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Abstract: Fine-scale land use and land cover (LULC) data in a mining area are helpful for the smart
supervision of mining activities. However, the complex landscape of open-pit mining areas severely
restricts the classification accuracy. Although deep learning (DL) algorithms have the ability to
extract informative features, they require large amounts of sample data. As a result, the design of
more interpretable DL models with lower sample demand is highly important. In this study, a novel
multi-level output-based deep belief network (DBN-ML) model was developed based on Ziyuan-3
imagery, which was applied for fine classification in an open-pit mine area of Wuhan City. First, the
last DBN layer was used to output fine-scale land cover types. Then, one of the front DBN layers
outputted the first-level land cover types. The coarse classification was easier and fewer DBN layers
were sufficient. Finally, these two losses were weighted to optimize the DBN-ML model. As the
first-level class provided a larger amount of additional sample data with no extra cost, the multi-level
output strategy enhanced the robustness of the DBN-ML model. The proposed model produces an
overall accuracy of 95.10% and an F1-score of 95.07%, outperforming some other models.

Keywords: remote sensing; deep learning; fine-scale classification; deep belief networks; open-pit
mining; Ziyuan-3 imagery

1. Introduction

It is well known that land use and land cover mapping and its consequences for
eco-environmental impact on Earth has been increasingly critical for sustainable develop-
ment. Open-pit mining is a high-intensity human activity, which significantly impacts a
mining area and its surrounding environment [1–3]. The mining area and surrounding
cropland, forestland, and other surface environmental elements are considered to constitute
a complex geological environment. In these areas, a series of geological environmental
problems may occur [4,5]. For example, they can cause land degradation [1–5], groundwa-
ter pollution, decreased vegetation cover, soil pollution, and geological disasters [6–8]. In
general, the land use and land cover (LULC) related to open-pit mining is the key in these
complex environment areas. In open-pit mining areas, the land use and land cover (LULC)
classification represents an important basis for environmental assessment and protection, as
well as ground deformation monitoring [6,9–11]. Owing to issues and challenges related to
LULC [12,13] and the wide application of LULC data as the basic input in interdisciplinary
studies [14], LULC has been a popular research target in high-resolution remote sensing
techniques [14,15]. However, the complexity and diversity of terrain characteristics in
open-pit mining areas, such as enhanced three-dimensional (3-D) terrain features [16,17]
and intense spatiotemporal variability [5,18] reduce the fine LULC (FLULC) accuracy,
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limiting the application of remote sensing technology in the geo-environmental monitoring
of mining areas.

At present, multi-source remote sensing data fusion is among the most studied meth-
ods of image interpretation in remote sensing [19]. Comparisons of mining area classifica-
tion results based on spectral information with integrated digital elevation model (DEM)
and spectral information data reveal superior results from the latter [20]. Machine-learning
algorithms (MLAs) accommodate varied feature sets, with algorithms, such as the support
vector machine (SVM) [21–24] and random forest (RF) [22], widely employed for LULC
classification in complex mining areas [18,25–28]. Chen et al. [29] highlighted the impor-
tance of obtaining remote sensing features and developing an effective classification model
for fine LULC classification. Li et al. [26] carried out fine LULC classification in open-pit
mining areas, revealing that MLAs can provide improved classification performance. Qu
et al. [30] improved the classification accuracy by extracting the soil characteristics and
phenological characteristics of the auxiliary dataset from the Google Earth Engine. Yao
et al. [31] studied the advantages of using continuous multi-angle remote sensing data for
classification, attempting to make use of the complementarity of multi-angle information.
Zhang et al. [32] proposed a weak to strong supervised learning framework for LULC
classification to solve the absence of well-labeled and abundant pixel-level annotations.
Tan et al. [33] considered the appropriate application of large-scale spectral clustering to
conform to substantial land and complex terrain characteristics. Li et al. [34] predicted the
LULC using the integrated logistic-cellular automata-Markov chain model. Su et al. [35]
combined pixel swapping and simulated annealing to obtain spatial information at the sub-
pixel level for land cover mapping. Zhao et al. [36] used the relative utility of each spectral
band and the spectrally weighted kernel to improve the classification performance. MLAs
perform well in remote sensing classification by combining various effective features.

