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As possible diseases develop on plant leaves, classification is constantly hampered by obstacles such as overfitting and low
accuracy. To distinguish healthy products from defective ones, the agricultural industry requires precise and error-free analysis.
Deep convolutional neural networks are an efficient model of autonomous feature extraction that has been shown to be fairly
effective for detection and classification tasks. However, deep convolutional neural networks often require a large amount of
training data, cannot be translated, and need a number of parameters to be specified and tweaked. This paper proposes a highly
effective structure that can be applied to classifying multiple leaf diseases of plants and fruits during the feature extraction step. It
uses a deep transfer learning model that has been modified to serve this purpose. In summary, we use model engineering (ME) to
extract features. Multiple support vector machine (SVM) models are employed to enhance feature discrimination and processing
speed. The kernel parameters of the radial basis function (RBF) are determined based on the selected model in the training step.
PlantVillage and UCI datasets were used to analyze six leaf image sets containing healthy and diseased leaves of apple, corn,
cotton, grape, pepper, and rice. The classification process resulted in approximately 90,000 images. During the experimental
implementation phase, the results show the potential of a powerful model in classification operations, which will be beneficial for a

variety of future leaf disease diagnostic applications for the agricultural industry.

1. Introduction

Before they reach maturity, the diseases in the leaves of
fruits, citrus, wheat, and rice can have a significant impact on
their yields [1]. This necessitates rapid and precise diagnosis
of leaf diseases in fruits, citrus, wheat, and rice as well as early
delivery of tailored cure [2]. Human investigation-based
recognition of leaf diseases is severely hampered due to the
huge area, and a model capable of tackling this issue is
urgently required. The plant itself typically has its own
recognition model when a leaf disease of a certain sort is
recognized. A problem with storage capacity will occur if
each disease of fruits, citrus, wheat, and rice has its own
recognition model. Multitask learning allows features to be
shared and aided by one another. This allows the leaf disease
recognition models to meet current needs while reducing

storage space and increasing recognition accuracy. For this
reason, a model that can detect and identify leaf diseases in
fruits, citrus, wheat, and rice must be developed.

For image classification, the adoption of deep learning
(DL) has been driven by recent advancements in computer
vision and artificial intelligence [3-5]. Convolutional neural
networks (CNNs) are an efficient model of DL structure.
Self-learning, adaptability, and generalization are the hall-
marks of CNN. The leaf diseases in fruits, citrus, wheat, and
rice have been classified by machine vision approaches in
numerous studies. Azadbakht et al. [6] achieved 82 percent
correct classification of the normal and diseased rice leaves.
Azadbakht et al. [6] employed machine learning (ML) ap-
proaches to analyze the wheat leaf hyperspectral data. Plant
leaves are usually the first place where plant diseases are
classified, and signs of most diseases may arise on the leaves
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[7, 8]. CNN requires no manual feature extraction as in
classic machine vision (MV) procedures, which rely on
manual classification. Instead, CNN only requires visual
input. In recent years, deep learning approaches, specifically
CNNs, have become the preferred method to overcome
learning challenges [9, 10].

The network’s ability to self-learn allows it to complete
the image classification process successfully [11]. It has
become increasingly common in recent years to use DL
image classification strategy in agriculture for detecting
plant diseases [12-15].

Three typical rice leaf diseases were categorized using a
DL network that was trained using DenseNet and Inception
models with ImageNet pretrained. The accuracy percentage
was found to be 94.07 percent [16].

