feasible for offline data analysis, but not

suitable for online data analysis. For example, for subjec-

tive ratings, there is no continuity in subjective scoring in

online situation. For performance measures, performance

data is not easily available for some systems, e.g., nuclear

power plant. The neurophysiological signals can be used to

realize online real-time MWL assessment mainly for the

following reasons: (1) the physiological signals can reflect

the operator’s inherent state; and (2) the operator state can

be monitored in real-time without disturbing the task per-

formance (Swangnetr and Kaber 2013). Therefore, we use

heterogeneous (multi-source) physiological signals (par-

ticularly EEG, ECG and EOG because of their high tem-

poral resolution and ease of measurement) to evaluate

MWL in this work.

Many researchers used physiological measures to ana-

lyze OFS. In Hankins and Wilson (1998), heart rate, EOG

and EEG signals were used to assess the psychological load

of the pilot during flight. In Zhang et al. (2008), the MWL

changes were quantitatively analyzed by heart rate vari-

ability. In Dussault et al. (2004), Dussault, Jouanin and

Guezennec studied the variations in EEG and ECG under

different tasks. In Fournier et al. (1999), the MWL was

evaluated by using physiological signals measured under

complicated task environment. In Wilson and Fisher

(1991), the difficulty level of the flight phase was deter-

mined by using ECG and blink rate. In Wilson and Russell

(2003a), physiological data was used for OFS analysis in

an air traffic control system. Dussault et al. (2005) studied

the changes of EEG and ECG as operator’s mental load and

vigilance change. In Gevins et al. (1998), the EEG pattern

recognition method was used to monitor the operator

workload in computer tasks. Gevins et al. (1997) analyzed

the effects of task difficulty and processing type on the

high-resolution EEG mapping of the cerebral cortex asso-

ciated with working memory. Freeman et al. (1999) used

three EEG indicators under a visual tracking task to eval-

uate an AA system. Wilson and Russell (1999) used

physiological and performance features to classify the OFS

using artificial neural networks. According to the above

literature overview, we can find that most MWL mea-

surement methods proposed in literature are based on the

idea of supervised learning. In real-world applied (opera-

tional) environment, the manual data labeling can be a

tedious and time-consuming task which is also prone to

mistakes/errors. Correct labeling of massive data requires

taking into account simultaneously the subjective evalua-

tion, performance data and other factors. Under naturalistic

operational environment, the operator voluntarily decides

which tasks to perform at any time, and the manual

labeling of data becomes infeasible. On the other hand, it is

relatively easier to collect large amounts of unlabeled data.
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In order to make full use of these low-cost unlabeled data,

SSL is applied for model construction because it is capable

of extracting useful information from both labeled and

unlabeled data. The main aim of this study is to investigate

the effectiveness of SSL for improving MWL recognition

accuracy using both labelled and unlabeled physiological

data.

Semi-supervised learning (SSL)

In recent years, SSL has drawn intensive attention from

researchers in the ML field. In the semi-supervised classi-

fication, a small number of data (with known target labels)

and a large number of unlabeled data are used to construct

the decision model. The SSL has wide-ranging practical

applicability due to the fact that it is too expensive or time-

consuming to label large amounts of data, but vast quan-

tities of unlabeled data are available in a variety of real-

world problems, e.g., online texts, protein sequences, or

images.

The SSL research can be traced back to the 1970s when

self-training, transductive learning, generative model and

other learning methods were proposed. Self-training is the

first method of applying unlabeled samples to learning

problem (McClosky et al. 2006). Based on predictions,

unlabeled data with high level of confidence in belonging

to a certain class is converted into labeled data to further

refine the model. Over the past few years, SSL algorithms

based on the density separation or graph has gained much

momentum. There are two state of the art SSL methods:

discriminative method and graph-based method. A major

class of SSL methods, so-called low-density separation

method, attempts to place boundaries in regions with few

data points (labeled or unlabeled), so-called low-density

regions. Discriminative methods, such as transductive

support vector machine (TSVM) (Joachims 1999) and

semi-supervised support vector machine (S3VM) (Chapelle

et al. 2006), use the maximum interval algorithm to

simultaneously train the labeled samples and the decision

boundary of the unlabeled data to pass through the low-

density areas and make maximum distance from the

learning superclass to the nearest sample, which relies on

cluster assumption (i.e., the data tend to form discrete

clusters, and points in the same cluster are more likely to

share a label). One of the most commonly used algorithms

is the transductive support vector machine (TSVM).

Whereas SVMs for supervised learning seek a decision

boundary with maximal margin over the labeled data, the

goal of TSVM is a labeling of the unlabeled data such that

the decision boundary has maximal margin over all of the

data. On the other hand, the graph-based approach relies on

manifold assumption (i.e., the data lie approximately on a

manifold of much lower dimension than the input space).

Generally, graph-based methods first construct a weight

graph capturing the local structure and then learn a decision

boundary that preserves the combination of local struc-

tures. In other words, data points that are locally close to

each other should be predicted to have the same class label.

Graph-based methods for SSL use a graph representation of

the data, with a node for each labeled and unlabeled

example. The graph may be constructed using domain

knowledge or similarity of examples. Two common

methods are to connect each data point to its k nearest

neighbors or to examples within some distance e. Within

the framework of manifold regularization, the graph serves

as a proxy for the manifold. A term is added to the standard

Tikhonov regularization problem to enforce smoothness of

the solution relative to the manifold (in the intrinsic space

of the problem) as well as relative to the ambient input

space. The Laplacian can also be used to extend the

supervised learning algorithms, e.g., regularized least

squares and SVM, to their semi-supervised versions. The

graph-based SSL achieved satisfactory performance in text

and image classification (Gómez-Chova et al. 2007; Garla

et al. 2013). Because the graph-based SSL model can

adequately characterize the physiological signals, we use it

in this paper.

Semi-supervised learning method

Operator’s MWL recognition is a multi-classification

problem, where each MWL state is classified into three

classes, i.e., baseline, low and high. Figure 1 shows the

flowchart of risky MWL detection algorithm, which com-

prises offline training and online (real-time) detection.

There are two types of data that can be used for training,

i.e., labeled and unlabeled data.

In SSL setting, we usually have few labeled data and

large amount of unlabeled data. We have the dataset

X ¼ fðx1; y1Þ; . . .; ðxl; ylÞ; xlþ1; . . .; xng, in which the first l

samples are labeled data in the training set and the

remaining (n - l) samples are unlabeled data, l and n are

the number of the labeled and entire data, respectively,

xi 2 RD represents the input measures and yi 2 Rc is a c-

dimensional binary vector with only one entry (corre-

sponding to the class that xi belongs to) equal to one for

multi-class classification tasks, and D and care the

dimensionality of input and output, respectively.

