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Biphasic response as a mechanism against mutant
takeover in tissue homeostasis circuits
Omer Karin & Uri Alon*

Abstract

Tissues use feedback circuits in which cells send signals to each
other to control their growth and survival. We show that such feed-
back circuits are inherently unstable to mutants that misread the
signal level: Mutants have a growth advantage to take over the
tissue, and cannot be eliminated by known cell-intrinsic mecha-
nisms. To resolve this, we propose that tissues have biphasic
responses in and the signal is toxic at both high and low levels, such
as glucotoxicity of beta cells, excitotoxicity in neurons, and toxicity
of growth factors to T cells. This gives most of these mutants a
frequency-dependent selective disadvantage, which leads to their
elimination. However, the biphasic mechanisms create a new
unstable fixed point in the feedback circuit beyond which runaway
processes can occur, leading to risk of diseases such as diabetes
and neurodegenerative disease. Hence, glucotoxicity, which is a
dangerous cause of diabetes, may have a protective anti-mutant
effect. Biphasic responses in tissues may provide an evolutionary
stable strategy that avoids invasion by commonly occurring
mutants, but at the same time cause vulnerability to disease.
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Introduction

Maintaining proper tissue size is a fundamental problem for multi-

cellular organisms. To do so, cells must precisely coordinate their

proliferation and death rates, because an imbalance in these rates

leads to either excessive growth or degeneration. Moreover, cells

must coordinate their growth in the face of fluctuations, such as

injury, or changes in the target size of the tissue, such as during

development. This coordination requires feedback control.

Feedback circuits for controlling tissue size regulate cell growth

by a signal that is affected by the size of the tissue. Thus, when the

tissue is too small, the growth rate is positive, and when it is too

large, the growth rate is negative. Only when the tissue reaches a

desired size are the proliferation and death rates equal and the

system reaches steady state. An example of such a feedback is the

control of the concentration of T cells by IL-2 produced by the T

cells (Hart et al, 2014). Another example occurs in endocrine tissues

whose growth is regulated by the physiological variable that they

control (Karin et al, 2016), such as in the control of beta-cell mass

by blood glucose. These physiological feedback circuits can show

dynamical compensation mechanisms that make them robust with

respect to variation in parameters, such as insulin resistance in the

case of glucose control (Karin et al, 2016). Feedback is also found in

tissues that are renewed by proliferating stem cells (Lander et al,

2009), such as skeletal muscle and olfactory epithelium.

For such feedback circuits to function properly, each cell must

respond precisely to the input signal. These responses depend on

the activity and expression of receptors, signaling pathways, and

regulatory proteins and are thus susceptible to mutations. When a

mutant cell with a dysregulated proliferative or apoptotic response

arises, it may invade the population and thus break the homeostatic

control. Mutant takeover leads to aberrant tissue size and function.

Thus, mechanisms must be in place to prevent such takeover.

One mechanism for protection from mutant invasion is cell

intrinsic and concerns the paradoxical activation of apoptosis by

c-myc (Lowe et al, 2004). C-myc is a transcription factor that drives

proliferation in many cell types (Bouchard et al, 1998), yet it para-

doxically induces apoptosis when overexpressed (Evan et al, 1992).

This paradoxical induction of apoptosis plays an important role in

tumor suppression because it eliminates transformed cells (Harring-

ton et al, 1994; Lowe et al, 2004).

Here, we extend the idea of cell-intrinsic elimination of mutants

to the level of circuits of communicating cells. We show that tissue

feedback circuits are inherently sensitive to takeover by common

types of mutants that misread the feedback signal, such as receptor

loss-of-function or receptor locked-on mutations. The feedback loop

gives these mutants a growth advantage relative to wild-type cells.

We propose that mutant invasion can be prevented by a biphasic

response mechanism, in which the signal is toxic to the cells at both

low and high levels. Biphasic control gives the mutants a selective

disadvantage compared to wild-type cells, and the mutants are

hence eliminated.

Biphasic control of growth is prevalent in physiological systems.

Examples include the control of beta-cell mass by glucose
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(Robertson et al, 2003), the control of mammary gland mass by

estrogen (Lewis-Wambi & Jordan, 2009), the control of neuronal

survival by glutamate (Hardingham & Bading, 2003), epidermal

growth factor signaling (Högnason et al, 2001), and the control of

T-cell concentration by IL2 and by antigen level (Critchfield et al,

1994; Hart et al, 2014). Biphasic control was also demonstrated for

mechanical signaling—the control of epithelial cell proliferation by

mechanical stretch through Piezo1 (Gudipaty et al, 2017). In all of

these cases, signal is toxic at both high and low levels.

As mentioned above, we find that biphasic control can protect

the tissue from invasion by commonly occurring mutants that mis-

sense the feedback signal. However, we show that this protective

mechanism comes at a cost. The biphasic response introduces an

unstable fixed point. If the input signal fluctuates beyond this unsta-

ble fixed point, a runaway phenomenon occurs in which cells are

eliminated and signal diverges, potentially leading to disease. We

discuss this tradeoff between stability to mutant invasion and risk of

disease in several systems, including beta-cell control of glucose,

parathyroid control of calcium, stem-cell differentiation, and excito-

toxicity in neurons.

Results

Tissue homeostasis circuits are inherently vulnerable to invasion
by sensing mutants

Feedback circuits that control tissue size act to balance the prolifera-

tion and removal rates of the cells. The cells adjust their growth rate

(proliferation minus death/removal) as function of an input y,

which in turn is affected by the size of the tissue (Figs 1A and B,

and EV1A and B).