Support vector machines (SVM) and DL were utilized
by Jiang et al. [17] to identify four distinct rice leaf diseases.
Using SVM and CNN, they were able to extract the features
from various leaf images and recognize the extracted
features, with an accuracy of 96%. Transfer learning-based
powdery mildew disease detection was proposed by Shin
et al. [18]. Using six different models, they compared their
categorization findings. In this case, they found that
ResNet-50 had satisfactory accuracy in identifying objects,
while AlexNet had the quickest recognition time. In order
to diagnose grapevine leafroll disease, Gao et al. [19]
employed ML techniques to analyze hyperspectral images
of grape leaves. The disease in grapevine leafroll can be
diagnosed in its asymptomatic stage using this model,
which achieved an accuracy of 89.93 percent [19]. DL
networks were utilized by Long et al. [20] to recognize four
different forms of camellia diseases based on image pro-
cessing analysis. They employed ImageNet to train AlexNet
and then built a novel fully linked layer with an accuracy of
91.25%. The pretrained model can greatly enhance accuracy
when there are few samples available. Generally, we can
utilize the same machine learning model to do many tasks
using multitask learning, which is a common practice. For
the strawberry Verticillium wilt classification, researchers
applied the multitask learning network of the attention
system. Additionally, 99.95% of the time, they properly
diagnosed strawberry Verticillium wilt [21]. Plant phe-
notyping was studied by Dobrescu et al. [22] using mul-
titask learning. Genotype classification, leaf counting, and
PLA estimation were achieved using the ResNet-50 model
trained on ImageNet. Each of the three locations has a
significant advantage over the other options.

To simulate realistic situations of leaf disease, Arsenovic
et al. [23] used images taken in a range of weather condi-
tions, at various angles and at different times of day, all with
varying backdrops. In their study, the authors propose a
novel two-stage neural network (NN) approach for classi-
fying plant diseases in the context of a real environment.
Their model’s accuracy was 93.67%.

Karthik et al. [24] presented a design based on residual
learning to classify significant aspects for detecting infection
in tomato leaves. Their proposed approach makes use of the
PlantVillage dataset, which contains three diseases, and
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CNN-learned features. They achieved 98 percent accuracy
on the validation sets after fivefold cross-validation.

Sharma et al. [25] developed an approach for CNN
model training. When tested on unlabeled data, the S-CNN
model trained employing segmented images outperformed
the F-CNN model by more than doubling its performance to
98.6% accuracy.

Sambasivam and Opiyo [26] suggested an approach for
detecting cassava leaf disease in their study. They achieved an
accuracy score of over 93% by using deep CNN built from
scratch, class weight, and the Synthetic Minority Over-
sampling Technique.

Ma et al. [27] claimed that they used VGG to identify and
classify four diseases in cucumber leaf leaves which resulted
in crop loss. The classification was done on a vast volume of
plant leaf images with the goal of classifying the presence or
causes of disease in the leaves.

Too et al. [28] used four transfer learning (TL) models to
classify the absence and presence of disease in plant leafs.
These components included the VGGL16, early V4, ResNet,
and DenseNet structures. DenseNet, when compared to the
other forms, generates more relevant responses with less
processing time.

He also evaluated 12 different species of plants in another
study [29], which were used to classify the presence or
absence of disease in plants.

Kaya et al. [30] investigated datasets such as Flavia,
Swedish, and UCI Leaf using TL for deep NNs in plant
classification procedures. Similarly, Singh et al. [31] inves-
tigated the leaves of the corn plant using a deep NN model
and suggested an automatic classification approach.

The study by Dhivyaa et al. [32] selected the appro-
priate features based on bidirectional long short-term
memory (Bi-LSTM) to detect plant diseases by utilizing an
expanded complexity network and other dense blocks.
Data from cassava disease and PlantVillage dataset have
demonstrated the validity of their proposed model.
According to their findings, the proposed model for the
diagnosis of cassava leaf disease achieved a maximum F1
score of 95.49%.

In a study by Bhujel et al. [33], the performance of the
models was improved by using a lightweight convolution
neural network with several attention modules. They were
able to train their models with data about tomato leaf
diseases. They evaluated the models’ performance (F1 score,
accuracy, and recall) according to standard classification
accuracy metrics. With an average accuracy of 99.69%, the
convolution block focus module was the most accurate.

By using R-CNN Mask, Storey et al. [34] segmented
samples to diagnose leaf and rust disease in apple orchards.
For object detection, segmentation, and sickness detection,
three R-CNN Mask backbones were trained and evaluated.
Using the R-CNN Mask model and the ResNet-50 backbone,
they were able to detect extremely small rust-covered
objects.

