
Review

Built Shallow to Maintain Homeostasis and Persistent
Infection: Insight into the Transcriptional Regulatory
Network of the Gastric Human Pathogen Helicobacter
pylori
Alberto Danielli1*, Gabriele Amore2*, Vincenzo Scarlato1

1 Department of Biology, University of Bologna, Bologna, Italy, 2 Animal Physiology and Evolution Laboratory, Stazione Zoologica Anton Dohrn, Napoli, Italy

Abstract: Transcriptional regulatory networks (TRNs)
transduce environmental signals into coordinated output
expression of the genome. Accordingly, they are central
for the adaptation of bacteria to their living environments
and in host–pathogen interactions. Few attempts have
been made to describe a TRN for a human pathogen,
because even in model organisms, such as Escherichia coli,
the analysis is hindered by the large number of
transcription factors involved. In light of the paucity of
regulators, the gastric human pathogen Helicobacter
pylori represents a very appealing system for understand-
ing how bacterial TRNs are wired up to support infection
in the host. Herein, we review and analyze the available
molecular and ‘‘-omic’’ data in a coherent ensemble,
including protein–DNA and protein–protein interactions
relevant for transcriptional control of pathogenic respons-
es. The analysis covers ,80% of the annotated H. pylori
regulators, and provides to our knowledge the first in-
depth description of a TRN for an important pathogen.
The emerging picture indicates a shallow TRN, made of
four main modules (origons) that process the physiolog-
ical responses needed to colonize the gastric niche.
Specific network motifs confer distinct transcriptional
response dynamics to the TRN, while long regulatory
cascades are absent. Rather than having a plethora of
specialized regulators, the TRN of H. pylori appears to
transduce separate environmental inputs by using differ-
ent combinations of a small set of regulators.

Introduction

Helicobacter pylori is a Gram-negative bacterium, recognized as

the principal causative agent of chronic inflammation of the

mucous membranes of the human stomach and of peptic ulcer

worldwide [1,2]. It is one of the major risk factors for gastric

neoplasia, including lymphomas and gastric cancers [3]. Survival

in the gastric niche depends on the concerted expression of

virulence factors and housekeeping genes, which enables H. pylori

to withstand the stresses imposed by the harsh acidic environment

and to counteract the host’s responses [4,5]. The restricted gastric

habitat of H. pylori has been associated with reduced functional

redundancy of its small genome (,1.6 Mb), characterized by a

constrained number of transcriptional regulators [6,7]. In analogy

to other bacteria, the environmental signals are transduced into

coordinated output expression by a transcriptional regulatory

network (TRN) that can be reconstructed by describing how

transcriptional regulators and target genes are interconnected in

local network structures [8–10].

TRNs commonly exhibit multilayered hierarchical structures,

composed of regulatory modules (origons) that include the

concerted activity of transcription factors (TFs) regulating related

physiological functions [11]. Origons therefore embody regulatory

sub-networks that originate at a distinct class of sensor TFs,

rooting a signal input node [12]. Each origon comprises a master

regulator, sensing a specific signal, followed by intermediate TFs

and regulatory interactions that ultimately feed into output gene

targets. Within or between origons, TFs and target genes are wired

in specific local patterns of interconnection termed motifs

(Figure 1). They enable the system to respond with specific

dynamics, according to the biological nature of the triggering

signal [13]. Interestingly, it has been shown that extensive

tinkering of transcriptional interactions at the local level has

contributed to the evolution of prokaryotic TRNs by wiring

orthologous genes in different types of motifs [14]. In fact, these

local network structures do not evolve as rigid units with fixed

patterns, but tend to be conserved in organisms sharing similar

living environments, regardless of their phylogenetic distance [15].

Accordingly, identification of definite motifs and TRN organiza-

tion in H. pylori may represent important findings for understand-

ing the regulatory circuits of other human microbial pathogens.

The H. pylori TRN

For the analysis, we have modeled the H. pylori TRN using

BioTapestry software [16], by integrating the regulatory connec-

tions gathered from molecular, transcriptome, and ChIP-chip data

available in the literature. To filter out indirect connections and

pleiotropic effects, regulatory interactions were considered only for

targets subjected to direct transcriptional control, defined by
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ascertained TF binding to regulatory elements of the target gene.

