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Although it is known that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) alleviate hyperoxic
lung injury of bronchopulmonary dysplasia (BPD) in animal models, the role of microvesicles (MVs) derived from hUCMSCs in
BPD is poorly defined. Furthermore, antenatal inflammation has been linked to high risk of BPD in preterm infants. The purpose
of this study was to explore whether MVs derived from hUCMSCs can preserve lung structure and function in an antenatal
lipopolysaccharide- (LPS-) induced BPD rat model and to clarify the underlying mechanism. We demonstrate that antenatal
LPS induced alveolar simplification, altered lung function, and dysregulated pulmonary vasculature, which restored by
hUCMSCs and MVs treatment. Furthermore, MVs were large vesicles with a diameter of 100-900 nanometers and mostly
uptaken by alveolar epithelial type II cells (AT2) and macrophages. Compared with the LPS-exposed group, MVs restored the
AT2 cell number and SP-C expression in vivo and promoted the proliferation of AT2 cells in vitro. MVs also restored the level
of IL-6 and IL-10 in lung homogenate. Additionally, PTEN/AKT and MAPK pathways were associated with the protection of
MVs. Taken together, this study suggests MVs derived from hUCMSCs improve lung architecture and function in an antenatal
LPS-induced BPD rat model by promoting AT2 cell proliferation and attenuating lung inflammation; thus, MVs provide a
promising therapeutic vehicle for BPD treatment.

1. Introduction

Bronchopulmonary dysplasia (BPD) is a serious and com-
mon chronic lung disease of premature infants. It is caused
by the imbalance between lung injury and repair in the
developing immature lung [1]. BPD is characterized by
stunted alveolar development, dysregulated pulmonary vas-
culature, altered lung function, and pulmonary hypertension
(PH) [2]. Despite improvements in perinatal care, the inci-

dence of BPD has not been reduced. BPD remains the most
common late morbidity and the most frequent complication
of extremely preterm birth [3, 4].

The cause of BPD is associated with a wide variety of risk
factors [5]. Historically, hyperoxia, invasive mechanical ven-
tilation, and sepsis have been considered the key contribu-
tors to BPD [6]. However, with the increasing survival rate
of the most extremely preterm infants [7], prematurity and
low birth weight have become the strongest risk factors of
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BPD and they are strongly related to antenatal determinants
[8–15]. Therefore, there has been a growing recognition that
the early identification and treatment of preterm infants at
high risk of BPD may provide greater opportunities to pre-
vent and alleviate BPD [16]. However, in preclinical studies,
the most commonly used animal model for BPD research
involves prolonged exposure to postnatal hyperoxia. Several
studies have reported that antenatal injection of LPS causes
impaired alveolar development and dysregulated vasculature
by inducing inflammation to mimic features of human BPD,
even in the absence of postnatal hyperoxia or mechanical ven-
tilation; thus, antenatal LPS exposure may be a better model to
reflect the influence of antenatal factors on BPD [16–18].

Human umbilical cord mesenchymal stem cells
(hUCMSCs), with low immunogenicity and easy accessibility,
are effective for inflammatory disease treatment and regenera-
tive medicine, which bring new hope to patients with BPD
[19]. In preclinical studies, our group has previously revealed
the beneficial effect of hUCMSCs on alleviating BPD in an
animal model of exposure to postnatal hyperoxia [20, 21]. In
clinical studies, many phase 1 clinical trials have reported pre-
liminary data regarding the safety and potential efficacy of
MSC treatment for lung injury [22, 23]. MSC transplantation
in preterm infants at high risk of BPD is safe, with no adverse
respiratory, growth, and neurodevelopmental effects [24].
Furthermore, MSCs have been shown to exert their beneficial
effects via paracrine mechanisms, and MSC-derived condi-
tioned medium revealed a comparable therapeutic effect
[25]. As a major paracrine mediator of MSCs, extracellular
vesicles (EVs)—especially exosomes (also called small
EVs)—have been reported to attenuate hyperoxia-induced
lung injury through treatment mechanisms that include three
aspects: anti-inflammatory processes [26], proangiogenesis
[27, 28], and modulation of lung macrophage phenotype
[29]. Besides exosomes, microvesicles (MVs, also called large
EVs)—another type of EVs that originate from cell mem-
branes, with sizes ranging from 150 to 1000nm [30]—have
been reported to mediate the modulation of immune interac-
tions, anti-inflammatory processes, and angiogenesis, consid-
ering that they contain proteins, RNA, miRNA, and trophic
factors derived from parent cells [31, 32]. One study reported
that human MSC-derived MVs could alleviate lung injury
induced by bacterial pneumonia [33]. Another study found
that MVs promoted angiogenesis on human umbilical vein
endothelial cells in vitro [34]. However, the therapeutic effects
of MVs on BPD remain largely unknown.