Furthermore, deep learning algorithms are increasingly popular in remote sensing clas-
sification because depth and discriminating features can be extracted layer-by-layer [37,38].
Zhang et al. [39] proposed a scale sequence joint deep learning method by incorporat-
ing a sequence of scales in a single unified modeling framework for LULC classification.
Chen et al. [37] proposed a novel attention-driven context encoding network method for
coastal land cover classification from high-resolution remote sensing images. The deep
belief network (DBN), involving unsupervised learning in feature extraction, is among the
most commonly utilized algorithms, with great successes achieved in image recognition,
information retrieval, and natural language processing, among others [40,41]. However,
the demand for labeled data remains low. Nevertheless, DBN and DBN-based frame-
works have been used for selecting remote sensing scene classification features [42]. Zhao
et al. [43], for example, constructed an unsupervised feature learning method to classify
synthetic aperture radar imagery using a DBN and an ensemble learning algorithm. Mean-
while, Ayhan and Kwan [44] compared the use of a DBN algorithm with those of the
spectral angle mapper and SVM. In addition, Chen et al. [45] proposed spatial, spectral,
and spectral–spatial feature-based DBN paradigms for hyperspectral imagery classification,
integrating the DBN and logistic regression (LR) to produce a DBN-LR algorithm [45,46].
Chen et al. [47] applied a DBN model for remote sensing image classification. Furthermore,
Zhong et al. [48] proposed a model by integrating the DBN and conditional random field for
hyperspectral image classification. Moreover, Qin et al. [49] constructed a model combining
the restricted Boltzmann machine (RBM) and an adaptive boosting (AdaBoost) method.
He et al. [50] also integrated a deep stacking network (DSN), which is similar to the DBN,
with the LR to create a DSN-LR algorithm. The DBN has been widely applied in the remote
sensing field. However, few studies have focused on the fine classification of the complex
LULC in open-pit mining areas based on the DBN. Although the DBN-based multimodal
and multi-model deep fusion method using training, validation, and test sets based on
spatial autocorrelation have yielded remarkable performance [51], further strategies for
improving fine classification are required.
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The main objective of this study was to construct a multi-level output-based deep
belief network (DBN-ML) model for the fine classification of complex environments using
Ziyuan-3 (ZY-3) TMS data. The contributions of this study are as follows: (1) the last
DBN layer was used to output fine-scale land cover types; (2) one of the front DBN layers
outputted the first-level land cover types. The coarse classification was easier and fewer
DBN layers were sufficient. (3) These two losses were weighted to optimize the DBN-ML
model. As the first-level class provided a larger amount of additional sample data with no
extra cost, the multi-level output strategy enhanced the robustness of the DBN-ML model.
This study can aid in the effective supervision of mining activities at local or regional scales.

2. Methods
2.1. Study Area and Remote Sensing Data

The study area, covering an area of 109.4 km2, is in the Jiangxia district of Wuhan City
in Hubei province, China. This area exhibits the typical characteristics of a mining and
agricultural area, with a large open-pit mining area known as the Wulongquan mining area.
Currently, some mines in the study area are non-operational, but several mines remain
operational. The activities in the operational areas mainly involve mining, beneficiation,
and ore-washing.

The ZY-3 is an independent and civilian high-resolution stereo mapping satellite
launched by China on January 9, 2012. The satellite captured panchromatic (PAN) and
multispectral images. The multispectral imagery resolution was 5.8 m, the nadir PAN
image was 2.1 m, and the forward and backward images were 3.5 m. The forward and
backward images at 3.5 m were used to generate the DEM data at 10 m. The spectral
resolutions are as follows: Blue (450–520 nm), Green (520–590 nm), Red (630–690 nm),
NIR (770–890 nm), and PAN (450–800 nm). The ZY-3 imagery used are level 1B products
captured on 20 June 2012; Figure 1 displays the image of the study area.