We examined 685 non-redundant transcriptional regulations and

identified 224 direct interactions (Dataset S1), separated according

to the sensor TF serving as rooting node of the origon. The model,

supplied as an interactive Java plug-in file (Model S1, Text S1),

covers approximately 80% of the annotated regulators in H. pylori,

a value that exceeds that reported for the most studied model

organism Escherichia coli (50% coverage) [11], where hundreds of

regulators make the dissection of the TRN difficult.

In fact, H. pylori appears to enroll only 17 bona fide TFs

(Table 1), encompassed in four main origons, which process the

key physiological responses needed to colonize the gastric niche: 1)

heat and stress response, 2) motility and chemotaxis, 3) acid

acclimation, and 4) metal ion homeostasis.

The Heat Shock and Stress Response Origon
The heat shock origon is amongst the best-understood

regulatory modules in H. pylori. Whereas most Gram-negatives

employ specialized sigma factors (s32) to positively regulate the

transcriptional responses to heat shock, H. pylori has evolved an

opposite strategy, commonly found in Gram-positive bacteria, that

implements two repressors with homology to Bacillus subtilis HrcA

[17,18] and Streptomyces spp. HspR [19]. Specifically, the heat

shock origon of H. pylori is composed of two TFs (HspR and HrcA)

directly repressing three main target operons, including the groESL

chaperone genes (Figure 2A). All three operons are responsive to

heat shock and are activated by the presence of misfolded proteins

or stress signals [20,21]. HspR alone represses transcription of the

cbpA operon, thereby negatively autoregulating its own synthesis

[22]. On the contrary, both HspR and HrcA are required for dual

repression of the groESL and hrcA operons [23]. The DNA-binding

activity of both repressors is enhanced by the product of the groESL

target gene [24], suggesting that HrcA and HspR are involved

with the GroE chaperonin system in a feedback regulatory loop,

complying with the B. subtilis ‘‘titration model’’ [25]. This model

postulates that upon heat shock, GroESL is titrated away by

misfolded polypeptides, thereby relieving HspR/HrcA repression,

and triggering the stress response.

Interestingly, although both TFs are required for full regulation,

binding in vitro to their respective adjacent operators occurs in an

independent, non-cooperative manner. A coherent explanation for

two biochemically independent but functionally interconnected

regulators can be evinced by the logical scheme of the heat shock

response circuit (Figure 2B). In fact, the heat shock module is wired

in what appears to be an exquisite example of an incoherent feed

forward loop (FFL, Figure 1C). Incoherent FFLs greatly accelerate

the response kinetics of a regulation cascade at the same steady state

levels [13,26]. Accordingly, in wild-type H. pylori strains the Pgro

promoter is promptly derepressed (,120 seconds) upon tempera-

ture shift to 42uC [20]. In a mutant in which the binding site of

HspR has been deleted, and HrcA is still functional, the

derepression of the Pgro promoter is observed only after 60 minutes

of temperature up-shift [23]. These data strongly argue in favor of a

bona fide incoherent type-2 FFL motif governing GroESL

chaperone synthesis. This has important implications, as the altered

homeostasis of chaperones appears to indirectly influence virulence

gene expression, as well as the assembly/expression of the flagellar

apparatus (see below). Interestingly, the incoherent type-2 FFL is

absent in E. coli (0 out of 42 described FFLs) and rare in Saccharomyces

cerevisiae (3/56) [26]. Thus, the HspR/HrcA FFL may reflect

evolutionary adaptation to the host environment that H. pylori

encounters as a pathogen. In this light, it is interesting to recall that a

similar heat shock regulation mode has been reported in

Staphylococcus aureus (CstR/HrcA) [27].

The Flagellar Biosynthesis Module
Flagellar, chemotaxis, and motor protein encoding genes are

key virulence factors in H. pylori. Their deletion results in

attenuated infections in animal models [28–30], possibly because

of a failure to move in response to favorable or noxious gradients.

In contrast to other well-characterized systems, the ,40 motility

genes of H. pylori are unclustered, frequently scattered within

multicistronic gene operons [6,31,32]. Along with other pleiotro-

pic regulatory effects, such as polarity and DNA supercoiling [33],

their transcription is hierarchically regulated, employing a

remarkable fraction of dedicated TFs (7 out of 17, Table 1).