In this study, we aim to explore whether MVs derived
from hUCMSCs can preserve lung development and the
underlying mechanism in an antenatal LPS-induced BPD
rat model. We found that MVs derived from hUCMSCs
were able to enhance alveolar development by promoting
AT2 cell proliferation and ameliorating inflammation. Our
findings provide insights into the paracrine effects of MSCs
on the antenatal rat model of BPD.

2. Materials and Methods

2.1. Animals. Sprague-Dawley (SD) rats were purchased
from the Experimental Animal Center of Chongqing Medi-

cal University and maintained at the Animal Laboratory
Center of Pediatrics, Children’s Hospital of Chongqing
Medical University. All animal procedures and protocols
were approved by the Ethics Committee of Children’s
Hospital of Chongqing Medical University. The animals
were housed under controlled temperature (22 ± 1°C) with
a 12-hour day/night cycle with food and water ad libitum.
Neonatal mortality was checked daily.

2.2. Intra-Amniotic (IA) Injections of LPS and Antenatal Rat
Model of BPD. As shown in Figure 1(a), pregnant female
Sprague-Dawley rats (8- to 10-week old) received IA injections
of LPS on day 20.5 of gestation (term = day 22:5 of gestion) in
accordance with a previous report [35]. Briefly, laparotomy
was performed on each dam under general anesthesia with
isoflurane inhalation. After anesthesia, amniotic sacs were
fully exposed from the abdominal cavity; IA injections were
started from the amniotic sac closest to the right ovary and
were administered to up to 10 sacs per dam in a counter-
clockwise sequence. Pregnant rats were randomly assigned to
receive normal saline (NS; 50μL per amniotic sac) for the con-
trol group or LPS (10μg of Escherichia coli 055: B55 diluted
with 50μL NS per sac) for the antenatal BPDmodel. Two days
following IA injections, cesarean section was performed on
pregnant rats under general anesthesia. All the rat pups (male
and female) in the injected amniotic sacs were delivered and
then placed with foster mother rats.

2.3. Preparation and Identification. Exosome-free fetal
bovine serum (FBS) was prepared overnight using ultracen-
trifugation at 4°C, 120000 × g for 12 hours. MVs were har-
vested from the medium of hUCMSCs, obtained from the
Chongqing Stem Cell Engineer Research Center. Briefly,
P4-P6 HUCMSCs were seeded at 1 × 105 cells per 100mm
dish and cultured for 48 hours in 10mL DF-12 with 10%
exosome-free FBS. The medium was collected and centri-
fuged at 4°C, 400 × g for 5 minutes and 1500 × g for 10
minutes to remove cells and debris. The supernatant was
ultracentrifuged at 18000 × g for 30 minutes to pellet the
MVs. The total protein concentration of the MVs was
measured using BCA kit (Beyotime, China) as per the man-
ufacturer’s recommendations. The isolated MVs were stored
at −80°C for later use and characterized by TEM (Hitachi,
S-3000N, Japan) and Zetasizer Nano S90 (Malvern, UK).

2.4. hUCMSCs or MV Administration and Tissue Collection.
On postnatal day 7 (PN7), as illustrated in Figure 2(a), the
treatment groups received 40μL hUCMSCs (1 × 106 cells
per pup) or MVs by intratracheal route, while the control
groups received 40μL of intratracheally administered NS.
On PN14, the pups were anesthetized with an intraperito-
neal injection of pentobarbital sodium (40mg/kg). Then,
the thoracic cavity was opened, and the lungs were perfused
with cold PBS through the heart. The lungs were harvested
for histological assessment. The hearts were weighed to
determine RVI. Body weight was measured at birth, on
PN7, and on PN14. Animals were randomized into different
groups using table of randomized numbers. Treatments
were administered in a blinded manner. In order to
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minimize the cage effect, pups among groups were divided
and housed in 4-4 cages, with five to eight pups per cage.