There are two possible cases. In the first case, the signal y

increases with tissue size Z (i.e., Z activates y), and y inhibits the

growth rate of the cells (Figs 1A and EV1A). If there are too many

cells, y is large and growth rate is negative leading to reduction in

tissue size. If there are too few cells, the opposite occurs and the

tissue grows. This feedback loop guides the tissue to steady state

at the point where growth rate is zero, at y = yST.

In the second case, the signal y decreases with tissue size (Z inhi-

bits y) and y increases the growth rate of the cells (Figs 1B and EV1B).

The same considerations show that the tissue stably settles at y = yST.

These feedback circuits thus provide a stable tissue size, because dif-

ferent initial cell populations and different initial concentrations of y

all converge on the same final population ZST (Fig 1C). At the same

time, the circuits also provide a stable signal level y = yST.

We propose that such generic feedback circuits are susceptible to

invasion by mutants that misread the signal. When such a mutant

arises at steady state, it senses the actual signal level yST as a larger

or smaller value yMUT. In the case of Fig 1A, if the mutation causes

a misreading of the signal as too low, as for example in a receptor-

inactivating mutation, the feedback loop provides the mutant with a

growth advantage and the mutant will take over the population. As

a result, the tissue will show aberrant growth and, when the mutant

is at high enough frequency, will show a level of y that is too high,

y > yST.

In the case of Fig 1B, if the mutation causes a misreading of the

signal as too high, as for example in a locked-on receptor mutation,

the feedback loop provides the mutant with a growth advantage

(Fig EV2A). The mutant will take over the population (Fig 1D). As a

result, the tissue will show aberrant growth and, when the mutant

is at high enough frequency, will show a level of y that is too low,

y < yST (because in this case the tissue acts to reduce y). In both

cases, sensing mutants can take over the population and only reach

equilibrium again at an aberrant tissue size, leading to a breakdown

of homeostatic control. Importantly, the same conclusion holds

whether the growth of the cells is modeled as logistic or exponential

(see Appendix Section S1), and when y acts in delay (see

Appendix Section S2).

Biphasic response can protect against mutant invasion but can
cause vulnerability to disease

To overcome the problem of mutant invasion, the sensing mutants

need to have a selective disadvantage. One way to do this is an

alternative implementation of the feedback circuit, in which y affects

the growth rate of Z in a biphasic manner (Figs 1E and F, and EV1C

and D). The word biphasic means that the growth rate curve has an

inverse-U shape, with a rising and a falling phase—y stimulates the

growth of Z at low concentrations and inhibits the growth of Z at

high concentrations, so the signal is toxic (negative growth rate) at

both low and high levels of y.

As with the monophasic circuits, here there are also two possible

cases. In the first case, the signal y increases with tissue size Z (i.e.,

Z activates y). This circuit has a stable fixed point at y = yST and an

unstable fixed point at y = yUST where yUST < yST (Figs 1E and

EV1C). In the second case, the signal y decreases with tissue size (Z

inhibits y). This circuit also has a stable fixed point at y = yST and

an unstable fixed point at y = yUST, but here yUST > yST (Figs 1F

and EV1D).

In comparison with the monophasic circuits depicted in Fig 1A

and B, the biphasic circuits have fewer types of sensing mutations

with a fitness advantage. In particular, they are protected from

invasion by loss-of-sensing mutants and locked-on sensing

mutants. Whereas in the monophasic circuit of Fig 1A, loss-of-

sensing mutations invade the population, in Fig 1E, the biphasic

response gives these mutants a negative growth rate. They are

thus eliminated. Similarly, whereas locked-on sensing mutants

invade the monophasic circuit of Fig 1B, in the biphasic case of

Fig 1F, they are eliminated (Fig EV2B). Thus, mutants with strong

inactivation (or strong activation) in the response to y have a fit-

ness disadvantage (Fig 1H). This robustness to mutants is very

important since such mutations may be common. For example,

many constitutively active mutations of diverse G-coupled protein

receptors have been observed (Seifert & Wenzel-Seifert, 2002), and

it is common for mutations to lead to loss of function (Eyre-

Walker & Keightley, 2007; Sarkisyan et al, 2016). Mutations with

intermediate effects may be rarer; for example, a study in yeast

(González et al, 2015) showed that mutations that destroy protein

function are much more common than those that reduce its activ-

ity to an intermediate level.

The elimination of sensing mutants by the biphasic mechanism

is frequency dependent: Mutants are eliminated if they have low

frequency compared with wild-type cells. The reason for this is that

when mutants are rare, the tissues maintain a proper signal yST
which the mutants mis-sense as yMUT and therefore have a fitness
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disadvantage. On the other hand, if the mis-sensing mutant appears

at high enough frequency, it is prevalent enough to change the level

of y and force it to reach an improper level that it mis-reads as yST.

In this case, the population of mis-sensing mutants will be at steady

state and will not be eliminated.

Biphasic circuits still have a range of mild-effect mutants with a

growth advantage. These mutants mis-interpret the normal signal

yST as a different value lying in the gray-shaded regions of Fig 1E

and F, namely yMUT lies between yST and yUST. Later, we discuss

mechanisms that can reduce the growth advantage of these mild

mutants.

The biphasic mechanism of resistance to mutants, however,

comes at a cost in terms of the robustness of the circuit to perturba-

tions in the input y. The biphasic response curve crosses zero twice

and therefore introduces a new unstable fixed point, denoted by a

white circle in Fig 1E and F. The stable fixed point (full black circle)

still exists, and the circuit can maintain the cell concentration

constant in the face of small fluctuations around this fixed point.
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Figure 1. Biphasic control can resist mutant invasion of feedback circuits.