As for other bacteria, flagellar genes are typically positively

regulated and hierarchically organized in three main classes

according to their activating sigma factor [32,34]: class I

encompasses gene targets transcribed by the vegetative s80-

containing RNA polymerase (RNAP), and comprises mostly

flagellar regulatory genes (flgR, flgS, rpoN, flhA); class II includes

specific targets of the alternative s54 factor (RpoN), and encode

components of the flagellar basal body and hook; finally, class III

genes encode late flagellar structures, transcribed by s28-(FliA)-

containing RNAP. Other regulators include the FlgRS two-

component system constituted by a NtrB-like cytoplasmic sensory

histidine kinase (FlgS) and a NtrC-like response regulator (FlgR)

[35–37], and the CheA/CheY/CheY2 system regulating chemo-

tactic responses [29,38].

Figure 1. Networks motifs found in the H. pylori TRN. A. Single
input motif (SIM); a single transcription factor A regulates a set of
operons (X, Y, Z); frequently A is autoregulated. B. multicomponent
loop (MCL); transcription factor A regulates another regulator B, which
in turn can regulate the transcription of A; each regulator can also
control transcription of a separate set of target operons. C. Feed
forward loops (FFLs) are three node motifs, occurring with high
frequency in prokaryotic TRNs. A top regulator, A, which controls a
second regulator, B, and a target gene, X, which is regulated by both A
and B. The regulators in this motif (A, B) have an asymmetric position
and hierarchy, as A regulates two targets, while B only one. According
to the net signs feeding into X, FFL can be coherent (same sign) or
incoherent (opposite sign), negative or positive, conferring different
response kinetics [13] D. Bifan motif (BM); a set of operons (X, Y) is each
regulated by the combination of two (A, B; BM) or multiple (A, B, C, etc.;
multi input motif, not shown) transcription factors.
doi:10.1371/journal.ppat.1000938.g001
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Notably, a master regulator similar to the enterobacterial

FlhDC is absent, possibly because motility and chemotaxis are

essential in vivo and need to be constitutively expressed in H. pylori.

Conversely, the flagellar regulatory module adopts a short s
regulatory cascade (s80.s54.s28) initiated by the housekeeping

s80 factor (Figure 3), where each s factor activates a dedicated

target gene class with single input motif (SIM) circuitry (Figure 1A).

SIMs frequently occur in systems expressing gene products that

form assemblies with controlled stoichiometry [39], and exhibit

time-shifted dynamics [40,41]. Thus, the flagellar regulatory chain

of H. pylori is appropriate to guarantee the correct sequential

expression of early, middle, and late flagellar components. In

analogy to E. coli [42], a putative type-1 coherent FFL with OR

logic found at the bottom of the s cascade may contribute to

regulate an intermediate class of flagellar genes [32], and to sustain

flagellar gene expression in the presence of discontinuous

triggering signals. However, formal demonstration of the dynamic

responses governed by this FFL has yet to be provided. In fact,

despite the presence of a s54 promoter consensus sequence

upstream of the fliA gene, a direct regulation of RpoN on fliA is

elusive to date [32,43].

Besides TF–promoter (protein–DNA) interactions, several

accessory proteins involved in post-transcriptional feedback

mechanisms have been described: the anti-s28 factor FlgM, itself

transcribed as a class II gene, is involved in FliA inhibition of class

III gene transcription [44,45]. In addition, components of the

basal body, FlhA and FlhF, appear to modulate rpoN- and fliA-

dependent transcription of middle and late flagellar genes [32].

Moreover, the HP0958 protein described as an RpoN chaperone

[46] also acts as an mRNA decay-promoting factor for the flaA

transcript [43]. Thus, although the exact molecular mechanisms

are not fully understood, it is clear that, in analogy to the heat

shock origon controlled by GroESL levels, protein–protein

interactions of accessory factors with TFs are central for feedback

modulation of the flagellar regulatory circuit. Ectopic regulatory

inputs, deriving from external origons, also feed into the flagellar

circuit (see below). In addition, the output of the HspR-HrcA

module indirectly affects motility, likely through altered flagellar

biosynthesis occurring in strains where the intracellular levels of

chaperones are deregulated [47]. This links the flagellar circuit

with the sensing of stresses.

The Acid Acclimation Origon
The capacity to grow under the harsh acidic conditions

encountered in the stomach is a distinctive feature of H. pylori

and is associated with virulence [48,49]. Accordingly, the

regulated expression of a dedicated set of so-called acid

acclimation genes (the ure urease operon, aliphatic amidases amiE

and amiF, arginase roc, etc.) allows H. pylori to keep acidity of the

bacterial periplasm close to neutrality, and to maintain physiologic

Table 1. H. pylori transcription factors and regulators.