Prabu and Chelliah [35] have developed a new method of
detecting mango leaf diseases. Over 388 images of healthy
and ill subjects (mango anthracnose, soot mold, and bac-
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terial black spot) were selected. MobileNetV2 is used during
the learning phase, and the SVM is used to classify diseases at
the end.

Singh et al. [36] used the AlexNet model to identify leaf
disease in maize quickly and accurately. The results were
verified with PlantVillage data. Cercospora and Gray are two
common rust-based infections covered with 99.16% accu-
racy in the data collection.

A lightweight convolutional neural network, RegNet, was
presented by Li et al. [37] for the detection of apple leaf
disease. They were able to identify five different apple leaf
diseases from 2141 images of healthy and diseased apple
leaves. It achieved an overall accuracy of 99.23% in the test set
and 99.8% in the validation set, with a learning rate of 0.0001.

Shahoveisi et al. [38] used ML techniques to model the risk
of Sclerotinia sclerotiorum-induced disease development in
canola and dry beans. Using a broad genome correlation study
[39], they previously examined the genomic regions associated
with Leptosphaeria maculans resistance in rapeseed.

Plant leaf diseases may be consistently diagnosed using
deep learning. However, TL may be used to overcome the
difficulty of small datasets in plant leaf disease recognition
and significantly increase the approach’s accuracy. A single
structure can be utilized to perform multiple tasks through
ensemble learning. To solve the challenge of recognizing
leaf illnesses on two different plants, the study provides
research on deep transfer learning and alternate learning.
Improvements were made to the residual neural network
(ResNet) model, while keeping the ResNet model’s con-
volutional layer structure. As a result, these two compo-
nents of the ResNet model’s classification layer can be
shared across different datasets. A new fully connected
layer is built to address the various classification challenges
that arise while working with several data sources. The loss
function and optimizer for each classifier are unique. The
convolutional layer of the ResNet is fixed during formal
training, allowing the TL architecture to be used for
transfer learning. Formal instruction utilizes only the newly
developed categories and layers that are completely
interconnected. Digital cameras may be used to take on-
the-spot images utilizing fruits, citrus, and rice leaves and
models to diagnose leaf diseases, allowing crops to be saved
before irreparable harm occurs. Although several ap-
proaches exist for diagnosing fruit leaf disease, key ques-
tions remain unresolved.

(1) Identifying and collecting critical information from
fruit leaves is fairly difficult, as is distinguishing the
features of particular diseases utilizing conventional
image processing methods.

(2) Due to the huge variability in the features of different
diseases, the attributes of disease patterns must be
thoroughly studied using a diverse set of images in a
smart fashion.

(3) The efficiency of ML techniques is entirely deter-
mined on the type of the hand-crafted features. As a
result, feature extraction must be performed auto-
matically in order to pick and learn the optimal
collection of features for recognition.

(4) Certain deep learning models make advantage of
well-established architectures such as TL structures.
As a result, it employs millions of images for clas-
sification procedure. To enable immediate imple-
mentation of such models, a trade-off between
computing load and accuracy must be determined.

(5) Additionally, the DL network should be trained with
a large number of images to guarantee that the
features are more generalized.

By employing a modified deep model and ensemble of
learning based on the pool of SVM method with RBF kernel
for disease detection in fruit leaves, the proposed study
solved the identified research gaps. The following are some
of the project’s most significant contributions.

(1) A novel and distinct DL architecture has been
presented in this field of research. The first goal was
to use color space to improve feature classification.
The second stage uses TL to learn and enhance
performance by learning distinct feature maps.

(2) This is the first time a hybrid model based on the
modified deep TL network and ensemble of learning
has been used to diagnose disease in a significant
number of fruit leaves, as far as we know.

(3) Samples from a variety of approaches were used to
train the design. We trained the architecture with
90000 and validated it with 10-fold cross-validation
of images.

Section 2 focuses on fruits, citrus, and rice leaf diseases,
along with related datasets and processing methods. Iden-
tifying fruits, citrus, and rice leaf diseases is the subject of
Section 3, which examines several concepts and method-
ologies. Section 4 tests the model described in this article and
compares it to other models. There is a brief summary of the
article in the Section 4.