2.5. Lung Alveolarization Assessment. One 4mm thick trans-
verse section was taken from the midplane of the left lobe of
the fixed lungs per animal and processed and embedded in
paraffin wax. All the sections were stained with hematoxylin
and eosin, and alveolarization was assessed by performing
radial alveolar counts (RAC), secondary septa count, and
median linear intercepts (MLIs) as previously described [21].

2.6. Pulmonary Vasculature Assessment. Pulmonary vascula-
ture was measured by immunofluorescence with von Willeb-

rand factor (vWF). Fixed left lungs were embedded in glue
(Sakura, Japan) and cut with a microtome at 10μm at
−20°C (Leica CM1950, Germany). Frozen sections and cells
were then fixed with 4% PFA and blocked with 10% BSA.
Subsequently, the samples were stained with anti-vWF
antibody (1 : 100, PA5-80223, Thermo Fisher Scientific,
USA), washed, and incubated with goat anti-mouse Fluor
cy3-conjugated secondary antibody (Proteintech, USA).
Cell nuclei were counterstained with DAPI for 15 minutes,
and fluorescence was observed on a Leica laser confocal
microscope (C2+ system, Nikon, Japan). Five random
images were captured at 200x magnification for quantifica-
tion of vWF.
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Figure 1: Establishment and characterization of bronchopulmonary dysplasia (BPD) model induced by intra-amniotic injection of LPS (IA-LPS).
(a) The schedule involved experimental BPD rat model caused by intra-amniotic (IA) injection of normal saline (NS) or LPS and time points to
collect lungs. (b) Representative lung sections stained with H&E on postnatal day 1 (PN1), PN7, and PN14, scale bar = 100μm. Quantification of
the (c) mean linear intercept (MLI) and (d) secondary septa (N = 3, t-test, NS: not significant, ∗∗∗P < 0:001).
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Figure 2: Continued.
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2.7. Lung Function and Right Ventricular Hypertrophy. Lung
function was determined in PN14 pups with a computer-
controlled small-animal ventilator (Emka, USA). Briefly,
the rats were anesthetized with pentobarbital sodium
(40mg/kg), intubated following tracheostomy, and mechan-
ically ventilated at a rate of 150 breaths/min, with a tidal vol-
ume of 8mL/kg and a positive end-expiratory pressure
(PEEP) of 3 cm H2O with the computer-controlled small-
animal ventilator (Emka, USA). LR and Cdyn were recorded
every five seconds. Right ventricular hypertrophy was deter-
mined by the right ventricular index (RVI), which represents
the weight of right ventricle relative to left ventricle+septum
(RV/ðLV + SÞ). Briefly, after removing the arterial and adi-
pose tissue on the epicardium, we collected and weighed
the left ventricle plus the interventricular septum and the
right ventricle tissue by cutting along the edge of the ventri-
cle and the interventricular septum.

2.8. MV Localization in the Lungs of Antenatal LPS-Induced
BPD Rats. MVs were labeled with a DiO Green Fluorescent
(Beyotime, China) as per the manufacturer’s protocol.
Immunofluorescence localization of donor MVs was per-
formed on 10μm thick cryostat sections on PN9 (48 hours
after MV administration). The following primary antibodies
were used as markers of alveolar epithelial type I cells (AT1),
AT2, vascular endothelial cells, vascular pericytes, total
macrophages, and smooth muscle cells: Aquaporin-1
(AQP1, 1 : 200, Abcam), prosurfactant protein C (SP-C,
1 : 100, Abcam), CD31 (1 : 100, Abcam), NG2 (1 : 200,
Abcam), Iba-1 (1 : 200, Abcam), and α-smooth muscle actin
(α-SMA) (1 : 200, Abcam), respectively. Then, Cy-3 dye-
labeled IgG was used as the secondary antibody (Beyotime,
China). Fluorescence was observed on Leica laser confo-
cal microscopy (C2+ system, Nikon, Japan), and at least
five different visual fields were randomly selected from
each sample.