TF Gene Description Function Origon Motif Target TFs

s80 rpoD (HP0088) Vegetative sigma factor Housekeeping - - All; except fliA ? (upstream
RpoN consensus)

s54 rpoN (HP0714) Alternative sigma factor Flagellar regulation; class II
genes; basal body, hook

FLAG SIM fliA; based on upstream RpoN
consensus sequence

s28 fliA (HP1032) Alternative sigma factor Flagellar regulation; class III
genes; late structures

FLAG SIM

FlgR flgR (HP0703) NtrC-like response regulator Flagellar regulation;
RpoN-dependent regulation

FLAG SIM fliA; based on upstream RpoN
consensus sequence

FlgS flgS (atoS)
(HP0244)

NtrB-like cytoplasmic histidine kinase Flagellar regulation; acid
acclimation

FLAG P, P,FlgR; P,ArsR (based on
genetic evidence)

CheA cheA (HP0392) Histidine kinase Chemotaxis FLAG P,CheY; P,CheY2

CheY cheY (HP1067) Response regulator Chemotaxis FLAG P, -

CheY2 (HP0392) CheY-like reciever domain fused to CheA Chemotaxis; P,sink FLAG P, -

ArsR arsR (HP0166) ompR-like response regulator Acid acclimation pH SIM arsR; essential gene

ArsS arsS (HP0165) Transmembrane histidine kinase Acid acclimation; periplasmic
acid sensor

pH P, P,ArsR

HP1021 (HP1021) Atypical orphan response regulator Acetone metabolism NA NA NA; essential gene

HP1043 (HP1043) Atypical orphan response regulator Growth NA NA HP1043; essential gene

CrdR crdR (HP1364) Response regulator Copper resistance NA NA NA

CrdS crdS (HP1365) Histidine kinase Copper resistance NA P, P,CrdR

Fur Fur (HP1027) Ferric uptake regulator Pleiotropic; metal ion homeostasis METAL BM; MCL; FFL fur, nikR, arsR, rpoNa, flgSa, hrcAa

NikR nikR (HP1338) E. coli NikR homologue Pleiotropic; nickel ion homeostasis METAL BM; MCL; FFL nikR, fur

HrcA hrcA (HP0111) B. subtilis hrcA repressor homologue;
membrane associated

Heat shock; stress response HS FFL hrcA

HspR hspR (HP1025) Streptomyces spp. hspR repressor
homologue

Heat shock; stress response HS FFL hspR, hrcA

aEvidence gathered from ChIP-chip experiments. Note that many transcription factors, especially repressors, are autoregulated, and that Fur and NikR are wired in a
multicomponent feedback loop (MCL), which is rarely found in bacteria.

BM, bifan input motif; FFL, feed forward loop; FLAG, flagellar biosynthesis and motility origon; HS, heat shock and stress response origon; MCL, multicomponent loop;
METAL, metal-ion homeostasis origon; motif, type of local network structure or interconnnection in the main origon; P,, phospho-transfer activation; pH, acid
acclimation origon; SIM, single input motif; TF, transcription factor.
doi:10.1371/journal.ppat.1000938.t001
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pH levels in the cytoplasm in the presence of urea and urease

activity [50–52]. Transcription of acid acclimation operons is

under control of the housekeeping s80 factor and regulated

principally by the essential acid response regulator ArsR [53].

ArsR is autoregulated and is encoded by an operon that also

encompasses the cognate transmembrane ArsS histidine kinase

[54]. It has been proposed that the signal sensed by ArsS is

acidification of the periplasm, transduced through changes in

protonation of several histidine residues (pKa ,6.0) encompassed

in the extracytosolic sensory domain [55]. This stimulus triggers

phosphorylation of ArsR, thereby promoting its DNA-binding

activity towards a specific set of promoters [56,57]. However,

whilst arsR appears to be an essential gene, strains carrying a point

mutation that disrupts the phosphoacceptor site in the ArsR

receiver domain, as well as arsS deletion mutants, are viable

[57,58]. Despite some discrepancies in the experimental datasets

of several systematic studies, possibly arising from the use of

diverse strains [53,55–57,59,60], the emerging evidence points to

the existence of distinct regulatory targets, which are controlled

according to the phosphorylation status of ArsR:

N A first cluster of genes encompasses P,ArsR-dependent target

operons regulated by ArsR in a phosphorylation-dependent

manner, upon mild acidification of the periplasm through ArsS

signalling (omp11, carbonic anhydrase, hypA, ureAB).