Manifold regularization

SSL is built on two assumptions: (1) both the labeled data

Xl and the unlabeled data Xn-l are drawn from the same

marginal distribution PX and (2) if two points xi and xj are

close to each other, the conditional probabilities P y xijð Þ
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and P y xj
�
�

� �

should be similar as well. The latter assump-

tion is known as smoothness assumption in ML. The pur-

pose of introducing regularization in ML is to increase the

smoothness of the model so as to prevent the model from

over-fitting. The manifold regularization framework is

based on the assumption that high-dimensional training

data (both labeled and unlabeled) from each class lie on

(are embedded in) a low-dimensional manifold, and the

optimal decision boundary is smooth w.r.t. the manifold.

The low-dimensional manifold is represented as a collec-

tion of many small neighborhoods, where high-dimen-

sional data points sharing the same label are close to each

other.

To force the decision boundary to be ‘smooth’ to the

manifold (smoothness assumption on the data/model), the

manifold regularization framework proposes to minimize

the loss function:

L̂c ¼
1

2

X

i;j

qij ŷi � ŷj
�
�

�
�

2 ð1Þ

where �k k denotes the Euclidean norm, ŷi and ŷj are the

predicted output w.r.t. samples xi and xj, respectively, and

qij is the pair-wise similarity coefficient between xi and xj.

Note that the similarity matrix Q ¼ qij
� �

is usually sparse

since we only place a nonzero weight between two samples

xi and xj if they are close, e.g., xi is among the k nearest

neighbors of xj or xj is among the k nearest neighbors of xi.

The nonzero weights are usually calculated using Gaussian

function exp � xi � xj
�
�

�
�

2
.

2r2
h i

or simply set to one.

Intuitively, (1) penalizes large variation in the predicted

class labels w.r.t. two nearby data points xi and xj (when

x has a small change).

Equation (1) can be compactly expressed in matrix

form:

L̂c ¼ Tr ŶTLŶ
� �

ð2Þ

where Tr(�) denotes the trace of a matrix, Ŷ ¼
½ŷ1; ŷ2; . . .; ŷl; . . .; ŷn�

T
is the predicted output matrix of

ELM, L ¼ D� Q is the graph Laplacian, Q ¼ ½qij� is the

similarity matrix (Chapelle et al. 2006; Zhu 2017), and D is

a diagonal matrix with dii ¼
Pn

j¼1 qij.

Instead of using L directly, based on some a priori

knowledge, L can be normalized by Dð�1=2ÞLDð�1=2Þ or

replaced by Lp (p is an integer).

Extreme learning machine (ELM)

Proposed by Huang et al. (2006, 2012), Extreme Learning

Machine (ELM) is a unified learning scheme for general-

ized Single-hidden Layer Feedforward Neural network

model (SLFNs). Compared with the traditional neural

networks, ELM is faster with guaranteed learning

precision.

ELM aims to learn a decision rule or an approximation

function based on the training data. In general, the training

of ELM consists of two stages. In ELM theory (Huang

et al. 2006), the parameters of the hidden activation func-

tions can be randomly generated and fixed according to any

continuous probability distribution, e.g., the uniform dis-

tribution on (- 1, 1). This makes the ELM distinct from

the traditional feedforward neural networks and SVMs.

During the training process, we only need to optimize the

output weight matrix W that connects the hidden neurons

and the output nodes. By doing so, training ELM is

Fig. 1 Block diagram of SSL-based MWL detection scheme
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equivalent to solving a regularized LS problem, which is

much more efficient than SVM training or BP learning

algorithm.

The purpose of stage 1 is to construct the hidden layer

using a fixed number of randomly generated mapping

neurons, which can be any nonlinear piecewise continuous

function, such as the sigmoidal function. In stage 1, L hid-

den neurons, which map the data from the input space to a

L-dimensional feature space, are generated at random.

Given a sample data xi 2 RD, the outputs of the network

with L hidden neurons and a sigmoidal activation function

of xi can be expressed by:

yi ¼
XL

j¼1

hjðxi; hÞwj ¼ hðxi; hÞW ; i ¼ 1; 2; . . .; l: ð3Þ

where h ¼ faj; bjg is the parameter set of the sigmoidal

activation function:

hjðxi; hÞ ¼
1

1 þ exp �ðaTj xi þ bjÞ
h i ; j ¼ 1; . . .; L ð4Þ

hjðxiÞ is the output of the jth hidden neurons in response to

the input sample xi, W 2 RL�c is the output weight matrix

that connects the hidden layer with the output layer,

hðxiÞ ¼ ½h1ðxiÞ; h2ðxiÞ; . . .; hLðxiÞ� 2 R1�L is the output

vector of the hidden layer w.r.t. xi, and y 2 R1�c is the

output vector of ELM and the predicted class corresponds

to the label of the entry with largest output value. This

enables ELM and SS-ELM to be naturally suited to mul-

ticlass classification problems.

In stage 2, ELM aims to solve the output weights by

minimizing the squared sum of the prediction errors:

min
W2RL�c

1

2
Wk k2 þ C

2

Xl

i¼1

nik k2

s:t: h xið ÞW ¼ yTi � nTi ; i ¼ 1; 2; . . .; l

ð5Þ

where the first term is a regularization term used to prevent

over-fitting, C is a penalty factor on the training errors, and

ni 2 Rc is the error vector of the ith training sample.

Semi-supervised extreme learning machine (SS-
ELM)

The SS-ELM is a semi-supervised learning algorithm based

on ELM theory and manifold regularization framework,

which can take advantage of the unlabeled data to improve

the classification accuracy when labeled data are scarce

(Huang et al. 2014). It determines the output weights by

minimizing the squared sum of the empirical training error

of labeled data, the norm of the output weights, as well as

the manifold regularization term based on both labeled and

unlabeled data.

By modifying the ELM formulation (5), we have the SS-

ELM formulation:

min
W2RL�c

1

2
Wk k2þ 1

2

Xl

i¼1

Cyi nik k2þ k
2

TrðYTLYÞ

hðxiÞW¼yTi � nTi ; i ¼ 1; 2; . . .; l

yi ¼ h xið ÞW ; i ¼ 1; 2; . . .; n

ð6Þ

where k is a tradeoff parameter, Cyi is a penalty factor for

training error of data from class yi, L 2 Rn�n is the graph

Laplacian built from both labeled and unlabeled data, and

Y 2 Rn�c is the output matrix of the network with its ith

row equal to yi.