2.9. Western Blotting. The lung tissues were harvested in a
lysis buffer (25mMTris-HCl (pH7.5), 137mM NaCl,
2.7mM KCl, and 1% Triton X-100) containing protease
and phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis,
MO). The protein concentration was measured using BCA
protein assay reagent (Beyotime, China). Equal amounts of
proteins were separated using SDS-PAGE and transferred to
polyvinylidene difluoride membranes (Thermo Scientific,
Rockford, IL). The membranes were blocked with 5% skim
milk in PBS containing 0.1% Tween 20 (PBS-T) for onehour
and then incubated with the specified antibodies. Signals were
detected using the ECL detection system (Gene Company
Limited, Hong Kong, China).

2.10. Statistical Analysis. Statistical analysis was performed
with the GraphPad Prism software (Version 5.0, San Diego,
CA, USA). A t-test was used for statistical comparisons
between two groups, and a one-way analysis of variance
(ANOVA) with Kruskal–Wallis/Dunns post hoc test was
applied for significance testing among more than two
groups. Investigators were blinded to experimental groups
for histological analysis and physiological measurements.
Statistical significance is indicated as follows: ∗P < 0:05,
∗∗P < 0:01, and ∗∗∗P < 0:001. NS means no significance.
Data are presented as mean ± standard error.

3. Results

3.1. Establishment and Characterization of an Antenatal
LPS-Induced BPD Model. Considering that antenatal LPS
injection could cause impaired alveolar structure and dys-
regulated vasculature to mimic human BPD features [35],
we established the rat model of BPD by IA injection of
LPS and cesarean delivery. IA LPS lead to 88 ± 3% survival
of rat pups on PN1, and no more pups dead on PN7 and
PN14. The pups’ lungs were collected for analysis on PN1,
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Figure 2: hUCMSC treatment attenuates lung morphology and function in the IA-LPS BPDmodel. (a) The study design represents the IA-LPS
BPD model and hUCMSC treatment. Transtracheal administration of hUCMSCs was conducted on PN7. Study end points on PN14 involved
analysis of lung morphology, function, and right ventricular hypertrophy (RVH). (b) Representative lung sections stained with H&E on PN14,
scale bar = 200μm. (c) Quantification of MLI (N = 5, ANOVA, ∗∗∗P < 0:001). (d) Quantification of radial alveolar counts (RAC) (N = 5,
ANOVA, ∗∗∗P < 0:001). (e) Comparison of pups’ weight among four groups (N = 5, ANOVA). (f) Representative immunofluorescence
images of vWF staining in the lung on PN14 in each group, scale bar = 100μm. (g) Quantification of vWF-positive vessels (<100μm) (N = 5,
ANOVA, ∗∗P < 0:01 and ∗∗∗P < 0:001). (h) Lung resistance (LR) and (i) dynamic compliance (Cdyn) were determined from anesthetized
and ventilated pups (N = 5, ANOVA, ∗∗∗P < 0:001). (j) The right ventricular index was determined by RV/LV + S to measure RVH (N = 5,
ANOVA, ∗∗∗P < 0:001).
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PN7, and PN14 (Figure 1(a)). Compared with the NS control
(NS Ctrl), the lung structures in the LPS group had typical
characteristics of alveolar simplification (Figure 1(b)). The
MLI in antenatal LPS without hyperoxia on PN7 and PN14
was significantly higher than that in the NS group, although
without statistical difference on PN1 (Figure 1(c)). The
secondary septa were significantly reduced in the LPS group
compared with the NS group on PN1, PN7, and PN14
(Figure 1(d)), demonstrating the successful establishment of
the rat model of BPD induced by intra-amniotic injections
of LPS (IA-LPS BPD model).

3.2. hUCMSC Treatment Improves Lung Development and
Alleviates RVH in IA-LPS BPD Model Rats. Given that there
is currently no report on the effects of hUCMSCs on IA-LPS
BPD model, we first examined the effect of hUCMSCs on the
antenatal rat model of BPD induced by antenatal LPS. The
pups received hUCMSCs on PN7 by transtracheal adminis-
tration (Figure 2(a)). We found that compared with the rats

exposed to LPS alone, the lung development was improved
on PN14, the MLI was significantly decreased, and the
RAC was increased by hUCMSC treatment (Figures 2(b)–
2(d)). Although all the groups had the same birth weight,
rats exposed to LPS had a slow weight gain, but there was
a catch-up growth period after transtracheal administration
of hUCMSCs (Figure 2(e)). Small vessels (<100μm) in rats
exposed to LPS were significantly less abundant than those
in the NS group; however, the abundance of small vessels
increased after hUCMSC treatment, compared with the LPS
group (Figures 2(f) and 2(g)). The pulmonary function results
showed that hUCMSC treatment reduced lung resistance,
increased lung compliance, and decreased RVH as compared
with rats exposed to LPS alone (Figures 2(h)–2(j)).