N A second cluster of genes contains target operons that are

regulated by more harsh acidic conditions, promoting

acidification of the cytoplasm. Their regulation is P,ArsR-

dependent and phosphorylation of the regulator similarly

promotes high affinity DNA binding to their promoters.

However, they are not deregulated in arsS deletion mutants,

and may therefore rely on a different (cytoplasmic) acid signal

transducer to promote the phosphotransfer needed to activate

ArsR. This group includes other genes central to the acid

acclimation process such as amiE, amiF, and others.

N Finally, a third group of genes includes targets of unpho-

sphorylated ArsR (including the arsRS operon) and whose

regulation is not necessarily pH dependent. The latter group

contains genes of unknown function that appear to be essential

for viability.

Although a unifying consensus sequence has not been defined

yet, it appears that the DNA elements recognized by either

unphosphorylated or phosphorylated ArsR may be characterized

by distinctive features, such as extension of the footprint and

nucleotide sequence [53–55]. This substantiates the hypothesis of

a bipartite ArsR regulon, which controls through distinct SIMs

transcription of different sets of genes, according to the

phosphorylation status of the response regulator (Figure S1).

Additional complexity is provided by the position of the binding

site in the target promoter, according to which ArsR can act as

inducer or repressor of transcription.

Very interestingly, a recent work identified FlgS, the aforemen-

tioned cytosolic NtrB-like histidine kinase belonging to the flagellar

biosynthesis module, as being also essential for survival of H. pylori

at low pH [61]. Although it is not known whether FlgS is able to

trigger ArsR phosphorylation upon acidification of the cytoplasm,

it may represent a good candidate as a cytosolic acid sensor

feeding into the ArsR regulon.

Figure 2. The heat shock and stress response origon. A. The heat
shock origon is composed of two TFs (HspR and HrcA) repressing
directly three main target operons: I) the cbp operon, encoding,
respectively, a DnaJ-homologue CbpA, the HspR regulator itself, and a
gene product of unknown function with homology to a helicase
(HP1026); II) the hrcA operon, coding for the HrcA regulator, DnaK, and
the GrpE co-chaperone; and III) the groESL operon, encoding conserved
GroES and GroEL chaperones. Block arrows: open reading frames. Green
boxes: HrcA operators; blue boxes, HspR operators. 210 and 235 boxes
are depicted by black and white squares, respectively. TF–DNA
interactions and direct transcriptional control are depicted by black
lines; red dotted lines represent protein–protein interactions important
for feedback control of the circuit; arrowheads denote positive
regulation; hammerheads indicate negative regulation. B. Incoherent
type-2 FFL wiring of HspR, HrcA, and the groESL operon, responsible for
the prompt derepression kinetics of Pgro upon heat shock. Red line:
derepression kinetic of the intact FFL motif; blue dotted line:
derepression kinetic of a mutated Pgro promoter in which the HspR
operator has been deleted. The membrane association of HrcA in H.
pylori [47] may confer additional sensory potential to the circuit, e.g.,

through sensing of periplasmic misfolded peptides, or need to release
HrcA from the inner membrane by a stress-inducible co-factor.
doi:10.1371/journal.ppat.1000938.g002
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The Metal Homeostasis Origon
In many bacterial pathogens, including H. pylori, metal

starvation triggers the expression of virulence factors, which

enables them to compete with the host for these essential nutrients.

On the other hand, metal ions are toxic if present intracellularly in

high amounts. Therefore, their homeostasis must be tightly

controlled [62]. Three systems are dedicated to this fundamental

task in H. pylori: the CrdRS two-component system, the ferric

uptake regulator (Fur) involved in iron homeostasis [63], and a

homolog of the Ni-responsive NikR regulator of E. coli [64]. Whilst

the only identified genes targets of the CrdRS system appear to be

involved in copper resistance [65], Fur and NikR have been

described as pleiotropic regulators.