Note that similar to the weighted ELM (W-ELM)

algorithm, here we assign different penalty factor Cyi to

the prediction errors w.r.t. samples from different classes

because when the data is unbalanced, i.e., some classes

have significantly more samples than other classes, tra-

ditional ELM tend to fit the majority classes well, but fits

minority classes poorly. This usually results in poor

generalization to the testing set. Therefore, in order to

cope with the possibly imbalanced classification problem,

we reweigh examples from different classes. Suppose that

xi belongs to class yi which has Nyi training samples, then

we assign ni with a penalty of Cyi ¼
C0

Nyi
, where C0 is a

user-defined parameter as in traditional ELM and Nyi is

the number of training samples in the class yi. In this

way, the samples from the dominant classes will not be

overfitted by the algorithm and the samples from a class

with less samples will not be ignored.

Substituting the constraints into the objective function

yields the new formulation in matrix form:

min
W2RL�c

1

2
kW k2þ1

2
kC1

2ð ~Y�HWÞk2þk
2

TrðWTHTLHWÞ
� 	

ð7Þ

where H ¼ ½hðx1ÞT ; hðx2ÞT ; . . .; hðxlÞT �T 2 Rl�L; ~Y 2 Rn�c

is the augmented training target with its first l rows equal to

Yl and the rest equal to 0, and C 2 Rn�n is a (penalty)

diagonal matrix with its first l diagonal elements cii ¼ Ci

and the rest equal to 0.

Now let us solve the above optimization problem. We

first compute the gradient of the objective function w.r.t. W

and then by setting the gradient to zero, we obtain the

optimal output weights (i.e., the SS-ELM solution) if

L B l:

W� ¼ ðIL þ HTCH þ kHTLHÞ�1HTC ~Y ð8Þ

where IL is an identity matrix of dimension L.
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If L[ 1 (common in SSL), the optimal output weights

can be solved by the alterative form:

W� ¼ HTðIn þ CHHT þ kLHHTÞ�1C ~Y ð9Þ

where In is an identity matrix of dimension n.

In summary, SS-ELM training algorithm consists of two

key steps:

Step 1: Initialize an ELM network of L hidden neurons

with random input weights and biases, and calculate the

output matrix of the hidden neurons H 2 Rn�L.

Step 2: Use Eq. (8) or (9) to compute the output weights

W.

Feature extraction algorithms

EEG feature extraction algorithms can be roughly divided

into time-domain, frequency-domain, time–frequency, and

nonlinear dynamics based analysis. This paper compares

the discrete wavelet-packet transform (Alves et al. 2017)

and Hilbert–Huang transform (Huang et al. 1996, 1998;

Huang and Wu 2008, Huang and Shen 2014; Huang, Song,

Gupta and Wu 2014; Krishna and Ramaswamy 2017)

approaches for extracting the time–frequency features from

the physiological signals.

Wavelet-packet decomposition

Wavelet transform is a multi-scale signal analysis method.

The method can characterize the local features of the signal

in time and scale domain, so it is very suitable for the

analysis of transient characteristics and time–frequency

characteristics of non-stationary EEG signal.

Wavelet Packet Decomposition (WPD) is a generaliza-

tion of wavelet decomposition. In the wavelet analysis, the

approximation part is decomposed into the approximation

part and detail part at another level. This process is repe-

ated until the maximal number of decomposition levels is

reached. However, in the WPD details are also decom-

posed. WPD has multi-scale characteristics and provides

great choice for time–frequency analysis. In the multires-

olution wavelet analysis, the Hilbert space L2ðRÞ is

decomposed into the sum of all orthogonal wavelet sub-

spaces Wjðscale factor j 2 ZÞ:

L2ðRÞ ¼ �
j2Z

Wj ð10Þ

WPD continues to dichotomize Wjðj ¼ 1; 2; . . .Þ, as shown

in Fig. 2, where Un
j is the wavelet-packet space of the scale

j and its orthogonal basis unj;kðtÞ ¼ 2�j=2unð2�jt � kÞ(k is

the translation factor) satisfies:

unj;0ðtÞ ¼

X

k

h0ðkÞuij�1;k; if n is even

X

k

h1ðkÞu j
j�1;k; otherwise

8

>><

>>:

ð11Þ

where j; k 2 Z; n ¼ 0; 1; . . .; 2 j � 1; h0ðkÞ and h1ðkÞ are a

pair of orthogonal mirror filters with the relationship

h1ðkÞ ¼ ð�1Þ1�k � h0ð1 � kÞ.
If f(t) is a function in the Hilbert space L2ðRÞ, when the

scale is small enough we can approximate the coefficient

d0
0ðkÞ of the space U0

0 by the sampling sequence f ðkDtÞ or

the normalized f(k). According to fast algorithm of WPD,

the wavelet-packet coefficient of the j-th scale and k-th

node can be expressed by:

Fig. 2 Illustration of the spatial

WPD
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dnj ðkÞ ¼

X

m

h0ðm� 2kÞdn=2
j�1ðmÞ; if n is even

X

m

h1ðm� 2kÞdðn�1Þ=2
j�1 ðmÞ; otherwise

8

>><

>>:

ð12Þ

In this way, we can get wavelet-packet coefficients of a

signal at all scales. It is known that the EEG signals rele-

vant to MWL are in the frequency band of [0–50] Hz. The

17-channel electrophysiological signals are decomposed

into five levels. Using (12), we extract the spectral power

of the first six nodes ([0–7.8], [7.8–15.6], [15.6–23.4],

[23.4–31.2], [31.2–39], [39–46.8]) as the features of the

EEG signal.

Hilbert–Huang transform

The Hilbert–Huang transform (HHT) is a signal processing

method suitable for nonlinear and nonstationary signal

analysis and has been successfully applied to various fields,

including geophysics and biomedicine (Huang et al. 1998,

2008, 2014). The core idea of the HHT is to use Empirical

Mode Decomposition (EMD) to decompose a time-series

signal into Intrinsic Mode Functions (IMFs) with a trend

and then apply the Hilbert spectral analysis (HSA) method

to the IMFs to obtain instantaneous frequency data. The

HHT assumes that any signal is composed of a finite and

often small number of components (described as IMFs),

which form a complete and nearly orthogonal basis for the

original signal.

Empirical mode decomposition

The general idea of the Empirical Mode Decomposition

(EMD) method is to use the mean value of the upper and

lower envelopes of the time series to determine the in-

stantaneous equilibrium, and then extract the IMFs. The

main steps of EMD include:

Step 1: Find the local maximum and minimum of the

original sequence x(t), and connect the local maximum and

the minimum with the cubic curve interpolation to obtain

the maximum envelope xmaxðtÞ and the minimum envelope

xminðtÞ.
Step 2: Obtain the mean value m(t) by averaging xmaxðtÞ

and xminðtÞ at each time instant.