3.3. Characterization of hUCMSC-Derived MVs. Consider-
ing that MVs derived from hUCMSCs have multiple regen-
erative roles in skin repair and other diseases [31, 32], we
isolated MVs from hUCMSCs by ultracentrifugation and
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Figure 3: Characterization of hUCMSC-derived MVs. (a) Representative images of transmission electron microscopy (TEM) for MVs
derived from hUCMSCs, scale bar = 500 nm. (b) Detection of MV-specific biomarkers for both analyzed MVs and whole-cell lysates by
western blot. (c) Nanoparticle tracking analysis (NTA) measurement of the mean size of MVs. (d) Representative images showing the
colocalization of phalloidin immunostaining (green) with internalized MVs (red), scale bar = 50μm. (e) MLE-12 viability after exposure
to different concentrations of LPS in vitro (N = 3, ANOVA, ∗P < 0:05 and ∗∗∗P < 0:001).
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characterized them by electron microscope observation and
nanosizer measurement. According to scanning electron
microscopy, the MVs showed a double membrane structure
(Figure 3(a)), and WB confirmed the expression of MV
markers, CD9, CD63, CD81, TSG101, and Alix (Figure 3(b)).
Nanosight analysis showed that the diameter of the MVs
ranged from 100 to 900nm, with the main peak at 255nm
(Figure 3(c)). The total protein content harvested from
200mL supernatant was 165:2 ± 5:7μg (data not shown). Sub-
sequently, we determined whether MVs can be internalized
into the MLE-12 cells (an AT2 cell line). MVs labeled with
red fluorescence PKH26 colocalized with the green fluores-
cence signals of cytoskeleton stained with phalloidin, indicating
the internalization of MVs into the AT2 cells (Figure 3(d)). We
then performedmimic infection injury in vitro using LPS in the
following experiments, so the effects of a series of differing LPS
concentrations on MLE-12 cells were evaluated. Treatment
with LPS at a concentration higher than 160μg/mL for 48
hours obviously inhibited AT2 proliferation (Figure 3(e)).
Therefore, 80μg/mL of LPS was selected for the subsequent
in vitro experiments.

3.4. MVs Improve Lung Structure and Prevent Loss of Lung
Function in IA-LPS BPD Model. After characterization of
MVs, we next addressed the therapeutic effects of MVs in
the IA-LPS BPD model, to determine whether MVs partly
mediated the effects of hUCMSCs. Firstly, to determine the

optimal MV concentration, we performed a series of dose–
response experiments in vivo. MLI measurement on PN14
revealed that lung recovery was dependent on the concentra-
tion of the MVs administrated on PN7, and the peak was
20μg. Since there was no significant difference in MLI
among 20μg, 40μg, or 80μg of MVs, we selected 20μg of
MVs for the following in vivo experiments (Figures 4(a)
and 4(b)). In the rat lung tissue, antenatal LPS-induced
impaired alveolarization was significantly enhanced by
transtracheal administration of MVs (Figure 5(a)). LPS
exposure increased MLI and decreased RAC, but the effects
were reverted after MV treatment (Figures 5(b) and 5(c)).
Besides, there was a catch-up growth after transtracheal
administration of MVs (Figure 5(d)). In terms of angiogen-
esis, however, MVs did not normalize the aberrant loss of
small vessels caused by LPS (Figures 5(e) and 5(f)). MV
treatment prevented loss of lung function, as shown by
reduced lung resistance and increased lung compliance
(Figures 5(g) and 5(h)). Increased RVH induced by LPS
was also reversed by MVs (Figure 5(i)).