2. Proposed Method

The suggested technique is depicted in Figure 1, which
begins with feature extraction using a deep convolutional
neural network model and ends with classification using an
optimum support vector machine as the final decision layer.

2.1. Preprocessing. To accurately reproduce the appearance
of colors in natural light on the image processing step, an
HSV (color, saturation, and quantity) display must be used.
Since the strongest color of HSV can be compared to white
light, the terms “HSV” and “white light” are often used
interchangeably (i.e., bright white light shining on a red
object). In low light, a red object seems darker and brighter,
while it appears redder and brighter in high light. We are in
dire need of ensuring that no light is lost in the process; a
single point source must be achieved in the light of leave
images. A preprocessed RGB image is fed into the HSV
converter to keep the brightness constant. The process of
transforming an RGB image to an HSV image is shown
visually in Figure 2.
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FIGURE 2: Graphic schematic from stages of RGB image to HSV image transform [40].

2.2. Convolutional Neural Network (CNN). We use non-
linearity and a series of convolutional filters to solve
equation (1). There is a level of hierarchy in a CNN. The
following layers (x;) are derived from the input signal x [41]:

(1)

However, even though W; is a linear operator, this sit-
uation exhibits nonlinear behavior. Additionally, W; is
frequently employed in convolutions in CNNs, with p being
either a rectifier max(x; 0) or an exponential sigmoid
[1 +exp(-x)]~". Convolutional filter stack W; is assumed. As
a result, the convolutions in each layer are defined as the

total of the convolutions in the layer before it [41, 42].

xj(uk; ) :P<;<Wj,kj(-’k) *le(-,k)>(u)>- (2)

In addition, a discrete convolution process known as * is
employed [41]:

x;=pW;x; -1

(e8]

@GN =Y gwf(x-u).

u=-00

(3)

CNN architecture optimization is a nonconvex issue.
Weights W; are frequently trained using stochastic gradient
descent, with their gradients commonly determined using

backpropagation. The reliance on data is a critical concern in
deep learning. Deep learning models are largely reliant on
massive volumes of data to be trained. In comparison to
more standard machine learning algorithms, this is a sig-
nificant improvement. The issue is that, in order to train the
underlying data patterns, a large amount of data is required.
TL can be used to address the issue of training data being
distributed uniformly independent of the distribution of the
test data (i.e., which motivates us to employ TL to address
the problem of insufficient training data). VGG, DenseNet,
and ResNet are three well-known deep learning networks
that train their models using CNNs procedure.

2.3. Dilated ResNet. ResNet’s 3 x 3 Visual Geometry Group
(VGQ) full-layer design is the best on the market for transfer
learning. The 3 x 3 output channels for each of the remaining
convolutional layers are shown in Figure 3(a). After the data
has been modified, it is submitted to ReLU layers. ReLU is
activated following two convolutions. ResNet is based on the
GoogLeNet structure as a starting point. Following the 7 x 7
layers are two strides and a convolution layer with up to 64,
3 x 3 input channels. It is feasible to connect the convolu-
tional layer’s outputs to a single input. Increasing the
number of channels is one possibility. Furthermore, addi-
tional 1x1 convolution layers are also necessary. ResNet
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F1GURE 3: We use the ResNet residual block in the modified ResNet
difference between the output and input.

nodes are depicted in block form in Figure 3(b). ReLU takes
nonlinear input into account. This layer has no effect on the
channels preceding it. Due to the small volume of diseased
spots in leaf images, the dilated ResNet structure aids in the
detection of images with a small volume of disease. Due to
the higher-quality leaf images in the ResNet architecture, a
broader range of dilated structure-based features will be
available. By employing samples and preceding layers, it is
feasible to preserve fine-grained features. Thus, the light-
weight structure of ResNet-18 was developed by experi-
mentation with various convolution scales and dilation rates.
Concatenation hence minimizes the computational cost
while increasing the quantity of fine-grained attributes.
Accordingly, samples must be collected in order to combine
lower-level components into higher-level maps. The bottom
and top layers should be merged to improve the identifi-
cation of small volumes of illness in leafs.