Figure 1. Image showing the study area and field sampling locations (revised from [51]).

According to the mining environment monitoring requirements in China, the LULC
types in the study area were divided into first-level and second-level categories. The seven
first-level categories are road, water, arable land, urban and rural residence, construction
land, forest land, unused land, and mine objects. The 20 secondary categories obtained
from a previous study [26] are presented in Table 1.
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Table 1. Summary of the land cover types involved in this study and their description from [26].

First Level Type Second Level Type Description

Cropland

Paddy field Adequate water supply for cultivation of aquatic crops.

Vegetable and fruit greenhouse High surface albedo with regular rectangular shapes.

Dry land On the land water resources for crops mainly from
natural precipitation.

Fallow land No crops growing at the present stage, and for the study
area, the rapeseed and wheat had just been harvested.

Forestland

Woodland

Includes timber stands, economic forests, and
shelterbelts that have high chlorophyll content and are
dark red in the false color image (R—NIR *, G—Red,

B—Green).

Shrub forest Having multiple stems and shorter height, generally less
than 2 m tall, and is bright red in the false color image.

Forest under stress

Under the influence of surface mining development,
around the surface-mined land, having large amounts of
deposited mineral dust, has poor growth, and is grayish
in the true color image (R—Red, G—Green, B—Blue).

Nursery and orchard
Having a rectangular shape like cropland dotted by

vegetation cover and exposed soil and is black in the
true color image.

Water
Pond and stream Including many fish ponds with regular rectangular

shapes.

Mine pit lake In particular, lakes created during and after mining,
normally with irregular shapes.

Road

Black road Asphalt highways.

White road Cement roads.

Gray road Dirt roads.

Urban and rural residential land

White roof building Urban and town areas.

Red roof building Rural land.

Blue roof building Land used for industrial parks.

Bare land Exposed rock/soil Exposed land with little vegetation.

Surface-mined land

Opencast stope Having mine pit lakes and spiral roads.

Mineral processing land Characterized by the linear mineral processing facilities
and highly reflective rubble.

Dumping site Located around the stope.

* NIR: near-infrared.

2.2. DBN-Based Multi-Level Classification Model Construction

The DBN was constructed based on RBM stacking [41], comprising Boltzmann ma-
chines and a back propagation network layer. For each limited Boltzmann machine, the
training was unsupervised, whereas fine tuning of the full network by the completed
DBN was supervised. The DBN enables unsupervised training of each RBM layer and
mapping of feature vectors in different spaces, with some achievements in remote sensing
classification. When the number of RBM layers and nodes in DBN are smaller, the model
fitting ability is insufficient and the classification accuracy are not good. Thus, the DBN
requires a certain network depth (more RBM layers and more nodes). However, when the
DBN network is deeper, the gradient disappears easily during the training process, which
makes it difficult to adjust the parameters of the first few layers of the network, thereby
restricting the further improvement of the classification accuracy.
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However, in open-pit mining areas, the LULC types of the ground objects are complex,
with significantly different spatial geometric characteristics for the ground objects and
discontinuous image patches. These complexities often cause over-fitting, thereby limiting
the generalization performance of a DBN model [52]. As many scale features for the
ground surface objects exist, multi-scale feature extraction can be used to enhance the
classification accuracy. Multi-scale features extraction for complex surface conditions has
been demonstrated to produce better results when extracting different sizes of shallow
features (texture and filtering, among others) from remote sensing imagery of mining areas.