Step 3: Calculate the difference between the original

sequence x(t) and the instantaneous mean m(t), i.e.,

hðtÞ ¼ xðtÞ � mðtÞ ð13Þ

For different datasets, h(t) may or may not be an IMF,

which must satisfy the following conditions:

C1: In the whole dataset, the number of extrema and the

number of zero crossings must either be equal or differ at

most by one.

C2: At any point, the mean value of the two envelopes

defined by the local maxima and local minima is zero.

If h(t) satisfies the above conditions, it is an IMF;

otherwise h(t) is taken as the original sequence, and Steps

1–3 are repeated until C1 and C2 are satisfied.

The first IMF c1ðtÞ should contain the finest scale or the

shortest-period oscillation in the signal, which can be

subtracted from the original sequence by:

xðtÞ � c1ðtÞ ¼ r1ðtÞ ð14Þ

The residue r1ðtÞ still contains longer-period variations.

This residual signal is then treated as the new data and

subjected to the same sifting process of the EMD to obtain

an IMF of lower frequency. This procedure is repeatedly

applied to all subsequent rj, yielding:

r1ðtÞ � c2ðtÞ ¼ r2ðtÞ;
r2ðtÞ � c3ðtÞ ¼ r3ðtÞ;

..

.

rn�1ðtÞ � cnðtÞ ¼ rnðtÞ

ð15Þ

The decomposition process finally stops when the residue

rnðtÞ becomes a monotonic function or a function with only

one extremum, from which no further IMF can be extrac-

ted. By summing up (14) and (15), we have:

xðtÞ ¼
Xn

i¼1

ciðtÞ þ rnðtÞ ð16Þ

Therefore, after EMD the original signal is decomposed

into n IMFs ðc1ðtÞ; c2ðtÞ; . . .; cnðtÞÞ and a residue rnðtÞ,
which can be either the adaptive trend or a constant.

Hilbert spectral analysis

The Hilbert transform of any function x(t) of LP class is

defined as the convolution of x(t) with function hðtÞ ¼ 1
pt:

y tð Þ ¼ H½xðtÞ� ¼ 1

p
P

Z1

�1

xðsÞ
t � s

ds ð17Þ

where P is the Cauchy principal value of the singular

integral.

With the Hilbert transform y(t) of the function x(t), we

obtain the analytic function,

zðtÞ ¼ xðtÞ þ jy tð Þ ¼ AðtÞejhðtÞ ð18Þ
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where j ¼
ffiffiffiffiffiffiffi

�1
p

;AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ðtÞ þ y2 tð Þ
p

is the instanta-

neous amplitude, and hðtÞ ¼ arctan
yðtÞ
xðtÞ

h i

is the instanta-

neous phase function.

An IMF after the Hilbert transform can be expressed in

Eq. (18). If we perform a Fourier transform on z(t), we

have:

W xð Þ ¼
Z 1

�1
A tð Þejh tð Þe�jxtdt ¼

Z 1

�1
A tð Þej h tð Þ�xtð Þdt

ð19Þ

Then by the stationary phase method (Copson 1967), the

maximum contribution to W(x) is given by the frequency

satisfying the condition:

d

dt
h tð Þ � xtð Þ ¼ 0 ð20Þ

Therefore the best instantaneous frequency is simply

xðtÞ ¼ dhðtÞ
dt .

Figure 3 illustrates the decomposition of a 2 s ECG data

into seven IMFs and a residue (trend term).

With both amplitude and frequency being a function of

time, we can express the amplitude (or energy, the square

of amplitude) in terms of a function of time and frequency,

H x; tð Þ. The marginal spectrum can then be defined as:

h xð Þ ¼
Z T

0

H x; tð Þdt ð21Þ

where [0, T] is the temporal domain over which the data is

defined. The marginal spectrum represents the accumulated

amplitude (energy) over the entire data span in a proba-

bilistic sense and provides a measure of the total amplitude

(energy) contribution from each frequency value, serving

as an alternative spectrum expression of the data to the

traditional Fourier spectrum.

As pointed out by Huang et al. (1996, 1998), the fre-

quency in either H x; tð Þ or H(x) has a totally different

meaning from the Fourier analysis. In the Fourier repre-

sentation, the existence of energy at a frequency x means a

component of sine or cosine wave persisted through the

time course of the data. Here, the existence of energy at the

frequency x means only that, in the whole time course of

the data, there is a higher likelihood for such a wave to

have appeared locally. In fact, the Hilbert spectrum is a

weighted non-normalized joint amplitude-frequency-time

distribution. The weight assigned to each time–frequency

cell is the local amplitude. Consequently, the frequency in

the marginal spectrum indicates only the likelihood that an

oscillation with such a frequency exists. The exact occur-

rence time of that oscillation is given in the full Hilbert

spectrum.

In addition to the marginal spectrum, we can also define

the Instantaneous Energy (IE) density level as:

IE tð Þ ¼
Z

x
H2 x; tð Þdx ð22Þ

Obviously, IE also depends on time; it can be used to check

the energy fluctuation.

In summary, the signal x(t) is decomposed by EMD

method into ciðtÞ ði ¼ 1; 2; . . .; nÞ, which can be expressed

as:

ciðtÞ ¼ Re½AiðtÞ expðj
Z

xiðtÞdtÞ� ð23Þ

Fig. 3 The EMD of a 2 s ECG

segment into seven IMFs

(subject A)
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where Re[�] represents the real part of terms with brackets

and AiðtÞ is represented on the time–frequency plane.

We obtain the Hilbert spectrum of ciðtÞ as:

Hiðx; tÞ ¼
AiðtÞ ; if x ¼ xiðtÞ
0 ; otherwise

�

ð24Þ

The IMFs obtained by sifting process of EMD constitute an

adaptive basis. This basis usually satisfies empirically all

the major mathematical requirements for a time series

decomposition method, such as convergence, complete-

ness, orthogonality, and uniqueness, as discussed by Huang

et al. (1998).

For an arbitrary time series of length N, x(t), if EMD is

used to obtain its IMF components and instantaneous fre-

quencies and instantaneous amplitudes of those IMFs are

obtained by using the Hilbert transform, x(t) can be

expressed as:

xðtÞ ¼ Re½
Xn

i¼1

AiðtÞ expðj
Z

xiðtÞdtÞ� ð25Þ

Here the residue, rn, is not expressed in terms of a simple

oscillatory form for it is either a monotonic function or a

function with only one extrema not containing enough

information to check if it is an oscillatory component is

physically meaningful.