Fur regulates genes involved in both Fe2+ uptake [66–68] and

detoxification [69,70]. Distinctively, the metal ion cofactor can act

as co-repressor (holoFur repressed genes) or as inducer (apoFur

repressed genes) [71,72]. Thus, the same information (presence or

absence of Fe2+ in the cell) translates into two opposite

transcriptional outputs. In accordance with its pleiotropic role,

exemplified by the observed competitive colonization defects of fur

mutants [73], Fur is an abundant protein and binds to ,200 target

loci in vivo, including genes coding for other regulators (rpoN, flgR,

flgS, cheA, nikR) [74]. Consequently, hundreds of genes deregulated

by fur deletion have been reported, although not all appear to be

direct targets of the regulator [74,75]. This suggests that Fur has a

very central role in the H. pylori TRN.

On the other hand, NikR mediates regulation of Ni2+

homeostasis in the cell, central to the activity of the nickel-enzyme

urease. In contrast to Fur, apoNikR is unable to bind DNA, and

Ni2+ coordination at high-affinity metal binding sites drives

allosteric changes promoting the DNA binding activity of

holoNikR [76–78]. According to the position of the operator

elements, NikR can act as a positive or negative regulator of

transcription [79,80] (see also legend to Figure 4).

Together, Fur and NikR operate a bifan motif (BM; Figure 1D),

which connects the metal responses in a horizontal and symmetric

coordination logic with no obvious hierarchy (Figure 4). These

motifs occur when multiple responses need to be coordinated to

answer to mutual stimuli [40], as expected for metal ions, which

play a key role in many different physiological processes. The metal

homeostasis regulatory logic is further complicated by a multicom-

ponent loop (MCL; Figure 1B), which directs reciprocal regulation

of Fur and NikR [81]. In this scenario, regulation of shared targets

can switch to a FFL motif as soon as the intracellular concentrations

of metals reach threshold levels to cofactor the regulator DNA

binding activity of either Fur or NikR. This provides a great

flexibility to the circuit, especially in virtue of the capacity of Fur to

bind specific promoters also in the apo-form [71].

Figure 3. The flagellar biosynthesis module. RNAP, RNA polymerase; phosphorylation events are indicated by a light blue circle. CheAY, two
component system involved in chemotaxis; FlgS, NtrB-like cytoplasmic histidine kinase; FlgR, NtrC-like response regulator. FlgM, anti-s28 factor. FlhA,
FlhF, HP0958: accessory factors. Note sequential activation of class I, II, and III due to s regulatory cascade. A pink triangle depicts a putative coherent
FFL with OR logic proposed to control expression of intermediate class flagellar genes [32].
doi:10.1371/journal.ppat.1000938.g003
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Notably, regulatory connections emanate from the metal ion

homeostasis module towards TFs and target genes encompassed in

all other origons, making it a central ‘‘core’’ processor of the H.

pylori TRN. Accordingly, fur deletion mutants are impaired in their

acid tolerance [82,83], and Fur in vivo targeting of ArsR has been

reported in ChIP-chip experiments [74], substantiating a direct

(and hierarchically important) role of Fur in the regulation of acid

acclimation. The same study also revealed that protein levels of

Fur increase in stationary phase, suggesting that this regulator is

involved in the reported growth phase–dependent regulation of

genes encoding metallo-proteins and iron-trafficking factors

[68,84,85]. Similarly to Fur, NikR might be also involved in the

regulation of several acid acclimation genes, including the urease

operon [64,86], possibly through increased bioavailability of the

Ni2+ ion under low pH conditions, or through pH-responsive

DNA binding activity, which has recently been reported [87]. In

addition, the heat shock response origon is linked to the metal

homeostasis circuit, as the heat shock operons are deregulated in

nikR deletion mutants [79]. This deregulation is possibly due to

indirect effects, arising from altered intracellular Ni2+ concentra-

tions occurring in the nikR mutant strain that may interfere with

the chaperone function of GroESL, which can also act as a nickel

storage protein [88]. However, a search for genomic targets using

a NikR consensus sequence [81] identifies two binding sites

upstream of the hspR and hrcA encoding operons, suggesting that

regulation of these stress response TFs may be directly subjected to

NikR transcriptional control. Finally, in analogy to Neisseria

meningitidis [89], Fur appears also to have a positive role on a

subset of targets [74], including genes important for chemotaxis

and motility, interactions with the host (fibfibBP), or redox

equilibrium (oor). This suggests an intriguing direct link between

the metal response module, virulence, and the flagellar circuit,

which certainly deserves further investigation.