Each of the 64 filters illustrated in Figure 4 has the 7 x 7
dimension, for a total of 64. To put it simply, Convl
features a significantly larger 7 x7 dimension, 64 filters,
and a two-step stride. The stride length of the MaxPool
2 x2 is two. Following feature extraction by deep struc-
ture, we further select the feature with the lowest com-
putational complexity. The weights of features in a
neighborhood can be computed using distance measures.
It is feasible to minimize the size of the required feature
vectors by employing the neighborhood component
analysis (NCA) [43] technique, which stands for “su-
pervised and nonparametric.” This approach allows for
the enhancement and modification of the k-nearest
neighbor (k-NN) structure. We choose this method to
decrease the amount of feature vectors obtained from leaf
images. This is because it assigns a positive weight to each
feature and the feature rank can be computed using NCA.
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architecture: (a) direct mapping based on the training; (b) computation

When a desired feature reduction strategy is applied, the
NCA is used to estimate the feature weights. A feature set
is subdivided into overlapping blocks. As a result, it is
evident that k is a collection of smaller vectors.

2.4. Ensemble Learning. The classifying leaf images with the
SVM model are a significant step toward generating the ideal
hyperplane as a decision surface with the highest margin for
interclasses of leaf diseases. As a result of the inherent
separation issues, we present the radial basis function (RBF)
kernel function and its associated decision components for
SVM classification. A nonlinear kernel improves the overall
performance of the SVM.

K (%)) = exp<—7y“x_f | ) (4)

20

The determined RBF kernel in equation (4) contains
fewer variables (C and p), is mathematically simpler, and has
fewer hyperparameters than other kernels. This is why it has
gained widespread acceptance. The classification step utilizes
training data to implement the SVM with RBF-based
learning pool as the ensemble learning procedure. The ex-
tended ensemble learning structure is depicted in Figure 5 as
a general schematic.

3. Experimental Results

This section describes the dataset and leaf image that were
analyzed, as well as the model’s results.

3.1. Procedure Setting. On Windows 10 PCs, the proposed
solution was implemented using MATLAB R2021b. The
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FIGURE 4: The overall architecture of modified transfer learning structure by using dilated and concatenation design.
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simulation was conducted utilizing an Intel® Core™ i5-8500
processor (single CPU), 16 GB of RAM, and 16 GB of SSD
RAM on a test computer. Additionally, we used additional
applications, such as SPSS. The optimal parameters of the
RBF kernel are then chosen for initialization. The initial
ResNet-18 model had a primary learning rate (u) of 0.002
and an epoch range of 100-1000. To avoid overfitting, the
proposed ensemble learning system determined the ideal

training iteration size by a mix of parameter tuning and early
stopping.

3.2. Dataset. The images of plant leaves were created by
analyzing six different types of plant leaves: apple fruit
leaves, maize leaves, cotton plant leaves, grape fruit leaves,
pepper leaves, and rice leaves. Figures 6 and 7 illustrate
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FIGURE 6: A collection of images of plant leaves, including the first row of apple fruit leaves, the second row of maize leaves, the third row of
pepper leaves, and the fourth row of grape leaves, all of which have leaves with various pests. Additionally, some leaves are healthy.

FIGURE 7: Rice leaves are divided into three different classes of bacteria, stains, and plants.

sample images, while Table 1 summarizes the number of
images and other pertinent information.

3.3. Evaluations. Our early findings analyze how machine
learning techniques based on ResNet structure families can
be applied to improve leaf disease categorization. The feature
extraction stage was carried out using an improved ResNet-
18 (dResNet-18) version in ResNet structures with multiple
classes and two classes, as indicated in Table 2. Additionally,

a number of previously unknown leaf diseases were iden-
tified as a result of the multiclass classification based on
region of interest (ROI) part and non-ROI segment (see
Table 1).