Equation (24) gives both amplitude and frequency of

each component as functions of time. The Fourier repre-

sentation of the same data is

x tð Þ ¼ Re
X1

i¼1

Aie
jxi t ð26Þ

where both Ai and xi are constants.

The difference between Eqs. (25) and (26) is funda-

mental: the IMF represents largely a generalized Fourier

expansion. The variable amplitude and instantaneous fre-

quency not only improve the efficiency of the expansion,

but enable the expansion to accommodate nonlinear and

nonstationary variations in data. The IMF expansion lifts

the restriction of constant amplitude and fixed frequency in

the Fourier expansion, allowing for a variable amplitude

and frequency representation over time. Equation (25) also

enables us to represent the amplitude and the instantaneous

frequency as functions of time in a 3D plot, in which the

amplitude can be contoured on the frequency-time plane.

This frequency-time distribution of the amplitude is des-

ignated as the Hilbert amplitude spectrum, Hðx; tÞ, or

simply Hilbert spectrum. If amplitude squared is more

desirable commonly to represent energy density, then the

squared values of amplitude can be substituted to produce

the Hilbert energy spectrum as well.

The Hilbert amplitude spectrum Hðx; tÞ of the original

signal x(t) can be expressed as:

Hðx; tÞ ¼
Xn

i¼1

Hiðx; tÞ ð27Þ

The calculation of sample entropy requires smaller time

span of either deterministic or random signal and is thus

more computationally efficient. In addition, it is insensitive

to the noises. Thus in addition to the HHT-derived features,

we also include sample entropy as an additional feature.

Specifically, we calculate the variance contribution of each

IMF component as well as its correlation coefficient with

the original signal, select the first three IMF components

with the highest contribution, and then compute their

respective sample entropies, which are used jointly with the

energy spectrum entropy and the Hilbert marginal spectral

entropy as the 5-dim. feature vector of a sample data.

Data acquisition and data preprocessing

Subjects

Six subjects (22–24 y/o, male; coded by A, B, C, D, E, and

F) participated in the experiments. All subjects were

healthy, had normal vision and dextromanual. Before the

experiments, all subjects were informed of goals and pro-

cedure of the experiment and were trained for more than

10 h on aCAMS-based task operations.

Experimental tasks

The simulated task platform used in our experiments is

automated-enhanced Cabin Air Management System

(aCAMS), which consists of four subsystems: concentra-

tion of oxygen (O2), air pressure (P), concentration of

carbon dioxide (CO2), and temperature (T). In the experi-

ment, we used the aCAMS to simulate the task environ-

ment in a closed cabin. The operator’s MWL is mainly

affected by the Number Of Subsystems (NOS) assigned to

him for manual control and the Actuator Sensitivity (AS) in

the manual control systems. The aCAMS simulation plat-

form constitutes a complex human–machine cooperative

task environment. Nihon Kohden� measurement system

was used to measure physiological signals at a sampling

rate of 500 Hz.

Experimental procedure

The aCAMS system has four subsystems, each having two

control modes: automatic or manual control. The two

modes of control can be switched arbitrarily. The control

objective of the experiment is to maintain the output

variables of the four subsystems within their target ranges
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by automatic control by automation systems, manual con-

trol by human operator, or a mixture of both modes. For

manual control, there are two levels of actuator sensitivity

(AS): Low or High. The sensitivity of the control variable

under High AS is higher than Low AS (Wang et al. 2016).

Each session lasts for 50 min. and consists of 10 dif-

ferent task-load conditions. The conditions #1, 4, 7, and 10

are under automatic control mode. Operator manually

controls two subsystems (O2 and P) in the conditions #2

and 3, the only difference between the two conditions is

that the AS is different. Figure 4 illustrates the 10 task-load

conditions in a session of experiment. During the last 10 s

of each condition, the operator performs self-assessment of

his performance in that condition, so we only consider the

measured data of 290 s per condition.

The EEG, ECG and EOG signals for each subject were

collected during the aCAMs operation by using a signal

acquisition instrument (sampling rate: 500 Hz). The

instrument has the function of removing the disturbance of

the power–frequency on the electrophysiological signals.

In the international standard 10–20 EEG electrode place-

ment system (Okamoto et al. 2004), 15 electrodes that are

most relevant to the MWL variations were selected,

namely F3, F4, C3, C4, P3, P4, O1, O2, Fz, Cz, CPz, Pz,

AFz, POz, and Oz (Yin and Zhang 2014a, b). The place-

ment of the EEG measurement electrodes is shown in

Fig. 5, in which the earlobes A1 and A2 were used as the

referential potential. In addition, the potential difference

between the upper middle part of the clavicle and the lower

middle part of the left rib was recorded as ECG signal. The

EOG signal was measured by the potential between the

electrodes above and below the left eye. The recorded raw

signals is filtered by a Butterworth band-pass filter

(0–40 Hz) and the coherent method is used to remove the

eye artifacts.

Physiological data labeling

The preprocessed data is divided by the sliding time win-

dow with length of 1 s (with no overlapping), then each

load condition contains 290 sample data. In addition to

physiological data, the experiment also records the task

performance data, i.e., the output of the subsystems under

control. Performance data for subject A is shown in Fig. 6.

Where the area between the red lines is the target range

and the area between the pink lines is the safe range. In

order to quantify the MWL level, we define the Mental

Workload Index (MWLI):

MWLI ¼ wO2
rO2

ðtÞ þ wPrPðtÞ þ wCO2
rCO2

ðtÞ þ wTrTðtÞ
ð28Þ

where r(t) with different subscript is Boolean variable of

the corresponding subsystem (when the output of the cor-

responding subsystem is in target range at time t, rðtÞ ¼ 0;

otherwise rðtÞ ¼ 1) and w represents the weight of the

corresponding subsystem that can be determined by:

w ¼ w1w2w3 ð29Þ

where w1 represents the control weight of the corre-

sponding subsystem (when the subsystem is under manual

control, w1 = 1; otherwise w1 = 0), w2 represents the dif-

ficulty level of the corresponding subsystem among four

subsystems, and w3 denotes the difficulty level of control of

the corresponding subsystem with different level of AS.