A A monophasic feedback circuit in which cells Z generate an input y that inhibits their growth rate. The population is at steady state Z = ZST when y = yST.
B A monophasic feedback circuit where cells Z decrease an input y, which increases their growth rate. The population is at steady state Z = ZST when y = yST.
C Trajectories of Z from different initial concentrations of cells (Z) (i) or y (ii) for the circuit of (B). The healthy concentration Z = ZST is reached regardless of initial

concentration of Z, as long as it is nonzero, and regardless of the initial concentration of y.
D An arrow marks the time when a mutant with a strong activation of the sensing of y arises (for the circuit depicted in B). This mutant has a selective advantage and

takes over the population.
E A biphasic feedback circuit where Z generates a signal y, which, in turn, decreases the growth rate of Z at high concentrations and increases the growth rate of Z at

low concentrations. The population is at steady state Z = ZST when y = yST, and there is also an unstable fixed point at yUST < yST.
F A biphasic feedback circuit where cells Z inhibit y, which, in turn, decreases the growth rate of Z at high concentrations and increases the growth rate of Z at low

concentrations. The population is at steady state Z = ZST when y = yST, and there is also an unstable fixed point at yUST > yST.
G Trajectories of Z from different initial concentrations of Z (i) or y (ii) for the circuit depicted in (F). The healthy concentration Z = ZST is not reached for small values of

Z (Z << ZST) or large values of y (y >> yUST).
H The arrows mark the times when a mutant with a strong activation of the sensing of y arises (for the biphasic circuit depicted in F). This mutant has a selective

disadvantage and is thus eliminated.
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However, large fluctuations in signal y that exceed the unstable

fixed point, or large fluctuations in Z, may lead to negative growth

rate and to the risk of the elimination of the cell population

(Fig 1G). Beyond the unstable fixed point, a runaway phenomenon

occurs in which the cell population shrinks, leading to change in y

that pushes it deeper into the unstable region, leading to faster

shrinkage and so on. This runaway phenomenon has the hallmarks

of certain disease as described below.

To summarize so far, circuits with biphasic control avoid inva-

sion by mutants with strong activation or inactivation of sensing.

This robustness is useful because such mutations have a severe

effect if they take over the population. This mechanism has two

vulnerabilities: Mutations with mild effect on sensing may still

invade, and an unstable fixed point introduced by the biphasic

control provides risk of runaway behavior if signal fluctuates too

widely. We next provide several examples of biphasic control.

Glucotoxicity can protect from mutant beta cells, but can
cause diabetes

The first example occurs in the endocrine circuit that regulates

blood glucose by pancreatic beta cells (Fig 2). Fasting blood glucose

(y) is maintained within a tight range around approximately

yST = 5 mM, and blood glucose dynamics are precise in response to

perturbations (Allard et al, 2003; Ferrannini et al, 1985). To achieve

this tight regulation, beta cells (Z) secrete insulin, which reduces

glucose by increasing its uptake by peripheral tissues and decreas-

ing its endogenous production. Thus, in this case, Z inhibits y (the

case of Fig 1B and E).

The response of beta-cell growth to glucose is biphasic (Figs 2A

and EV3A). Both low and high levels of glucose are toxic to beta

cells. The response curve therefore has a stable fixed point at

y = 5 mM (Karin et al, 2016), and it also has an unstable fixed point

at a higher glucose concentration. The toxicity at high levels of

glucose is known as glucotoxicity (Efanova et al, 1998; Del Prato,

2009; Bensellam et al, 2012).

The unstable fixed point caused by glucotoxicity is puzzling,

because, as described by Topp et al (2000), it provides a potential

susceptibility to the system. If glucose levels exceed the unstable

fixed point for extended periods (e.g., due to insulin resistance),

beta cells will have negative growth rate and be removed, leading to

an increase in glucose and a vicious cycle which can eliminate the

beta-cell population. This process has been suggested to lead to type

II diabetes (Topp et al, 2000; De Gaetano et al, 2008; Ha et al,

2016).

Glucotoxicity of beta cells is therefore detrimental, because it

adds instability to perturbations in blood glucose. Since glucotoxic-

ity is mediated by reactive oxygen species, it could have been miti-

gated by antioxidants, but antioxidants and oxidative stress

protective genes are expressed at an exceptionally low level in beta

cells (Robertson et al, 2003). This raises the question of why beta

cells have not evolved to resist glucotoxicity. Here, we suggest that

glucotoxicity may have a biological function: It eliminates beta-cell

mutants with impaired glucose sensing.

Mutants that affect glucose sensing can occur at many steps in

the glucose sensing and insulin secretion process. These steps

include glucose import, phosphorylation and metabolism, closure of

KATP channels, and opening of voltage-dependent calcium channels

(MacDonald et al, 2005). Many mutations are known to affect

glucose sensing by beta cells (Fajans et al, 2001; James et al, 2009),

among them autosomal dominant mutations in the enzyme gluco-

kinase (GCK) (Froguel et al, 1993; Glaser et al, 1998; Fajans et al,

2001; Matschinsky, 2002; James et al, 2009).

We focus on GCK because it performs the rate-limiting step in

glucose sensing. GCK is a hexokinase isozyme expressed in beta

cells that phosphorylates the glucose that is transported into the

cells. It has a half-maximal activation at K = 8.4 mM glucose and a

Hill coefficient of n = 1.8 (Matschinsky, 2002). Hence, its activity

level at the homeostatic set point of 5 mM glucose is ~30% of maxi-

mal activation. Glucose sensing is also affected by the expression

level of GCK (Wang & Iynedjian, 1997). Germ line mutations in GCK

result in low and high blood glucose levels for activating and inacti-

vating mutations, respectively (Matschinsky, 2002). GCK mutations

also affect the rates of beta-cell death and proliferation (Porat et al,

2011; Tornovsky-Babeay et al, 2014). This means that somatic

mutations in GCK cause impaired glucose sensing that may alter

circuit function.