3.5. Duration and Localization of MVs In Vivo. After
addressing the therapeutic effects of MVs in the IA-LPS
BPD model, we proceeded to examine the distribution of
transplanted MVs in the lung tissue in vivo. Firstly, MVs
were labeled with DiO green fluorescence and examined by
immunofluorescence staining at different time points. The
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Figure 4: MVs improve antenatal LPS-induced lung injury in a dose-dependent manner. (a) Representative lung sections stained with H&E
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Figure 5: Continued.
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DiO green fluorescence gradually increased and reached a
maximum at 48 hours postadministration, then gradually
decreased, and finally disappeared after 96 hours (Fig. S1).
Then, colocalization of DiO green fluorescence with various
lung cell markers was examined by immunofluorescence
staining at 48 hours (Figure 6(a)). DiO green fluorescence
most frequently colocalized with SP-C-positive AT2
(18.2%) and was also identified with AQP-1-positive AT1
(4.5%), CD31-positive endothelial cells (7.6%), Iba-1-
positive alveolar macrophages (14.0%), α-smooth muscle
actin-positive smooth muscle cells (2.4%), and NG-2-
positive pericytes (2.4%) (Figure 6(b)).

3.6. MVs Increase the Number of AT2 Cells and Attenuate
Lung Inflammation in IA-LPS BPD Model Rats. Given that
AT2 and lung macrophages were the two major cell types
responsible for the uptake of MVs in vivo, we next investi-
gated the effects of MVs on these two target cells. For AT2
cells, immunofluorescence staining of SP-C showed that
LPS exposure decreased SP-C(+) cells, whereas MVs
restored the number of SP-C(+) cells (Figures 7(a) and
7(b)). We also determined the protein level of SP-C, the
major surfactant synthetized by AT2 cells. Antenatal LPS
exposure decreased the expression of SP-C, which was par-
tially reversed by MV treatment (Figures 7(c) and 7(d)).
SP-A1, SP-B, and SP-D, the other three surfactants synthe-
tized by AT2 cells, were also determined by WB; we found
that they also decreased after LPS exposure, but they were
not restored by MV treatment (Fig. S2).

Then, macrophage infiltration in the lung tissue was
measured by Iba-1 immunofluorescence staining. Antenatal
LPS exposure induced significant macrophage infiltration
in the rat lung tissue (Fig. S3). In the treatment group,
MVs significantly reduced macrophage infiltration in com-
parison with the LPS group (Fig. S3). IL-6 (proinflammatory
cytokine) and IL-10 (anti-inflammatory cytokine), major

inflammation mediators released by macrophages, were mea-
sured by ELISA. The concentration of IL-6 was increased, while
IL-10 was decreased in lung homogenates of LPS-exposed rats,
and these responses were significantly reversed by transtracheal
administration of MVs (Figures 7(e) and 7(f)). Taken together,
MVs from hUCMSCs have anti-inflammatory effects on the
IA-LPS BPD model in vivo.

3.7. MVs Improve MLE-12 Cell Proliferation following LPS-
Induced Injury In Vitro. Given that AT2 cells are the stem
cells in the newborn lung and play a role in the alveolar
structure involved in pulmonary respiratory function [36],
we further investigated the effects of MVs on MLE-12 cells
in vitro. MLE-12 cells were treated by LPS with or without
MVs for 48 hours. Then, they were evaluated by Ki-67 and
Annexin V/PI staining. Ki-67 staining showed that LPS
exposure significantly reduced the proliferation rate of
MLE-12 cells, which was improved to normal level by MV
treatment (Figures 8(a) and 8(b)). The flow cytometry anal-
ysis showed that LPS did not alter the apoptotic rate of
MLE-12 cells (data not shown). The CCK-8 assay results
further illustrated that MV treatment improved the LPS-
induced decrease in MLE-12 cells’ survival (Figure 8(c)).

3.8. MVs Improve Alveolarization and Attenuate Lung
Inflammation Associated with the PTEN/AKT and the
MAPK Pathways. Subsequently, we explored the specific
mechanism by which MVs improve alveolarization and
attenuate lung inflammation in the IA-LPS BPD rat model.
The level of PTEN significantly increased, and p-AKT
expression remarkably decreased in rat lungs from the
IA-LPS BPD rats compared with the control group. MV
treatment reversed the protein levels of both PTEN and
p-AKT (Figures 9(a) and 9(b)). Meanwhile, the results of
WB showed that LPS exposure increased the expression levels
of p-p38, p-JNK, and p-ERK, while MV treatment partially
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Figure 5: MVs improve lung development and function in the IA-LPS BPDmodel. (a) Representative lung sections stained with H&E on PN14,
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suppressed p-p38, p-JNK, and p-ERK expression after antena-
tal LPS exposure (Figures 9(c) and 9(d)). However, the expres-
sion of VEGF-A suppressed by antenatal LPS exposure was
not restored by MV administration (Figures 9(e) and 9(f)).