More specifically, w2 and w3 are determined using the

0

Time(min)
10 20 30 40 50

NOS=3,
AS=low

NOS=3,
AS=high

NOS=4,
AS=low

NOS=4,
AS=high

NOS=0,Baseline
conditions

NOS=2,
AS=low

NOS=2,
AS=high

Fig. 4 The 10 task-load conditions involved in each session of

experiment

Fig. 5 The 15 EEG measurement electrodes used in our experiments

628 Cognitive Neurodynamics (2020) 14:619–642

123



entropy method, as shown in Tables 1 and 2. The basic

idea of entropy method is to determine the weight

according to the indicator variability. In general, the

smaller the information entropy of an indicator, the greater

the variation in the indicator, the greater the amount of

information provided, the greater the weight. By using (11)

and (12), we obtain the second-to-second MWLI varia-

tions, as shown in Fig. 7. We can see that there exists

individual difference across 6 subjects, but the overall trend

of change is similar, for example, condition #9 has the peak

(highest) level of MWL. The MWL level is higher in the

conditions #3, 6 and 8, while the MWL level in the con-

dition #2 and 5 is lower. The baseline conditions #1, 4, 7,

and 10 are under automatic control, thus the MWL level in

those 4 baseline conditions is zero (under-loaded). Based

on those observations, we will classify the MWL into three

classes (baseline, low, high) or four classes (baseline, low,

medium, high).

Classification results and discussion

In this section, we present the SSL performance across the

six subjects. We use the WPD and HHT algorithms to

extract the relevant features. The effectiveness of SSL

algorithm for MWL classification problem is validated by

the pertinent empirical results. In addition, we examine the

effect of the number of training data and the number of

unlabeled data on the performance of SSL algorithm.

Finally, we compare the performance of SSL algorithm and

the commonly used supervised learning algorithms for OFS

analysis.

Fig. 6 The outputs of four

subsystems under human-

computer shared control

(subject A)

Table 1 The weights assigned to the four subsystems for each subject

Subject O2 P CO2 T

A 0.1053 0.1041 0.5819 0.2087

B 0.1073 0.1110 0.5258 0.2559

C 0.1066 0.1100 0.6061 0.1773

D 0.1102 0.1170 0.5910 0.1818

E 0.1034 0.1072 0.6167 0.1727

F 0.1031 0.1050 0.6495 0.1424

Table 2 The different weights assigned to the four subsystems under

binary (low vs. high) levels of Actuator Sensitivity (AS)

Subject AS O2 P CO2 T

A Low 0.1644 0.3824 0.2716 0.3656

High 0.8356 0.6176 0.7284 0.6344

B Low 0.1117 0.1408 0.2933 0.1416

High 0.8883 0.8592 0.7067 0.8584

C Low 0.1178 0.1724 0.2736 0.3146

High 0.8822 0.8276 0.7264 0.6854

D Low 0.1263 0.1740 0.2886 0.2217

High 0.8737 0.8260 0.7114 0.7783

E Low 0.1859 0.2908 0.2447 0.2886

High 0.8141 0.7092 0.7553 0.7114

F Low 0.2130 0.3431 0.2401 0.4038

High 0.7870 0.6569 0.7599 0.5962
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In this study we utilized a windowing approach with a

sliding time window with length of 1 s. The methods

described in ‘‘Semi-supervised learning method’’ section

were applied to the windowed data to extract features. The

Daubechies wavelet (db4) function was used to decompose

the EEG signals by using 5-level WPD. In this way, we can

obtain a dataset of 2900 feature data with a feature

dimensionality of 102 (= 6 features/channel 9 17 chan-

nels). For the HHT algorithm, the sample entropies of the

first three IMF components with the highest contribution to

the variance, energy spectrum entropy and the Hilbert

marginal spectral entropy were taken as the statistics-based

features, hence we can get a dataset of 2900 samples with a

feature dimensionality of 85 (= 5 features/channel 9 17

channels).

Usually there are significantly more unlabeled data than

the labeled data, thus we divide the dataset into labeled

data and unlabeled data at the rate of 1:9. Labeled data is

further divided into training and test data at the rate of 4:1.

As a result, the number of training samples, test samples

and unlabeled samples are 232, 58, and 2610, respectively.

To avoid the impact of the smaller test set on the ability

of the SSL algorithm to effectively utilize labeled and

unlabeled data (i.e., unbalanced data classification prob-

lem), we divide the dataset into labeled data and unlabeled

data at the rate of 1:4. The labeled data is equally divided

into training and testing data. Finally, the number of

training samples, test samples and unlabeled samples are

290, 290, and 2320, respectively.

Classification results

In this section, the SS-ELM is applied to classify MWL. As

shown in Fig. 8, the proposed algorithm has satisfactory

classification performance on the MWL-related dataset. In

addition, the testing classification accuracy of both feature

extraction algorithms exceeds 85%. In comparison, the

WPD algorithm outperforms HHT algorithm, achieving a

3-class classification accuracy of 99.71% and 4-class

accuracy of 99.19%.

In terms of individual differences (i.e., cross-subject

variability), for both feature extraction algorithms, the

worst classification performance is obtained for subject B

among the six subjects, whereas the classification perfor-

mance for subject C is the most stable in both three- and

four-class cases.

To have a closer look at the classification accuracy for

individual classes, we also present the classification con-

fusion matrix for each subject in Figs. 9, 10, 11 and 12.

Figures 9 and 10 give the confusion matrix resulted from

the use of wavelet-packet features and computed on test set

and unlabeled set respectively, while Figs. 11 and 12 show

the confusion matrix resulted from the use of HHT-derived

features and computed on test set and unlabeled set

respectively. Additionally, we give the 4-class confusion

matrix for each subject in Figs. 13, 14, 15 and 16. We can

see that the confusion matrix result is comparable to (only

slightly lower than) that for the 3-class problem.

Fig. 7 The temporal variation

of MWLI for each subject
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Overall, using either wavelet-packet- or HHT-derived

features, SSL algorithm leads to promising classification

performance. From the confusion matrix, we can find that

for the 3-class problem, it is relatively easier to classify

Class1 and Class2 than Class3. Moreover, there is marked

individual difference between subject B and C.

Fig. 8 The testing classification

accuracy

Fig. 9 The testing classificaion confusion matrix using wavelet packet features (3-class case)
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Fig. 10 The classification confusion matrix calculated on unlabeled dataset using wavelet packet features (3-class case)

Fig. 11 The testing classification confusion matrix using HHT features (3-class case)
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Discussions

Labeled Sample Size

From the results shown in Fig. 8, we find that the WPD is

more accurate and efficient for MWL classification task.

Therefore, subsequently we focus on the discussion of the

performance of the combination of wavelet-packet feature

extraction and SS-ELM classification algorithms.

To test the effect of the number of labeled training data

on the performance of SS-ELM algorithm, we gradually

increased the size of training set, while fixing the size of

both the unlabeled and testing set to 2630. The training and

test accuracy as well as the accuracy calculated on unla-

beled data for each subject are shown in Figs. 17 and 18 for

3- and 4-class problem, respectively [mean ± standard

deviation (sd)].