To solve the issue, we constructed a DBN-ML involving the structure displayed in
Figure 2. The main idea of the model is as follows. The DBN-ML may output two-level
classification, with the output set at the last layer as a second-level classification (i.e., the
second level output) and the output of one layer from the first layer to the penultimate
layer as a first-level classification (i.e., the first level output). The classification accuracy
of the first-level classification is here less than that of the second-level classification. The
first-level classification is a high-level category of ground objects, such as cultivated land,
forest, etc., and the second-level classification is the low-level category of ground objects,
such as dry land and paddy field in cultivated land. The loss of each of the outputs is
calculated based on each of the outputs and the corresponding labels of the outputs, and
two outputs will result in two losses. Through provision of two outputs, in which one of
the outputs is set in the previous layers of the network (the first layer to the penultimate
layer) to introduce the losses of the previous layers into the backpropagation such that
the backpropagation may take into account the learning status of the parameters of the
previous layers of the network; when the learning of the parameters of the previous layers
is rough, the output losses of the previous layers will be larger, and the total loss will also
increase after weighting accordingly, so that the phenomenon of gradient disappearance
is not easy to occur in the backpropagation, and the network parameters of the previous
layers are adjusted accordingly, thereby improving the classification accuracy.

Figure 2. Summary of the multi-level output classification based on the deep belief network (DBN) model proposed in
this study.

The configuration and all details are as follows. First, low-level features, including the
multi-scale topographic and spatial-spectral features, were obtained from the ZY-3 data.
Second, multiple features were considered as input for the DBN. The DBN model comprises
five layers RBMs and the output results were processed using the SoftMax function.

The main innovations of this method are as follows: (1) for fine LULC, the first-
and second-level land covers are set as the outputs of the DBN-based model; (2) the
corresponding losses are weighted for optimizing the model; and (3) only the previous
DBN layer is employed to generate the first-level output.

Besides, single output results based on DBN models and MLAs from our previous
study [51] were used for comparison.
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2.3. Remote Sensing Features, Training, Validation, and Test Sets

First, multi-source and multi-scale shallow features extracted from products of the
ZY-3 imagery were categorized into six types [26]: 1. multiple spectral bands; 2. plant
cover; 3. multivariate principal components; 4. multi-scale filtering features; 5. multi-scale
texture features; and 6. multiple terrain features, amounting to 106 features. A summary of
the low-level features used in this study can be found in literature [26].

Spatially-independent test sets were employed to assess the accuracy [51]. From the
20 second-level feature types in the study area, 2000 sampling points (pixels) were selected
for the training set, 500 for the verification set, and 500 for the test set for each category. The
fractions representing each set and the associated data polygons are presented in Table 2.
The data polygons [51] were constructed based on the following: (1) the polygons in Li
et al. [26] and (2) the addition of polygons for the mine pit pond, red roof, dark road, and
blue roof classes using the visual interpretation approach.

Table 2. Number and area (km2) of data polygons (DPs) and fractions (%) of the training, validation, and test sets. Fraction 1:
fraction of pixels in the training set and DPs; Fraction 2: fraction of pixels in the validation (test) set and DPs; Fraction 3:
fraction of pixels in the three sets and DPs.

Types Number of DPs Area of DPs (km2) Training % Validation (Test) % Fraction 3

Paddy 43 0.14 6.41 1.60 9.61
Greenhouse 17 0.05 16.89 4.22 25.33

Green dry land 52 0.15 5.92 1.48 8.87
Fallow land 185 0.54 1.63 0.41 2.45
Woodland 57 0.54 1.63 0.41 2.44
Shrubbery 65 0.54 1.63 0.41 2.45

Coerced forest 22 0.13 6.64 1.66 9.96
Nursery 67 0.19 4.74 1.18 7.11

Pond and stream 202 0.91 0.97 0.24 1.45
Mine pit pond 33 0.05 18.40 4.60 27.60

Dark road 9 0.06 15.78 3.94 23.66
Bright road 67 0.06 14.81 3.70 22.21

Light gray road 40 0.13 6.64 1.66 9.96
Bright roof 250 0.45 1.94 0.49 2.91

Red roof 149 0.05 17.39 4.35 26.09
Blue roof 46 0.05 19.07 4.77 28.61

Bare surface 35 0.18 5.03 1.26 7.55
Open pit 44 0.13 6.56 1.64 9.84

Ore processing site 77 0.13 6.63 1.66 9.95
Dumping ground 54 0.07 13.04 3.26 19.57