4. Discussion

Although there is not yet effective treatment for BPD, the
advent of MSCs provides new hope for BPD treatment.
Many preclinical studies have demonstrated that MSCs
and small extracellular vesicles (or exosomes) have a protec-
tive effect on lung injury on BPD [21, 28, 37, 38]. Further-
more, most clinical trials of MSCs in BPD are at a phase I
stage, demonstrating the safety of stem cell therapy in
human. However, the therapeutic effects and function of
large extracellular vesicles (or MVs) derived from MSCs on
BPD are poorly understood.

In this study, we showed that the MVs derived from
hUCMSCs enhanced alveolar development and alleviated
lung inflammation in the IA-LPS BPD model, and this pro-
tection was associated with the PTEN/AKT pathway and the

MAPK pathway. These findings also suggest that MVs are
key paracrine therapeutic mediators of hUCMSCs and show
potential for application in safe and effective cell-free ther-
apy for BPD associated with antenatal factors.

Many studies have shown that antenatal factors are
strongly associated with susceptibility to BPD. However,
the most commonly used animal model for BPD research
involves exposure to postnatal hyperoxia; thus, it cannot
reflect antenatal factors that influence BPD. Here, we used
a rat model of BPD induced by intra-amniotic injections of
LPS; LPS induced impaired alveolarization and diminished
lung function, particularly mimicking BPD of preterm
infants in humans [39, 40].

Functions of EVs depend on their ability to interact with
recipient cells to deliver their contents (proteins, lipids, and
RNAs) [41]. Our data showed that MVs were mainly upta-
ken by AT2 cells (18.2%) and macrophages (14.0%) and
were rarely observed in vascular endothelial cells (7.6%)
and vascular pericytes (2.4%). However, our findings are
not fully consistent with the previous report that exosomes
were mostly uptaken by vascular pericytes (22.7%), AT2 cells
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Figure 7: Effect of MVs on AT2 cells and macrophage-related inflammatory factors in vivo. (a) Representative immunofluorescence images
of SP-C (red) staining in lung, scale bar = 100 μm. (b) Quantification of SP-C-positive cells in each group (N = 5, ANOVA, ∗∗∗P < 0:001). (c)
Western blot detection of protein levels of SP-C in each group. (d) Densitometric analysis was used to quantify the protein levels of SP-C
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(19.5%), and macrophages (21.3%) [37]. The difference in
the cellular uptake ability of exosomes and MVs in vascular
pericytes might be related to the difference in the physico-
chemical properties of these two types of EVs, such as origin,
size, morphology, and buoyant density [42].

AT2 cells have critical secretory and regenerative roles in
the alveoli to maintain lung homeostasis [36]. Our data
showed that MVs diminished most of the effects of antenatal
LPS-injury on AT2, suggesting similar therapeutic effects to
those of exosomes on AT2 in hyperoxia-induced BPD model
[21]. Additionally, there are many other lung stem cells,
such as bronchioloalveolar stem cells, Clara cells, basal cells,
and distal airway stem cells [43, 44]. One study has reported
that MSCs increase bronchioloalveolar stem cells in
hyperoxia-induced bronchopulmonary dysplasia [45]. Fur-
ther studies should investigate the effects of MVs on differ-
ent lung stem cells.

As another major target cell of MVs, lung macrophages
are dominant immune cells in the inflammation [46]. Our
results showed that antenatal LPS induced macrophage infil-
tration, and this response was restored by MV treatment,
which decreased the proinflammatory factor IL-6 and
increased the anti-inflammatory factor IL-10 to normal
level. Several studies have noted that pulmonary macro-
phages occupy an “M2-like” phenotype, which can persist
for several months in BPD [29, 47]. Due to the anti-
inflammatory action of MVs, further studies should examine
whether MVs could modulate the dysregulated macrophage
phenotype in an experimental BPD model.