Our theory makes a specific prediction on the fate of GCK muta-

tions in beta cells, namely that their survival will be dependent on

their frequency in the tissue (Fig 2B). We predict that a strong acti-

vating mutation in GCK will be lost when the majority of the popu-

lation is wild type, because the mutants will be eliminated by the

biphasic mechanism: Glucose level is set by the wild-type tissue to

be 5 mM, but the mutants mis-sense a much higher level and

succumb to glucotoxicity. In contrast, when the mutation is trans-

mitted through the germ line, it is expected to survive and instead

pull the blood glucose level to a low point, which the mutants inter-

pret incorrectly as 5 mM.

This frequency-dependent survival was observed in an

experiment by Tornovsky-Babeay et al (2014), which studied a

strong (~6-fold) activating mutation of GCK (Y214C). This mutation,

when transmitted via germ line, and thus to all beta cells, results in

large and hyperfunctional islets and severe hypoglycemia (Cuesta-

Munoz et al, 2004) as occurs in rare human patients. The experi-

menters conditionally expressed this mutation in beta cells of adult

mice, such that only a subset of the beta cells expressed the transgene

(~25%: 3 days after conditional expression). Both the proliferation

and apoptosis rates increased in the cells expressing the transgene,

but the increase in apoptosis rate was higher and after 22 days only

5% of the cells that expressed the transgene were left. Thus, the

mutated cells were eliminated, whereas the wild-type cells remained.

We simulated this experiment using the biphasic control circuit

(Fig 2B–D, see Appendix Section S3 for simulation details). The

results of the simulation are consistent with the experimental obser-

vations—despite having a higher proliferation rate, the population

of induced mutants was eliminated by their even higher apoptosis

rate (Fig 2C). This elimination restores blood glucose levels to base-

line after an initial hypoglycemia (Fig 2D), in agreement with the

experimental blood glucose measurements (Fig 2C and D).

Resistance to mutant invasion is enhanced by low proliferation,
low cell number, and spatial compartments

We have thus seen that strong hypersensing mutants are eliminated

from the beta-cell population. We now address the question of

sensitivity to mild sensing mutants. These mutants misread the
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signal at a level that lies between the stable and unstable fixed

points, yST\y\yUST , leading to a growth advantage (shaded area of

Fig 2A).

Using evolutionary dynamics theory (Nowak, 2006), we quantify

the probability that such sensing mutants will invade the population

of beta cells during a normal life span. The analysis results in

several design principles to reduce the probability of such invasion.

To make simple approximation, we approximate the growth rate

of beta cells when yST\y\yUST as constant, where kþ is the prolifer-

ation rate and k� is the death rate in this range (kþ[ k�Þ. We also

approximate by a constant the probability that a k-fold activating

mutant will arise after a cell division, l kð Þ ¼ l0. The population of

beta cells is sub-divided into compartments—pancreatic islets of

Langerhans—each consisting of about N � 3� 103 � 4� 103 beta

cells (Leslie & Robbins, 1995). We define the evolutionary stability

of the circuit as the probability that no mutant will invade a single

pancreatic islet by time t. This probability is given by a Moran

process term (Appendix Sections S4 and S5):

fðtÞ ¼ e�Ns�1dl0 1�1
mð Þt (1)

where d ¼ yUST�yST
yST

is the range of inputs to which the circuit is

stable given by the relative distance between the stable and

unstable fixed points (dynamic stability of the circuit), N is the

number of beta cells in each islet, s�1 is beta-cell turnover rate,

and m ¼ kþ=k� is the ratio of proliferation to removal for the

mutants.

We can now approximate the evolutionary stability of the

glucose homeostasis circuit using (equation 1). Typical parameters

are d � 1 which corresponds to glucotoxicity around 10 mM glucose

(Maedler et al, 2006) and m � 3 (Stolovich-Rain et al, 2012). For an

average beta-cell turnover of s�1 � 0:001=day (Meier et al, 2008;

Saisho et al, 2013) and mutation probability with a target size of

100 bp, l0 = 10�7, the evolutionary stability of the circuit is

fðtÞ � e�2�10
�6t. For a 70-year life span, the stability is f � 0:994, so

that ~0.6% of the pancreatic islets have an invading mutant by

70 years for these parameters. Note that we have only analyzed

here mutations that are due to cell division and excluded other

possible sources of somatic mutation, which may increase the over-

all number of islets with invading mutants. Increasing the mutation

rate by 10-fold leads to ~6–7% of islets being taken over by an

invading mutant.

The analysis shows that evolutionary stability is in a tradeoff

with dynamic stability. The circuit can be made more dynamically

stable by pushing the unstable fixed point to higher glucose (in-

creasing d). This, however, increases the range of mild mutants that
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Figure 2. Frequency-dependent selection of mutant pancreatic beta cells.

A Feedback circuit in which beta cells secrete insulin, which lowers blood glucose levels. Blood glucose levels, in turn, affect beta-cell growth rate in a biphasic
manner, with beta-cell growth being negative at both low and high glucose concentrations. The system is stable at the homeostatic glucose concentration at
5 mM. It also has an unstable fixed point at a higher glucose concentration. A mutant with a sixfold increase in glucokinase affinity senses the glucose level y as
yMUT = 6y. This mis-sensing shifts its stable and unstable fixed points to lower glucose concentrations.