2.4. Comparison of the Deep Learning Feature Algorithm

To further prove the performance of the DBN-ML algorithm, our previous DBN re-
lated studies [51] and a novel deformable convolutional neural network (DCNN) [53]
were introduced as a comparison. The traditional convolutional neural network (CNN)
itself has a rich feature-expression and learning ability, which achieves good effect on
mapping rice paddies in complex landscapes with CNN [54]. However, owing to the fixed
geometric transformation ability in its module, it has limitations in adapting to different
geometric features. Hence, when the network performs fine classification under complex
surface conditions, the performance of the model is limited. In the computer vision field,
researchers from the Visual Computer Group of Microsoft Asia Research Institute first
introduced the ability to learn spatial geometric deformation in CNNs in 2017 [53], success-
fully performing semantic segmentation and target recognition. The DCNN have recently
been demonstrated to be a powerful tool for hyperspectral image (HSI) classification [28].
Therefore, we not only used the traditional CNN (popular VGG) to perform comparative
experiments, but we also added the DCNN, which replaces convolution in the VGG with
deformable convolution.
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2.5. Accuracy Evaluation Criteria

In this study, the overall accuracy (OA), kappa coefficient, and F1-score were used to
characterize the model quality. In addition, the precision, recall, and F1-measure of each
category were analyzed to evaluate the DBN-ML model.

3. Results and Discussion
3.1. Parameter Optimization Results
3.1.1. DBN Basic Parameters

The number of RBM networks, nodes in the hidden layer, activation functions, itera-
tions, and dropouts, among others, affect the performance of the DBN. The main parameter
optimization results from our previous study [51] were directly employed in this study.
This involved the parameter combination of five RBMs with 1500 nodes in each layer while
the other parameters were set as follows: sigmoid activation function, learning rate of
0.0001, 800 iterations, and mini batch size of 512.

3.1.2. Loss Weighting Results

After selecting the basic DBN structure, the weighting scheme of the two output-based
losses were determined. Initially, the fourth layer was used to generate the first-level land
classes while the last layer produced the second-level classes. The weights of the first-level
classes were set as 0.1 to 0.9 while those for the second-level were set from 0.9 to 0.1. Each
combination was run five times. The results show an optimal weight combination of 0.2 for
the first-level classes and 0.8 for the second-level classes, with an OA of 94.85% ± 0.17%.

3.2. Classification Result Analysis and Evaluation
3.2.1. Visual Analysis of the Classification Map of the Entire Study Area

The DBN-ML model was used for predicting the entire study area; Figure 3 shows the
prediction results.

Figure 3. Classification results based on the DBN-ML for the entire study area.

Figure 3 reveals an adequate classification of the overall outline of the ground features,
with better effects on the forestland, water body, arable land, and mining area. The roads are
also well-distinguished in general, although many roads are misclassified as construction
land. The two main reasons that accounting for the prediction issues for the entire study
area are as follows.

(1) As the training, verification, and test set samples were randomly selected, these
samples are not fully independent, which may cause the samples to be less representa-
tive, and

(2) The distributions of the training, verification, and test set samples differ from that
of the entire study area. When training the datasets, the multi-source and multi-scale
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features are normalized, producing an identical number of samples in each category, with
such data characterized by a uniform distribution. In contrast, when predicting the entire
study area, the number of each category differs, with some major differences. As such data
involve a different distribution type, normalization will produce bias.

3.2.2. Classification Accuracy Assessment

Table 3 presents the classification results for each secondary class for a testing dataset
using the DBN-ML model based on parameter adjustment, considering the recall, precision,
and F1-measure as indicators, as well as the average classification accuracy. The DBN-ML
proposed in this study produces notably better results using the test set.

Table 3. Classification results from the multi-level deep belief network model for various feature
categories.