We can see that except for subject C, the classification

performance for other five subjects improves with the

increase of the number of labeled data. For subject C, when

the size of training set is 29, the accuracy already

approaches 100%, so with the increase of the number of

training samples, there is little room for further improve-

ment of the accuracy. Therefore, we may conclude that

satisfactory classification results can be obtained by using

only a small number of labeled data. For other subjects, if

training samples are scarce/sparse, the increase of the

number of training samples has a great impact on the

accuracy of the algorithm; However, if the training set is

larger, the accuracy of the algorithm would improve little

or stops improving with continued increase of the number

of training samples. In summary, the benefit of SSL algo-

rithm is reflected the best in the situations where only little

labeled data is available.

Size of unlabeled dataset

To test the capacity of the graph-based SSL algorithm in

utilizing unlabeled data, we gradually increase the number

of unlabeled data, while fixing the size of labeled set to 29.

The corresponding classification accuracy is compared

in Figs. 19 and 20 (mean ± SD). We can see that in either

3- or 4-class case, except for subject C, the classification

accuracy for other five subjects is improved with the

increase of the number of unlabeled data.

Does this observation really indicate that the more

unlabeled data, the better the classification performance?

To answer this question, we gradually increase the number

Fig. 12 The classification confusion matrix calculated on unlabeled dataset using HHT features (3-class case)
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Fig. 13 The testing classification confusion matrix using wavelet packet features (4-class case)

Fig. 14 The classification confusion matrix calculated on unlabeled dataset using wavelet packet features (4-class case)

634 Cognitive Neurodynamics (2020) 14:619–642

123



Fig. 15 The testing classification confusion matrix using HHT features (4-class case)

Fig. 16 The classification confusion matrix calculated on unlabeled dataset using HHT features (4-class case)
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of the unlabeled data while fixing the size of the labeled set

to 290. The corresponding classification accuracy for each

subject is shown in Figs. 21 and 22. It can be seen that

when the number of training samples is 290, increasing the

number of unlabeled samples has little effect on the clas-

sification performance. Therefore, when the labeled data

are sufficiently extensive to characterize the data manifold,

increasing the unlabeled data does not have much effect on

the performance improvement. The fundamental advantage

of the SSL algorithm for risky MWL detection is that if the

labeled set is smaller, it has outstanding advantages over

supervised learning; conversely, if the labeled set is large,

its performance is comparable to that of supervised learn-

ing algorithm.

Fig. 17 The classification accuracy versus size of training set for each subject. The error bars indicate standard deviation (3-class case)

Fig. 18 The classification accuracy versus size of training set for each subject (4-class case)
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Fig. 19 The classification accuracy versus size of unlabeled dataset for each subject (3-class case; size of labeled dataset: 29)

Fig. 20 The classification accuracy versus size of unlabeled dataset for each subject (4-class case; size of labeled dataset: 29)
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Fig. 21 The subject average classification accuracy versus size of unlabeled dataset (3-class case; size of labeled dataset: 290)

Fig. 22 The subject average classification accuracy versus size of unlabeled dataset (4-class case; size of labeled dataset: 290)

638 Cognitive Neurodynamics (2020) 14:619–642

123



Performance comparison between SSL and supervised
learning

In order to show the potential of the SS-ELM method for

MWL classification, we compare it with four classical

supervised learning algorithms, namely Naive Bayesian

(NB), Random Forest (RF), Support Vector Machines

(SVM), and ELM. The comparative results are shown in

Figs. 23 and 24 for 3- and 4-class problem, respectively.

Since the SSL algorithm takes full advantages of a large

number of unlabeled data, its classification accuracy is

shown to be superior to that of the four major supervising

learning algorithms, but the improvement of accuracy

depends on the size of training set. When the number of

labeled data is small, the performance enhancement of the

SS-ELM method is most significant compared with

supervised learning algorithms. On the contrary, when the

number of labeled samples is large, the difference in

classification performance between them is only marginal.

Consequently, the SSL algorithm would be more applica-

ble to the special scenarios in which the labeled data is

difficult or expensive to collect.

Fig. 23 The classification accuracy of five different classifiers versus size of the labeled dataset (3-class case)
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Conclusion

Although ML techniques have shown promising perfor-

mance in model-based MWL detection, a practical limita-

tion of ML methods is the lack of a sufficient number of

labeled data for modeling training. Labeling massive

physiological data can be expensive or even erroneous, if

not impossible, without enough domain-specific knowledge

about OFS. As the SSL method only requires a small

amount of labeled data, in the present investigation it is

applied to real-time detection of high-risk MWL based on

physiological data. We use SSL to make use of the

available unlabeled data with an aim to improve the

accuracy of high-risk MWL detection.

The data analysis results obtained show that the pro-

posed SSL approach is promising for risky MWL detection

based on physiological signals. By taking advantage of the

information contained in the unlabeled data, the graph-

based SSL method can not only reduce the computational

cost, but also improve the correct detection rate. With the

increase of the number of the unlabeled data, even perfect

classification can be fulfilled for certain datasets by using

the SSL method. These findings suggest that by exploring

the structure of the unlabeled data, we can gain and utilize

additional information to improve the high-risk MWL

detection performance.
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Gómez-Chova L, Camps-Valls G, Munoz-Mari J, Calpe J (2007)

Semi-supervised cloud screening with Laplacian SVM. In:

Proceedings of the 2007 IEEE international geoscience and

remote sensing symposium (IGARSS 2007), 23–28 July 2007,

Barcelona, Spain, pp 1521–1524

Hankins TC, Wilson GF (1998) A comparison of heart rate, eye

activity, EEG and subjective measures of pilot mental workload

during flight. Aviat Space Environ Med 69(4):360–367

Hart SG, Staveland LE (1988) Development of NASA-TLX (Task

Load Index): results of empirical and theoretical research. Adv

Psychol 52:139–183

Hockey GRJ (1997) Compensatory control in the regulation of human

performance under stress and high workload: a cognitive-

energetical framework. Biol Psychol 45(1–3):73–93

Hockey GRJ (2003) Operator functional state: the assessment and

prediction of human performance degradation in complex tasks,

vol 355. IOS Press, Amsterdam

Hollender N et al (2010) Integrating cognitive load theory and

concepts of human–computer interaction. Comput Hum Behav

26(6):1278–1288

Huang NE, Shen SSP (2014) Hilbert–Huang transform and its

applications, 2nd edn. World Science Publishing, Singapore,

p 400

Huang NE, Wu ZH (2008) A review on Hilbert–Huang transform:

method and its applications to geophysical studies. Rev Geophys

46, RG2006, Paper No. 2007RG000228, pp 1–23

Huang NE, Long SR, Shen Z (1996) The mechanism for frequency

downshift in nonlinear wave evolution. Adv Appl Mech

32:59–111

Huang NE, Shen Z, Long SR et al (1998) The empirical mode

decomposition and the Hilbert spectrum for nonlinear and

nonstationary time series analysis. Proc R Soc Lond A

454:903–995

Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine:

theory and applications. Neurocomputing 70(1-3):489–501

Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning

machine for regression and multiclass classification. IEEE Trans

Syst Man Cybern B Cybern 42(2):513–529

Huang G, Song S, Gupta JND, Wu C (2014) Semi-supervised and

unsupervised extreme learning machines. IEEE Trans Cybern

44(12):2405–2417

Joachims T (1999) Transductive inference for text classification using

support vector machines. In: Proceedings of the 16th interna-

tional conference on machine learning (ICML1999), Morgan

Kaufmann, June 27–30, 1999, Bled, Slovenia, pp 200–209

Krishna PKM, Ramaswamy K (2017) Single channel speech sepa-

ration based on empirical mode decomposition and Hilbert

Transform. IET Signal Proc 11:579–586

Lal SKL, Craig A (2001) A critical review of the psychophysiology of

driver fatigue. Biol Psychol 55(3):173–194

Lamti HA, Ben Khelifa MM, Hugel V (2019) Mental fatigue level

detection based on event related and visual evoked potentials

features fusion in virtual indoor environment. Cogn Neurodyn

13:271–285

Mahfouf M, Zhang J, Linkens DA et al (2007) Adaptive fuzzy

approaches to modelling operator functional states in a human–

machine process control system. In: Proceedings of the IEEE

international conference on fuzzy systems (FUZZ-IEEE 2007),

23–26 July 2007, London, UK, pp 1–6

McClosky D, Charniak E, Johnson M (2006) Effective self-training

for parsing. In: Proceedings of the conference on human

language technology of the North American chapter of the

ACL, pp 152–159

Mora-Sánchez A, Pulini A, Gaume A et al (2020) A brain–computer

interface for the continuous, real-time monitoring of working

memory load in real-world environments. Cogn Neurodyn

14:301–321

Okamoto M et al (2004) Three-dimensional probabilistic anatomical

cranio-cerebral correlation via the international 10–20 system

oriented for transcranial functional brain mapping. Neuroimage

21(1):99–111

Swangnetr M, Kaber DB (2013) Emotional state classification in

patient–robot interaction using wavelet analysis and statistics-

based feature selection. IEEE Trans Hum–Mach Syst

43(1):63–75

Wang Y, Zhang J, Wang R (2016) Mental workload recognition by

combining wavelet packet transform and kernel spectral regres-

sion techniques. In: Proceedings of 13th IFAC symposium on

analysis, design, and evaluation of human–machine systems

(HMS2016), Kyoto, Japan, Aug. 30–Sep. 02, 2016; IFAC-

PapersOnLine, vol 49.19, pp 561–566

Wang H, Dragomir A, Abbasi NI et al (2018) A novel real-time

driving fatigue detection system based on wireless dry EEG.

Cogn Neurodyn 12:365–376

Wilson GF, Fisher F (1991) The use of cardiac and eye blink
measures to determine flight segment in F4 crews. Aviat Space

Environ Med 62(10):959–962

Wilson GF, Russell CA (1999) Operator functional state classification

using neural networks with combined physiological and perfor-

mance features. In: Proceedings of the human factors and

ergonomics society annual meeting, vol 43. No. 20, Sage, Los

Angeles, CA

Wilson GF, Russell CA (2003a) Operator functional state classifica-

tion using multiple psychophysiological features in an air traffic

control task. Hum Factors 45(3):381–389

Cognitive Neurodynamics (2020) 14:619–642 641

123



Wilson GF, Russell CA (2003b) Real-time assessment of mental

workload using psychophysiological measures and artificial

neural networks. Hum Factors 45(4):635–643

Wilson GF, Russell CA (2007) Performance enhancement in an

uninhabited air vehicle task using psychophysiologically deter-

mined adaptive aiding. Hum Factors 49(6):1005–1018

Yin Z, Zhang J (2014a) Operator functional state classification using

least-square support vector machine based recursive feature

elimination technique. Comput Methods Programs Biomed

113(1):101–115

Yin Z, Zhang J (2014b) Identification of temporal variations in mental

workload using locally-linear-embedding-based EEG feature

reduction and support-vector-machine-based clustering and

classification techniques. Comput Methods Programs Biomed

115(3):119–134

Zeng H, Yang C, Dai G et al (2018) EEG classification of driver

mental states by deep learning. Cogn Neurodyn 12:597–606

Zhang J, Wang X, Mahfouf M, Linkens DA (2008) Use of heart rate

variability analysis for quantitatively assessing operator’s mental

workload. In: Proceedings of international conference on

biomedical engineering and informatics (BMEI 2008), Sanya,

China, 27–30 May 2008, pp 668–672

Zhang J, Liu H, Peng X, Raisch J, Wang R (2013a) Classifying

human operator functional state based on electrophysiological

and performance measures and fuzzy clustering method. Cogn

Neurodyn 7:477–494

Zhang J, Qin P, Raisch J, Wang R (2013b) Predictive modeling of

human operator cognitive state via sparse and robust support

vector machines. Cogn Neurodyn 7(5):395–407

Zhang J, Yang S, Wang R (2016) Operator functional state estimation

based on EEG-data-driven fuzzy model. Cogn Neurodyn

10(5):375–383

Zhu X (2017) Semi-supervised learning. In: Sammut C, Webb GI

(eds) Encyclopedia of machine learning and data mining.

Springer, Boston, pp 1142–1147

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

642 Cognitive Neurodynamics (2020) 14:619–642

123


	Instantaneous mental workload assessment using time--frequency analysis and semi-supervised learning
	Abstract
	Introduction
	Literature review
	Real-time MWL recognition
	Semi-supervised learning (SSL)

	Semi-supervised learning method
	Manifold regularization
	Extreme learning machine (ELM)
	Semi-supervised extreme learning machine (SS-ELM)

	Feature extraction algorithms
	Wavelet-packet decomposition
	Hilbert--Huang transform
	Empirical mode decomposition
	Hilbert spectral analysis


	Data acquisition and data preprocessing
	Subjects
	Experimental tasks
	Experimental procedure
	Physiological data labeling

	Classification results and discussion
	Classification results
	Discussions
	Labeled Sample Size
	Size of unlabeled dataset
	Performance comparison between SSL and supervised learning


	Conclusion
	Acknowledgements
	References