It has been shown that the proliferation of AT2 cells in
lung injury is linked to abnormal expression of PTEN/
AKT [48]. As a major proliferation-linked signaling path-
way, the PTEN/AKT pathway was examined in our study.
Our data showed that MV treatment reversed the protein
levels of PTEN and p-AKT, suggesting that the AT2 cell pro-
liferation promoted by MVs may be related to the PTEN/
AKT pathway.

Furthermore, previous studies have shown that the ante-
natal exposure of preterm infants to infection and inflamma-
tion may result in adverse fetal consequences, such as BPD
[49]. Activation of MAPK signaling is important in the
response to inflammation [50]. The signaling mediators of
MAPK include ERKs, JNKs, and p38 MAPK [51]; however,
their role in antenatal LPS-induced lung injuries has not
been identified. Our results showed that the expression levels
of p-p38, p-JNK, and p-ERK were significantly increased but
were suppressed by MV administration. These data sug-
gested that MVs alleviate LPS-induced lung injuries by a
mechanism associated with the suppressed MAPK pathway.
In addition, MVs were ineffective at promoting the expres-
sion of VEGF-A, which might be the reason why MVs did
not restore pulmonary microvasculature; however, this
aspect deserves further investigation.

Since exosomes received most of the attention, the effect
of MVs is poorly understood before. Our results show that
MVs have the potential to exert both proinflammatory and
proproliferation actions, providing a detailed framework
for the successful use of MVs as a strategy for BPD
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Figure 8: MVs improve MLE-12 cell proliferation following LPS-induced injury. (a) Representative immunofluorescence images stained by
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Figure 9: MVs activate the PTEN/p-AKT pathway and suppress the MAPK pathway in the IA-LPS BPD model. (a) The protein levels of
PTEN, p-AKT at S473, and AKT were evaluated by western blotting on lung homogenates on PN14. (b) Densitometric analysis was used to
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treatment. These interesting results deserve more research
efforts in the future. Our study also has the potentiality to
be applied on other repairing strategies with novel biomedi-
cal materials, like the Phosphorene or the Borophene [52].

Although encouraged by these findings, we acknowledge
several limitations of this study. First, the concentration and
duration of LPS in amniotic sac, as well as intake of LPS in
the lung, were not examined. Second, we only administered
MVs in IA-LPS BPD model rats. Other studies have shown
that exosomes have similar therapeutic effects as MSCs
[53]. Future studies should consider comparing the effects
of different EV subsets on experimental BPD models in a
more direct way. Indeed, a single active ingredient has not
been further investigated in this study. Rather, MVs likely
provide an orchestra of bioactive components that function
synergistically to play a therapeutic role. Furthermore,
because IA-LPS BPD model focused on antenatal factors,
the findings of this study need to be interpreted in the con-
text of the experimental model.

5. Conclusion

In conclusion, we demonstrated that MVs derived from
hUCMSCs restored lung architecture and function and
improved RVH in the IA-LPS BPD model by promoting
AT2 cell proliferation and attenuating lung inflammation.
The underlying mechanism was associated with the PTEN/
AKT pathway and the MAPK pathway. Our findings may
offer a new perspective for the treatment of BPD by MVs.
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Figure S1: in vivo imaging of MVs in the IA-LPS BPD
model. (A) Representative fluorescence images of IA-LPS
BPD rats after treatment with MVs at selected time points,
scale bar = 10μm. (B) The number of DiO-positive cells in
the lungs subjected to transtracheal injection of MVs at

selected time intervals (N = 5, ANOVA, NS: not significant,
∗∗∗P < 0:001). Figure S2: effect of MVs on pulmonary
surfactants. (A) Western blot detection of protein levels of
SP-A1, SP-B, and SP-D in each group. (B) Densitometric
analysis was used to quantify the protein levels of SP-A1,
SP-B, and SP-D in each group (N = 3, ANOVA, NS: not sig-
nificant, ∗∗∗P < 0:001). Figure S3: effect of MVs on lung
macrophage infiltration. (A) Representative immunofluores-
cence images of Iba-1 (red) staining in lung tissue. (B)
Quantification of Iba-1-positive cells in each group (N = 5,
ANOVA, ∗∗∗P < 0:001). (Supplementary Materials)
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