Category Recall Precision F1- Measure

Nursery 92.40% 93.52% 92.96%
Dark road 99.40% 95.39% 97.36%
Open pit 95.80% 95.80% 95.80%
Blue roof 98.40% 98.80% 98.60%

Bright roof 84.00% 91.50% 87.59%
Red roof 94.80% 92.58% 93.68%

Greenhouse 99.00% 98.21% 98.61%
Coerced forest 97.20% 95.67% 96.43%

Fallow land 89.00% 92.90% 90.91%
Light gray road 92.00% 94.07% 93.02%
Green dry land 95.40% 93.53% 94.46%

Bare surface 95.80% 95.23% 95.51%
Woodland 94.60% 95.17% 94.88%

Dumping ground 98.40% 96.85% 97.62%
Shrubbery 90.00% 91.84% 90.91%

Paddy 99.40% 96.88% 98.12%
Mine pit pond 99.60% 99.40% 99.50%

Bright road 97.80% 91.74% 94.68%
Pond and stream 94.00% 97.92% 95.92%

Ore processing site 95.00% 94.81% 94.91%

average 95.10% 95.09% 95.07%

Based on Table 3, the F1-measure for the DBN-ML models generally exceeds 90%,
with only the bright roof showing a value less of than 90%. This low value is due to similar
ground features in the spectrum and the spatial structure of these ground features, causing
erroneous sample classification, especially for secondary features under the same ground
features level. The other 19 features exhibit F1 scores greater than 90%, with the mine water
representing the best, reaching 99%. The output results demonstrate that the boundaries of
the ground objects can be clearly distinguished.

4. Discussion

To reveal the performance of our proposed DBN-ML model, several different models
was compared together in this study. The comparison involves four our previous study [51],
and they are the FS-SVM, DBN-based models (DBN-S, DBN-SVM, and DBN-RF). In addi-
tion, the CNN and DCNN are carried out to compare in this study.

The results of these models were listed in Table 4. In addition, the running time of
was DBN was about 31 min while the running time of the DBN-ML was about 65 min.
Although the running time of the DBN-ML was usually approximately twice that of the
DBN, the overall running time of the DBN-ML was only approximately 1 h. Relative to the
improvement in the classification accuracy, these time costs are completely acceptable.
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Table 4. Comparison of performance results of different models on test datasets.

Model/Evaluation Criteria OA Kappa F1-Score

DBN-ML 95.10% 94.84% 95.07%
FS-SVM 91.77% ± 0.57% 91.34% ± 0.60% 91.75% ± 0.57%
DBN-S 94.23 ± 0.67% 93.93 ± 0.70% 94.22 ± 0.67%

DBN-RF 94.07 ± 0.34% 93.76 ± 0.36% 94.05 ± 0.34%
DBN-SVM 94.74 ± 0.35% 94.46 ± 0.37% 94.72 ± 0.35%

CNN 90.20% ± 1.64% 89.68% ± 1.75% 90.15% ± 1.66%
DCNN 95.02% 94.76% 95.00%

Based on the results, the proposed DBN-ML model outperforms the other models. In
particular, compared with the DBN-S, the model improves the OA by 0.92%. Therefore,
the ML strategy produces better results than the multimodal fusion combining the DBN
and MLAs.

5. Conclusions

To improve the classification performance and enhance the generalization of DBN-
based methods in fine LULC areas, a DBN-ML model was proposed in this study. In
this DBN-ML model, the weight loss associated with the first- and second-level outputs
were combined and the DBN layer used to generate the first-level output was optimized.
The proposed model resulted in an OA of 95.10% and F1-score of 95.07%. Compared
with other DBN- and CNN-related models, our proposed DBN-ML model proves that the
multi-level output-based DBN model has a better classification effect. The classification
accuracy based on the DBN-ML surpasses that reported in our previous study, which
involved the DBN and CNN models. We can therefore conclude the following: (1) the ZY-3
TMS datasets can provide better feature input for a DBN-based model in open-pit mining
areas and (2) the proposed two-level output-base model employed in this study is more
robust, easier to interpret, and improves the fine classification accuracy. Thus, the proposed
model can ensure the effective supervision of mining activities at local and regional scales.
In addition, the proposed model can be used for the fine classification of other complex
geo-environments. In future studies, we will focus on constructing relevant big remote
sensing datasets and transferring to a learning-based model for other mining areas.
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