B Biphasic control leads to frequency-dependent selection of the sensing mutant. The cell population in the tissue reaches a stable steady state only when it is
homogenous with respect to the sensing of y. When a mutant with low frequency arises somatically, it is eliminated from the tissue; in contrast, if it is transmitted
in the germ line, it will spawn a tissue with aberrant size.

C, D Mathematical simulation of a tamoxifen-induced conditional knock-in of a sixfold activating GCK mutant in beta cells. (C) The percentage of beta cells with
mutated GCK increases to ~25% after 3 days, but then decreases and is eliminated after a few weeks. (D) Glucose levels initially decrease after the tamoxifen
injection, but return to normal after a few weeks. Insets: Experimental results of Tornovsky-Babeay et al (2014).
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can invade (Fig 3A–C). At the extreme, one can push the unstable

fixed point to infinity and end up with a monostable circuit, which

is susceptible to all activating mutations in sensing.

Similarly, evolutionary stability is in tradeoff with the response

time of the circuit. The response time to a glucose perturbation

depends on the growth rate of the cells, which is, for s�1 ¼ kþ :

kþ � k� ¼ s�1� 1� 1
m

� �
. To make the response time more rapid,

either s�1 or m should increase, but this will make the circuit less

evolutionarily stable [decrease f according to (equation 1)]. The

intuitive reason for this tradeoff is that fast response requires faster

proliferation, but this gives mutants a bigger growth advantage. We

conclude that if mutations that activate glucose sensing are suffi-

ciently likely, glucotoxicity may be selected for despite its harmful

potential for diabetes.

Evolutionary stability of the parathyroid gland

Another prediction of (equation 1) is that changes in the parame-

ters, such as a large increase in cell proliferation rate, can lead to

invasion by mild sensing mutants. We hypothesize that this occurs

in the circuit that controls calcium homeostasis, leading to the

disease known as tertiary hyperparathyroidism.

The parathyroid (PT) gland (Z) controls plasma calcium (y) by

secreting parathyroid hormone (PTH) which increases calcium

production. This circuit is analogous to the glucose homeostasis

circuit discussed previously—calcium controls both the secretion of

PTH and the mass dynamics of the PT gland (Naveh-Many et al,

1995; Wada et al, 1997; Mizobuchi et al, 2007). The signs of the

circuit are opposite to the glucose circuit, because Z acts to increase

y. It is unclear whether this circuit has biphasic control, so the

circuit is similar to either one of the circuits in Fig 1A or Fig 1E

(Fig EV3B).

This circuit is sensitive to invasion by deactivating mutants in

calcium sensing (mis-sensing calcium as lower than it actually is).

Under normal conditions, however, the PT gland has a very low

turnover (very small s�1) (Bilezikian et al, 2001). Therefore, these

mutants have a low probability to arise and invade due to the rarity

of cell divisions.

However, in cases of increased demand for PTH, which occurs in

hypocalcaemia such as that caused by renal failure, excessive prolif-

eration of the parathyroid cells takes place (s�1 increases). Such

conditions are termed secondary hyperparathyroidism (SHPT). In

such conditions, we expect, from (equation 1), that mutants will

arise and have a large probability to invade the PT gland.

Indeed, the invasion of mutants with calcium-sensing inactiva-

tion often occurs in secondary hyperparathyroidism (Gogusev et al,

1997; Yano et al, 2000; Fraser, 2009). The invasion of such mutants

alters the calcium homeostatic set point (Malberti, 1999) and leads

to tertiary hyperparathyroidism. The new set point is mildly higher

calcium, which is due to the mis-sensing of the mutants. The

common mutations that lead to tertiary hyperparathyroidism are

known to cause only an intermediate reduction in the expression of
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Figure 3. Tradeoff between evolutionary stability and dynamical stability.

A A monophasic feedback circuit where cells Z inhibit y which increases their growth rate. This circuit has low evolutionary stability—any mutant that mis-senses y to
a higher value may invade the population

B For every initial value of Z > 0 or y, the circuit converges to the homeostatic set point. Nullclines are indicated by red and blue lines in the phase plots.
C A biphasic feedback circuit where Z inhibits y, which, in turn, decreases the growth rate of Z at high concentrations and increases the growth rate of Z at low

concentrations. This circuit has high dynamical stability (large yUST-yST) and high evolutionary stability, but mild activating mutants may invade the population.
D Large perturbations in either Z or y may result in the elimination of the cell population Z due to a runaway process. Nullclines are indicated by red and blue lines in

the phase plots.
E A biphasic feedback circuit with lower dynamical stability (small yUST-yST) and higher evolutionary stability, since only few mild activating mutants may invade the
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the calcium-sensing receptor (Yano et al, 2000) and not a strong

inactivation. This is what we expect if calcium controls PT gland

growth in a biphasic manner, eliminating the strong deactivating

mutations.

Biphasic control in secrete-and-sense circuits in T cells
and bacteria

As an additional example, we consider the evolutionary stability of a

motif suggested to control cell populations known as secrete and

sense (You et al, 2004). An experimental characterization of such a

circuit in vitro employed the control of T-cell population size by IL2, a

cytokine secreted by the T cells (Hart et al, 2014). In this circuit,

y = IL2 increases both the death rate and proliferation rate of the

cells at different rates, similar to the circuit depicted in Fig 1E. The

resulting overall growth rate is biphasic, with negative growth rate at

low (y < yUST) and high (y > yST) concentrations of IL2 (Fig EV3C).