Conclusion: A Shallow and Densely
Interconnected TRN

The systematic analysis of origons strongly suggests that H. pylori

adopts a shallow multilayer TRN, displaying a low level of

hierarchy. The four main origons do not appear to exist as

segregated regulatory modules. In fact, separate environmental

inputs are interpreted by different combinations of small sets of

TFs or associated proteins. For example, the flagellar FlgS

histidine kinase also controls the regulation of acid response genes

through ArsR. This is of broad interest, as the specificity and the

biological significance of crosstalk between signal transduction

pathways are vividly debated in the prokaryotic community

[90,91]. Even more striking is the metal response module, which

feeds into all other origons. In particular, Fur represents a key

regulator, possessing the features of a regulatory ‘‘hub’’ in H. pylori,

a role played by pleiotropic regulators such as Crp, Fnr, H-NS,

and Fis in E. coli and other bacteria [15,92].

Another peculiar feature is the prime use of negative

interactions that endow the H. pylori TRN to constantly monitor

the environment and to quickly respond only when a regulatory

signal has to be transduced. Moreover, we notice that long

regulatory cascades of sequentially expressed TFs, involved in

bacterial differentiation (e.g., biofilm formation and sporulation)

[92], are virtually absent in this TRN. Together, the data indicate

that the TRN of H. pylori is unambiguously built to maintain

homeostasis. It is not tailored to adapt to many environmental

stimuli, and apparently not flexible enough to react to metabolic

signals encountered outside of the gastric niche. Possibly, the

shallow network design has evolved by selecting for particular

transcriptional interactions to respond to prevalent environmental

inputs, in line with studies of evolutionary dynamics of bacterial

TRNs, which postulate that motif tinkering allows for specific

responses [14].

Several important aspects concerning the TRN remain to be

elucidated. Robust discriminative binding consensus motifs are

missing for many H. pylori TFs. Moreover, responses to oxidative

and osmotic stresses have been overlooked to date, and open

Figure 4. The metal homeostasis origon. Fur regulates transcrip-
tion of metal transporters and siderophores (e.g., frpB and fecA
paralogues), which need to be repressed upon iron repletion [66–68],
as well as detoxifying genes that need to be promptly derepressed
under the same Fe2+ replete conditions (e.g., pfr bacterioferritin and sod
superoxide dismutase) [69,70]. Fur generally acts as repressor, but it
may also act positively on transcription on certain genes (flaB, oor) [74].
Similarly, NikR can act as positive or negative regulator of transcription,
according to the position of the operator elements [79,80]. With respect
to the promoter, binding upstream appears to induce transcription of
the ureAB operon in cultures grown in Ni2+ replete cultures [64].
Conversely, binding within the core promoter represses transcription, as
shown for the fecA3 and frpB4 genes, encoding outer membrane
proteins [68,103,105], the nixA permease gene [106], and the exbBD-
tonB operon, that is involved in energization of outer membrane
transport complexes involved in metal uptake [107], and itself part of
the Fur regulon [74,75,81,104]. Note that both Fur and NikR are
autoregulated, and that they control reciprocally their transcription
levels, through direct binding to their respective promoters [81]. Several
operons such as exbBD-tonB are under the control of both Fur and NikR.
doi:10.1371/journal.ppat.1000938.g004
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questions remain concerning the regulation of virulence factors

and toxins promoting the inflammatory response in the host.

Certain genes, including members of the cag pathogenicity island

coding for a type IV secretion system found in hypervirulent

strains, are specifically expressed upon adhesion to host cells [93].

For a comprehensive understanding of the H. pylori TRN, it will be

imperative to identify the TFs that are involved in sensing the

contact with the host cells. Similarly, the regulatory circuits driving

transition form the exponential to the stationary phase [84,85], as

well as differentiation into and out of the coccoid form, which has

been associated with the elusive epidemiology of H. pylori [94,95],

need to be identified. Poorly characterized but essential regulators,

such as the atypical orphan response regulators HP1043 [96] and

HP1021 [97,98], representing the 20% of TFs not covered by the

TRN model, may contribute to these circuits. The recent finding

of natural antisense transcripts and putative small non-coding

RNAs in H. pylori [99,100] indicates that non-coding RNA

regulation also may contribute to the adaptive responses of the

bacterium.