While the remainder parts of the proposed method stay
unchanged, the ResNet deep transfer learning family has
been used in its place. Numerous parallels exist between the
qualities associated with deep learning. To conduct the
classification, the best SVM model is selected using an
ensemble learning technique. However, the technique used
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TaBLE 1: This table shows the details of the leaves of the various fruits analyzed in the study.
Leaf type Number of classes Disease type Dataset size Sample
Scab 3150 .
Black rot 3726 -
Apple 4 :
Cedar apple rust 1650
Healthy 4284 .
Common rust 7152 ﬁ
r7 £/,
Corn 3 Healthy 6972
Northern leaf blight 5910
Fusarium wilt 174
Myrothecium leaf spot 1062 H
Cotton 4 a
Mela (soreshin) 1188 ﬂ
Areolate mildew 10482 -
Black rot 7080 -
Grape 3 Black measles 8304 8
Leaf blight 6456 -
Bacterial spot 5982
Pepper 2 .
Healthy 8868 i
Bacterial leaf blight 40 — — |
Rice 3 Brown spot 40 E ﬁ
Leaf smut 40 - g

to extract features by ResNet-101 and ResNet-164 is nearly
identical.

While the proposed strategy for deep learning feature
extraction outperformed other methods within the ResNet
structure families in some circumstances, it is obvious that
these methods occasionally produced a very small classifi-
cation error.

Six different sets of gathered leaf photos are shown in
Figure 8, each with its own RMSE convergence and loss
function denoted by a curve and the lowest achievable
value. The model’s complexity is reduced by increasing
the layer-wise reduction factor. As the model becomes
simpler, the RMSE tends to rise. If the algorithm is
trained to employ efficient features, it is feasible to im-
prove discrimination outcomes. As a result, increasing
the quantity of characteristics obtained by dilated deep
transfer can help with learning. It is possible to create

useful feature maps from a leaf image with only a few
iterations and a short period of time. Because of the
processing time involved, we may want to avoid deeper
structures for real-time or near-real-time applications
(particularly during training). The confusion matrices for
the integrated model’s categorization across all six
datasets are shown in Figure 9.

While the classification accuracy of the grape and cotton
leaf datasets is lower than that of other datasets, adding the
proposed extracted features significantly improves classifi-
cation accuracy. In addition, 10-fold cross-validation is used
to demonstrate the ability of the system to classify leaf
disease. For images of healthy or sick leaves, this approach
asserts a 99.1% accuracy.

Using the approach explained here, numerous low and high
intensities leaf diseases can be detected in a wide variety of fruits.
It is reasonable to anticipate the proper classification rate
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TaBLE 2: Comparison of the findings of ResNet family’s error in leaf disease classification using normal and ROI images for a multiclass
problem.

Leaf t ResNet-164 ResNet-152 ResNet-101 ResNet-50 ResNet-18 dResNet-18
€ (S
P Min Max Min Max Min Max Min Max Min Max Min Max
Apple 0.03 0.07 0.04 0.08 0.04 0.09 0.05 0.08 0.06 0.10 0.01 0.03
Corn 0.06 0.12 0.06 0.12 0.07 0.11 0.07 0.12 0.09 0.13 0.03 0.06
Cotton 0.03 0.08 0.03 0.09 0.04 0.09 0.04 0.09 0.05 0.10 0.02 0.05
Grape 0.04 0.06 0.06 0.08 0.07 0.09 0.07 0.11 0.07 0.12 0.04 0.08
Pepper 0.03 0.06 0.04 0.07 0.04 0.07 0.04 0.08 0.05 0.08 0.02 0.04
Rice 0.005 0.01 0.01 0.015 0.008 0.02 0.01 0.02 0.01 0.03 0.002 0.008
Apple (ROI) 0.02 0.06 0.03 0.05 0.03 0.05 0.03 0.06 0.04 0.07 0.007 0.02
Corn (ROI) 0.04 0.08 0.04 0.09 0.05 0.09 0.06 0.10 0.07 0.10 0.01 0.04
Cotton (ROI) 0.01 0.06 0.02 0.07 0.02 0.08 0.03 0.08 0.03 0.09 0.016 0.03
Grape (ROI) 0.01 0.05 0.03 0.07 0.04 0.07 0.04 0.09 0.06 0.10 0.013 0.05
Pepper (ROI) 0.02 0.05 0.03 0.06 0.03 0.07 0.03 0.07 0.03 0.08 0.009 0.04
Rice (ROI) 0.004 0.008 0.005 0.018 0.006 0.02 0.008 0.02 0.009 0.02 0.001 0.007
Average 0.036 0.086 0.047 0.097 0.053 0.10 0.055 0.11 0.068 0.12 0.009 0.044
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Figure 8: Continued.
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Figure 8: This figure depicts the RMSE convergence and loss function of the feature extraction section for six sets of acquired leaf
images. (a, ¢, €, g, i, k) are the RMSE calculation and (b, d, f, h, j, 1) are the loss computation for apple, corn, cotton, grape, pepper, and

rice leaf images, respectively.