This causes the population to have a stable fixed point at y = yST and

an unstable fixed point at y = yUST. Initial seeding of T cells in plates

across 4 decades of concentration led to convergence after 7 days to

the same steady-state population to within a factor of 2 (Hart et al,

2014). This steady-state population was much lower than the carrying

capacity of the system and resulted from vigorous balance of cell

proliferation and death. Seeding with too few T cells, or experimental

reduction in IL2, led to the elimination of the T cells. The present

analysis suggests that the biphasic effects of IL2 can protect against

loss-of-sensing mutants in IL2 signaling. This suggests an experiment

in which such mutants are predicted to be eliminated if present at low

concentrations within a wild-type population, but to take over if

present at high numbers (frequency-dependent selection).

A secrete-and-sense circuit has also been synthetically engi-

neered in bacteria by You et al (2004), by placing a death gene

under control of a quorum sensing signal so the gene is activated

when quorum signal is strong, similar to the circuit depicted in

Fig 1A (Fig EV3D). This circuit maintains cell concentration

constant. However, homeostatic control is rapidly lost (Balagadde,

2005) since selection favors mutants which inactivate the synthetic

signaling pathway, in accord with the present predictions.

Evolutionary stable strategies in tissues with stem cells

The cases discussed so far have a population of dividing cells that is

under size control. Many tissues, however, are made of nondividing

differentiated cells that originate from a pool of stem cells. We

consider the case of tissues in which the differentiated cells are

constantly removed and must be replenished, such as blood cells

and the epithelia of lungs and skin. In these cases, tissue size

control requires feedback from the differentiated cells back to the

stem cells (Bullough, 1975). The dividing stem-cell population is

sensitive to takeover by mutants. Here, we suggest that a biphasic

control mechanism can provide protection from invasion of mutants

also in this case (Fig 4).

We demonstrate the effect of biphasic control by considering a

monophasic circuit presented by Buzi et al (2015). In this circuit,

differentiated cells secrete a molecule y that affects the differentia-

tion probability of the stem cells (Fig 4A and B). The molecule y

increases the differentiation rate of the stem cells and thus limits

their expansion rate. This type of feedback has been demonstrated

for many tissues, such as blood, skin, skeletal muscle, olfactory

epithelium, bone, hair, and more (Lander et al, 2009; Buzi et al,

2015). In many of these tissues, the secreted molecule belongs to

the TGF-b family (Lander et al, 2009). The dynamic equations for

the stem cells Zs and differentiated cells Zd are as follows:

_Zs ¼ ð2prðyÞ � 1ÞkþZs (2)

_Zd ¼ 2pdðyÞkþZs � k�Zd (3)

y / Zd (4)

where kþ is the stem-cell division rate, k� is the differentiated cell

removal rate, pr is the probability that a stem cell that divided will

not differentiate, and pd is the probability that it will (pr ¼ 1� pd).

The differentiated cells secrete molecule y that increases
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Figure 4. Biphasic control can provide mutant resistance to stem-cell
homeostatic circuits.

A Homeostatic control of a population of cells Zd, which differentiate from a
population of dividing stem cells Zs. Differentiated cells secrete a factor y
which increases the differentiation rate pd of Zs and therefore decreases the
rate of stem-cell expansion pr = 1�pd.

B In a monophasic model, stem-cell expansion rate decreases with y. The
system has a stable fixed point at the concentration of y where pr = 0.5.

C A mutated stem cell with a strong inactivation of the sensing of y has a
growth advantage (differentiates less), and therefore, it invades the stem-
cell population. As a result, both the stem-cell pool and the number of
terminally differentiated cells increase.

D Biphasic control of stem-cell expansion, where stem-cell expansion is low
both at high and low concentrations of y. The system has a stable fixed
point at the concentration of y where pr = 0.5 and an unstable fixed point
at some lower concentration of y.

E A mutated stem cell with a strong inactivation on y sensing now has a
growth disadvantage and is therefore eliminated from the stem-cell
population.
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differentiation rate pd yð Þ—forming a negative feedback loop (be-

cause differentiation is akin to loss of stem cells, leading to less dif-

ferentiated tissue in the long term). Too many differentiated cells

Zd lead to a high level of y and to a decrease in the stem-cell popu-

lation, leading to a reduction back to tissue size set point ZdST .

This monophasic circuit thus maintains a stable, constant popula-

tion of differentiated cells (Buzi et al, 2015).

As above, this monophasic circuit is susceptible to invasion by

loss-of-sensing mutations: stem cells that cannot sense y or that

mis-sense y as too low. Within a single compartment, such a sensing

mutant cannot coexist with wild-type stem cells. As this mutant stem

cell differentiates less than the wild-type stem cells, it self-renews

more often and has an evolutionary advantage over other stem cells.

It is likely to invade the compartment and disrupt tissue homeostasis

(Fig 4C). Invasion of the mutant means an exponential growth in both

(mutant) stem cell and differentiated cell populations.

We find that adding a biphasic response curve can increase the

evolutionary stability of this circuit (Fig 4D and E). In such biphasic

control, y stimulates the growth of the stem cells at low concentra-

tions and also stimulates differentiation at high concentrations (and

thus inhibits renewal at high concentrations). Therefore, stem cells

with a strong inactivating mutants that mis-sense y as too low grow

less than wild type and thus have a selective disadvantage relative

to other stem cells and are eliminated from the stem-cell population.

The TGF-b feedback has indeed been demonstrated to have biphasic

control in several cell types (Battegay et al, 1990; McAnulty et al,

1997; Cordeiro et al, 2000; Fosslien, 2009).