In conclusion, we would like to convey the idea that the low

number of transcriptional regulators, together with the consider-

able bulk of molecular tools and literature, set H. pylori as a very

tractable model organism to dissect and characterize transcrip-

tional network structures involved in virulence regulation and

host–pathogen interactions. In addition, specific motifs that confer

peculiar response dynamics (such as the incoherent type-2 FFL of

the heat shock origon) can have interesting potential as regulatory

building blocks in synthetic biology.

Note
Recent papers have provided an integrated study of the

proteome, the metabolic network, and the transcriptome of the

human pathogen Mycoplasma pneumoniae at the systems level [101].

In particular, Güell and colleagues demonstrated that in M.

pneumoniae complex regulatory responses are maintained despite

the low number of transcriptional regulators found, via extensive

use of noncoding RNAs and transcriptional units that allow

complex regulation mechanisms [102]. Finally, recent work by

Sharma et al. [103] in H. pylori discovered an unexpected wealth of

antisense transcripts and small RNAs, which may act as potential

regulators of cis- and trans-encoded target mRNAs. This adds to

the concept that infectious agents with reduced genome sizes may

be excellent model organisms in which to attempt dissection of

pathogenic regulatory networks at the systems level.
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Dataset S1 Binary matrix of regulatory interactions for the main

H. pylori TFs. The zipped folder includes two Excel files, one for

pre-2004 versions and one for later versions.

Found at: doi:10.1371/journal.ppat.1000938.s001 (0.50 MB ZIP)

Figure S1 The acid acclimation origon. The acid acclimation

origon is wired in two SIMs, controlled respectively, by the

phosphorylated (P,ArsR; dark green) or the unphosphorylated

(ArsR; red) form of the response regulator. The phospho-transfer

event is mediated by the transmembrane histidine kinase ArsS

(light green) and may be promoted in the cytoplasm by FlgS (light

blue) under harsh acidic conditions. The color code of operons

reflects the respective signal transduction pathway, ArsS- or FlgS-

dependent (light green and light blue, respectively), or P,inde-

pendent (red). TF-DNA interactions and direct transcriptional

control are depicted by black lines; arrowheads denote positive

regulation; hammerheads indicate negative regulation. Ectopic

regulation of Fur and NikR, feeding in from the metal homeostasis

origon, is depicted.

Found at: doi:10.1371/journal.ppat.1000938.s002 (0.40 MB PDF)

Model S1 Zipped folder containing files for the BioTapestry

Editor Java plug-in (bioTapestryEditor.jnlp) and the H. pylori TRN

model (HpTRN_ModelS1.btp).

Found at: doi:10.1371/journal.ppat.1000938.s003 (0.02 MB ZIP)

Text S1 Instructions for opening and browsing the H. pylori

TRN model with BioTapestry editor and a caption for the model.

Found at: doi:10.1371/journal.ppat.1000938.s004 (0.03 MB

DOC)
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102. Güell M, van Noort V, Yus E, Chen WH, Leigh-Bell J, et al. (2009)

Transcriptome complexity in a genome-reduced bacterium. Science 326:
1268–1271.

103. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, et al. (2010) The
primary transcriptome of the major human pathogen Helicobacter pylori.

Nature 464: 250–255.

104. Ernst FD, Stoof J, Horrevoets WM, Kuipers EJ, Kusters JG, et al. (2006) NikR-
mediates nickel-responsive transcriptional repression of the Helicobacter pylori

outer membrane proteins FecA3 (HP1400) and FrpB4 (HP1512). Infect Immun
6821–6828.

105. Davis GS, Flannery EL, Mobley HL (2006) Helicobacter pylori HP1512 is a
nickel-responsive NikR-regulated outer membrane protein. Infect Immun 74:

6811–6820.

106. Wolfram L, Haas E, Bauerfeind P (2006) Nickel represses the synthesis of the
nickel permease NixA of Helicobacter pylori. J Bacteriol 188: 1245–1250.

107. Schauer K, Gouget B, Carriere M, Labigne A, de Reuse H (2007) Novel nickel
transport mechanism across the bacterial outer membrane energized by the

TonB/ExbB/ExbD machinery. Mol Microbiol 63: 1054–1068.

PLoS Pathogens | www.plospathogens.org 9 June 2010 | Volume 6 | Issue 6 | e1000938