because it consistently obtains a 99.1% accuracy rate in trials
involving two classes in a range of situations. Our model
achieves a precision score of 100% on each rice and apple leaves
image. The proposed deep model and effective learning ap-
proaches for feature extraction may have resulted in appropriate
sensitivity. The results show that the proposed method for
diagnosing and classifying leaf diseases tends to be reliable.
When a leaf image is complicated, as seen in Figure 9, various
techniques’ accuracy and precision rates often decrease (e.g.,
especially when the images are noisy or non-Rol image is se-
lected as based for processing). The approach for analyzing leaf
images, on the other hand, is consistent and reliable, making it a
cost-effective method.

4. Discussion

This study employed a technique known as model engi-
neering (ME) learning. There are various approaches to train
a model for plant disease recognition; however, our model
was trained using the dilated ResNet-18 framework for deep
transfer learning.

Our learning algorithms were all constructed using
identical data and loss functions. The ME model de-
scribed in this article was applied to a range of fruit leaf
images. The RMSE and loss error change curves for each
model’s training set are displayed in Figure 8. Figure 10
illustrates the accuracy change for various TL model
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Figure 9: Confusion matrix: the suggested approach is used to diagnose leaf disease in a variety of hitherto unexplored datasets. The
method’s output is displayed four times at random. The first row represents apples, the second row represents corn, the third row represents
flax, the fourth row represents grapes, the fifth row represents peppers, and the sixth row represents rice, accordingly.
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FiGure 10: This figure illustrates the accuracy change for various TL model verification sets based on the low and high levels of complexity.

verification sets based on the low and high levels of
complexity.

The accuracy rates for the different decision-making part
based on various test sets are shown in Table 3 based on k-
nearest neighbor (k-NN), decision tree (DT), feedforward
neural network (NN), SVM with linear kernel (SVM-L),
SVM with RBF kernel (SVM-RBF), and Ensemble SVM-RBF
(E-SVM-RBF).

The dilated learning model outperforms the typical
ResNet-18 design in terms of stability. This model has an
average accuracy of 98.5% on the test set for leaf disease
recognition models. A test set accuracy of 97.93% is less than
the suggested structure’s accuracy of 97.93% in recognizing
Grape or Cotton leaf diseases. For instance, our new deep
learning model outperforms existing deep learning models
by an average of 1 to 2 percentages. The addition of ac-
ceptable noise while learning a task aids in the improvement
of models, which is analogous to removing unnecessary
steps from the process. In contrast to conventional learning,
interaction can assist in preventing the overfitting of dif-
ferent leaf image conditions from collapsing. As a result, the
proposed ME learning technique can aid in the achievement
of numerous, relatively related objectives. For all leaf disease
recognition, the proper epochs were used to optimize the
training time in the procedure. This resulted in a more rapid
and constant drop in the recognition model’s accuracy. Our

TaBLE 3: The comparison of the different decision-making part
based on various test sets.

iL;nge kNN DT NN SVM-L SVM- E-SVM-
e (%) (%) (%) (%) RBF (%) RBF (%)
Apple 97.56 97.31 9611 9548 9813  99.47
Corn 97.08 96.83 9578 9411 9729  98.69
Cotton 9571 9610 9539 9673  97.76 9891
Grape 96.18 96.51 9626 9531  97.07  98.74
Pepper  97.09 96.65 9562 9613  97.87  99.12
Rice 98.31 98.87 9791 9644  98.76 100

ME model surpasses existing feature extraction-based deep
TL models.