Neuronal excitotoxicity as an additional putative case for
evolutionary stability/disease tradeoff

Several other diseases are associated with a biphasic response of

cells to their input. Glutamate, a common neurotransmitter, has a

biphasic effect on neurons—it increases neuronal survival at inter-

mediate concentrations and causes neuronal death at low and high

levels (Lipton & Nakanishi, 1999; Fig EV3E). The latter effect is

called neuronal excitotoxicity. Excitotoxicity is associated with

neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and

Huntington’s (Coyle & Puttfarcken, 1993; Dong et al, 2009).

We speculate that the biphasic effect of glutamate on neuronal

survival may be beneficial for the elimination of neurons with

improper sensing. Such defective neurons may arise due to somatic

mutation in the brain, either in mature neurons (Lodato et al, 2015)

or in neuronal progenitors (Poduri et al, 2013). In order to evaluate

the role of the biphasic effect of glutamate on neuronal evolutionary

stability, it is necessary to better characterize the homeostatic feed-

back circuits that control neuronal mass dynamics.

Discussion

In this study, we raise the question of the stability of circuits that

control tissue size with respect to invasion by mutants. We consider

feedback circuits that provide size control by regulating cell growth

according to an input signal proportional to the number of cells. We

show that such feedback mechanisms can be invaded by commonly

occurring mutants, which have loss-of-sensing or locked-on sensing

of the input signal. Invasion leads to aberrant tissue size and function.

We find that these common mutants can be eliminated by a biphasic

control mechanism. In biphasic control, the signal is toxic at both high

and low levels, giving the mutants a selective disadvantage. The

biphasic protection mechanism comes at a cost: It introduces an

unstable fixed point that can cause a runaway phenomenon under

strong fluctuations in the input signal, potentially leading to disease.

This study thus provides an explanation for several well-studied toxic-

ity phenomena associated with diseases, by suggesting that they have

a beneficial function of protecting tissues from invasion by common

mutants.

The biphasic control mechanism protects against strong sensing

mutations, such as loss-of-function or locked-on receptors. These

strong mutations presumably have a large mutational target size

and are thus the most commonly arising mutations in a tissue. The

control mechanism is sensitive, however, to a range of mild sensing

mutations. These mutations cause the cell to mis-interpret the signal

level, to a level that lies between the desired steady-state level yST
and the unstable fixed point yUST (Fig 1). It is likely that such mild

mutations are more rare than loss-of-function or locked-on muta-

tions. The vulnerability to these mild mutations might explain the

recurrence of a few specific point mutations of mild effect in sensing

pathways in cancer, presumably because mutations of larger effect

are eliminated (Hanahan & Weinberg, 2011).

There is a tradeoff between evolutionary stability—the range of

mild mutations that can invade, and dynamic stability—the position

of the unstable fixed point. The closer the yST is to yUST, the higher

the evolutionary stability and the lower the dynamical stability. As

yUST approaches yST, we expect to see critical slowing down of the

dynamics of the system and a general loss of resilience to perturba-

tions (Scheffer et al, 2009). Such critical slowing down was shown

to occur in populations of yeast in response to dilution (Dai et al,

2012) as well as in genetic circuits (Axelrod et al, 2015).

This study maps the concept of evolutionary stable strategies

(ESS) from evolutionary ecology (Smith & Price, 1973) to the level

of cell circuits in tissues. In ecology, an ESS is defined when a popu-

lation of organisms with that strategy cannot be invaded by any

other strategy. In the present study, a mis-sensing mutant is analo-

gous to the invading strategy. In this sense, the biphasic mechanism

is evolutionarily stable with respect to strong mutations. It is unsta-

ble to a range of mild mutations. The evolutionary instability to mild

mutations can be reduced using compartments with small cell

numbers, low turnover rates, and proximity of the stable and unsta-

ble fixed points, as described by equation (1).

As in ESS in ecology, selection of sensing mutants is frequency

dependent: If the entire population is mutant, it can survive. But a

single-mutant cell on a background of wild-type cells is eliminated by

the biphasic mechanism. Experiments show the predicted frequency-

dependent selection of a strong glucokinase mutant in beta cells:

When present at low frequency, the mutants are eliminated; when

present in the germ line, they survive and cause hypoglycemia.

Many of the biphasic toxicity phenomena considered here are

mediated by excess production of reactive oxygen species (ROS)

which leads to apoptosis (Coyle & Puttfarcken, 1993; Hildeman et al,

1999; Schulz et al, 2002; Robertson, 2004). ROS are implicated in

both beta-cell glucotoxicity and neuronal excitotoxicity. Such toxicity

can be mitigated by antioxidants, which reduce ROS levels

(Skulachev, 1998). Thus, the level of antioxidants may, in principle,

tune the tradeoff between evolutionary stability and dynamic stability
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described here. High antioxidants can reduce the toxicity of high

signal level and thus push the unstable fixed point farther from the

stable fixed point. This can reduce the risk of disease, but increase

susceptibility to invasion by mild mutants. This tradeoff may provide

a viewpoint to understand the conflicting effects of antioxidants on

health (Bjelakovic et al, 2012; Sayin et al, 2014; Le Gal et al, 2015).

In this study, we discussed circuits where a tissue regulates its

own size. Some tissues, however, regulate the size of other tissues.

For example, the ovaries regulate mammary epithelial mass by

secreting estrogen, and the pituitary gland regulates the mass of the

thyroid and adrenal glands by secreting TSH and ACTH, respec-

tively. Depending on the feedback loops at play, such circuits may

be susceptible to mutant invasion both in the regulating and regu-

lated tissue. The considerations of this study indicate that biphasic

control reduces the susceptibility to invading mutants in these cases

as well. We therefore predict biphasic responses also when tissues

regulate each other. For example, estrogen controls mammary

growth in a biphasic manner (Lewis-Wambi & Jordan, 2009), there-

fore reducing the target range of mutants with a fitness advantage in

the mammary epithelium.