There are multiple distinct methods for incorporating
pretrained structures into TL models. Minor changes are
made using the TL approach. This was no longer essential as
a result of the ensemble classification approach. Model reuse
is distinguished by the fact that it uses the model’s structure
but not its pretrained parameters. We processed images of
leaves on a variety of fruits using the approach indicated
above. According to the results in Table 4, when using the DL
structure with a limited number of epochs in the training
stage for creating proper features with the appropriate
metrics computation, the hybrid model is capable of rec-
ognizing leaf disease with a maximum accuracy of 99.1%.
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TaBLE 4: Comparison of proposed method with other deep and classical learning structures.
Computational
Reference Type of leaf Model Accuracy (%) .
complexity

Chen et al. [10] Rice VGGNet 92.00 High
Sharma et al. [25] Tomato S-CNN and F-CNN 98.30 High
Atila et al. [44] Plant leaf EfficientNet 96.18 High
Kaur et al. [45] Grape Hy-CNN 98.70 Medium

Ji et al. [46] Grape United model 98.20 High
Gadekallu et al. [47] Plant leaf Whale and DL 95.10 Medium
Azimi et al. [48] Crop FCNN and SCNN 92.01 High
Joshi et al. [49] Coffee Deep CNN 98.00 High
Paymode and Malode [50] Grape and tomato VGG 98.40 and 95.71 High
Jiang et al. [51] Rice and wheat VGGI16, DenseNet-121, and ResNet-50 97.22 and 98.75 High
Nandhini and Ashokkumar [52] Plant leaf DenseNet-121 and optimization algorithm 98.70 High
Our model Plant leaf Dilated TL and ensemble learning 99.10 Medium

Our model, which was taught to recognize leaves in a
variety of fruits, demonstrated a reliable effect that might be
used as actual smart technology in agriculture. Other studies
looked into whether DL-based models are unique in their
ability to distinguish between diseases from different time
periods. The table below compares the dResNet-18 and other
decision-making structures to a variety of feature extraction
and ensemble learning models. To detect, recognize, and
describe leaf disease in plants, many deep learning models
are used. Various CNN models, such as S-CNN and F-CNN
[17], EfficientNet [43], Hy-CNN [45], and the united deep
learning model [46], have been applied to various plant leaf
images by a number of authors. On plant leaves, a hybrid
analytic model [47] obtains 95.1 percent precision, while
other models achieve 92.01% precision [48]. The classifi-
cation of images of coffee leaves is improved by texture
image analysis [49]. In addition, our approach is a fast
method that has less computational complexity than other
similar methods in leaf disease classification.

As a result of its many advantages, deep learning in data
science can lead to more efficient processing models [53]. A
decision-making approach proposed in this study could be
of significant help in classifying leaf diseases. By using deep
learning, accuracy can be continuously increased and
knowledge can be continuously gained without supervision.
Additionally, data analysts will benefit from more accurate
and concise results as a result of this initiative.

5. Conclusion

This article analyzes and provides a dataset of six different
types of crop disease leaves. The deep CNN-based dilated
ResNet-18 model is trained and evaluated using data pro-
cessing, preprocessing of the dataset, training, and experi-
mental procedure. The proposed model is constructed and
tested to determine whether it can improve on the outcomes
obtained thus far. Various datasets indicate that the metrics
parameters are stronger and higher than those of other
techniques. As a result, our proposed research work in-
creased the accuracy of various leaf images of various fruits
by 99.1 percent, including Apple, Corn, Cotton, Grape,
Pepper, and Rice. We were able to achieve the highest level of
performance possible with our model when it came to on-

field crops, leaf images, and disease classification and
analysis. Agriculture and food production are the core
objectives of university and government-funded research. It
is intended that real datasets comprising a variety of leaf
crops would be collected and processed for usage in deep
learning models in the future. Crop images will significantly
benefit from the future usage of hybrid models based on
improved TL architecture and traditional models. Farmers
gain from our efforts because we encourage and stimulate
agriculture, which boosts agricultural revenue and con-
tributes to the development of strong countries. Addition-
ally, in the future, the authors of this study will attempt to
reduce the algorithm’s computational complexity and exe-
cution time.
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