Finally, biphasic control raises the question of how tissues can

start growing. Consider the tissue in Fig 1E, in which Z produces y.

If initially y = 0, Z = e, then the tissue has negative growth rate

and cannot grow to reach Z = ZST. This can be resolved if y is

determined externally during tissue development. For example,

during gestation, metabolites and factors are supplied to the fetus

externally by the mother at levels close to yST. Another possibility is

that tissue development is determined by a different program that is

later suppressed.

In summary, we show that physiological feedback circuits are

inherently vulnerable to takeover by mutants that mis-sense the

feedback signal. Biphasic mechanisms, in which the signal is toxic

at both high and low levels to the relevant tissue, can protect

against such mutant invasion. We therefore hypothesize that

phenomena such as glucotoxicity and excitotoxicity may reflect the

bad side of a good anti-mutant strategy (Stearns & Medzhitov,

2016). Characterizing physiological homeostatic circuits and the

tradeoffs they face in quantitative detail may thus lead to a better

understanding of diabetes (Topp et al, 2000), neurodegenerative

diseases (Doble, 1999; Lipton & Nakanishi, 1999), and possibly

other pathologies associated with biphasic control.

Materials and Methods

Circuits with monophasic and biphasic control

To simulate the circuits of Fig 1 in the main text, we used a circuit

where a cell mass Z either increases the level of its input y (Fig 1A

and E) or decreases the level of y (Fig 1B and F). The equation used

for Z is follows:

_Z ¼ Z� kþðyÞ � k�ðyÞð Þ ¼ Z�kðyÞ (5)

where k+ is the y-dependent proliferation rate of Z, and k- is the

y-dependent removal rate of Z.

In Fig 1C, D, G and H, we simulated two cases—a monophasic

circuit, where y increases the growth rate of Z, and a biphasic

circuit, where y increases the growth rate of Z at low concentrations

and decreases the growth rate of Z at high concentrations. The

monophasic circuit was simulated using the growth rate equations:

kþðyÞ ¼ y

10
(6)

k�ðyÞ ¼ 0:5 (7)

and the biphasic circuit was simulated by using the growth rate

equations:

kþðyÞ ¼ 4:8

1þ 7
y

� �5
(8)

k�ðyÞ ¼ 6

1þ 8
y

� �5
þ 0:1 (9)

These circuits were also used to simulate the phase plots in

Fig 3A and B. For Fig 3C, we used the following circuit:

kþ yð Þ ¼ 4:8

1þ 5:5
y

� �6 (10)

k� yð Þ ¼ 6

1þ 6:3
y

� �6
þ 0:3 (11)

We used the following equation for the dependence of y on Z:

_y ¼ l � ðM � ZyÞ (12)

This equation means that Z increases the degradation rate of y,

and at steady state, we get Zstyst ¼ M. We chose the parame-

ters M ¼ 25; l ¼ 0:25.

Mutant invasion simulation

We simulated the effect of a mutation by adding a term Zmut such

that:

_y ¼ l � M � ðZ þ ZmutÞyð Þ (13)

Zmut represents the mass of cells with a (given) k-fold sensing

mutation on y, so the growth rate of Zmut is given as follows:

_Zmut ¼ ZmutkðkyÞ ¼ Zmut kþ kyð Þ � k�ðkyÞð Þ (14)

Note that for the monophasic circuit simulated in Fig 1, the

removal rate k� does not depend on y, and therefore, it is not affected

by the sensing mutation (only kþ is affected). We simulated the inva-

sion of a fourfold sensing mutant in Fig 1D and H by setting Zmut  1

at specific time intervals in the simulation (t = 10 for the monophasic

circuit and t = 10, t = 47 for the biphasic circuit). The initial values

for the simulations were Zmut0  0; Z0  5; y0  4 for the

monophasic circuit in Fig 1D, and Zmut0  0; Z0  6:16; y0  4:06

for the biphasic circuit in Fig 1H.
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Circuits of communicating stem cells

In this study, we presented two circuits that regulate the functional

mass of differentiated cells, based on the model that is presented in

Buzi et al (2015). For the monophasic circuit, the equations are as

follows:

_Zs ¼ 2prðyÞ � 1ð ÞkþZs (15)

_Zsmut
¼ 2pr kyð Þ � 1ð ÞkþZsmut

(16)

_Zd ¼ 2 1� pr yð Þð ÞkþZs þ 2 1� pr kyð Þð ÞkþZsmut � k�Zd (17)

y / Zd (18)

where kþ is the stem-cell division rate, k� is the differentiated cell

removal rate, pr is the probability that a stem cell that divided will

not differentiate, and 1 � pr is the probability that it will differenti-

ate. The population Zsmut is the population of stem cells with a

k-fold sensing mutation. The monophasic replication rate pr(y),

which is depicted in Fig 3B, was set as follows:

prðyÞ ¼ 1

1þ ffiffiffi
y
p (19)

The exact function used is not important, since as long as it is

monotonically decreasing, an invading mutant will take over. In the

biphasic case, the replication rate used is as follows:

pr yð Þ ¼ 1

1þ ffiffiffi
y
p � 1

1þ 1
5y

� �4
(20)

The simulation of invading mutants is the same as for Fig 1

(which is explained in the mutant invasion simulation section). For

the simulations, we set kþ  1; k�  0:5; k ¼ 1
6, and with the initial

conditions Zs0  0:5; Zsmut 0  0; Zd0  1. A mutation event was

set such that Zsmut
 0:01 at t ¼ 10.

Expanded View for this article is available online.
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