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Primary cilia as a signaling organelle have garnered recent attention as a regulator of
pancreatic islet function. These rod-like sensors exist on all major islet endocrine cell types
and transduce a variety of external cues, while dysregulation of cilia function contributes to
the development of diabetes. The complex role of islet primary cilia has been examined
using genetic deletion targeting various components of cilia. In this review, we summarize
experimental models for the study of islet cilia and current understanding of mechanisms
of cilia regulation of islet hormone secretion. Consensus from these studies shows that
pancreatic cilia perturbation can cause both endocrine and exocrine defects that are
relevant to human disease. We discuss future research directions that would further
elucidate cilia action in distinct groups of islet cells, including paracrine and juxtacrine
regulation, GPCR signaling, and endocrine-exocrine crosstalk.
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INTRODUCTION

Primary cilia are solitary antenna-like structures that project from the cell bodies of most vertebrate
cells. Cilia serve as crucial signaling organelles that integrate environmental sensing with cellular
functions such as proliferation, differentiation, and energy homeostasis. Defects in primary cilia
cause human disease, including metabolic disorders such as obesity and type 2 diabetes (1–3).
However, the metabolic abnormalities seen in human ciliopathies such as Bardet-Biedl and Alström
syndromes result from the cumulative loss of primary cilia in multiple organ systems (4–7), while
targeted cilia deletion models were required to understand true pancreatic and islet cilia
contribution to metabolic diseases. A number of key experimental mouse models have been
developed in the past two decades, examining pancreatic and metabolic phenotypes associated with
ciliary dysfunction (8–18). As the pancreatic islets are essential for the production of
glucoregulatory hormones, functional studies of islet cilia have focused on b-cells where cilia
appear to play a strong role in insulin secretion. These single-gene knockout mouse models mimic
mutations seen in human ciliopathies and offer new angles to examine b-cell dysfunction in human
diabetes in general. In accord with knockout studies, cilia-related genes have been queried in
diabetes-prone obese mouse strains as well as human subjects with diabetes, showing diabetes-
related changes in cilia gene expression and corresponding perturbations in cell cycle regulation,
highlighting the relevance of islet cilia research to human metabolic disease (19, 20). Here, we
present an update on recent studies of islet cilia using mouse models (Table 1) and discuss the
emerging complexity of ciliary functions in glucose regulation.
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PANCREATIC ISLET CILIA
CLASSIFICATION AND TOPOLOGY

Primary cilia have been identified by electron microscopy (EM)
studies on both pancreatic exocrine and endocrine cells (22–26).
Twomain types of cilia, primary andmotile cilia, are distinguished
by their abundance, ultrastructural configuration, and capacity for
movement. Classic primary cilia are solitary, composed of nine
cylindrical outer microtubule doublets without a central pair (“9
+0”), and considered non-motile. In contrast, motile cilia are
multi-cilia that are generally present in tens to hundreds per cell
and possess central microtubules (“9+2”) as well as other critical
structural motifs including dynein arms, radial spokes, and nexin-
dynein regulatory units that confer motility to the axoneme (27,
28). A third class, nodal cilia, are present in the developing embryo
and possess primary cilia-like structure yet are motile, and their
ciliary movements are required for left-right asymmetry
specification (29). Pancreatic islet primary cilia, like the
monocilia of many other organ systems, are thought to be
Frontiers in Endocrinology | www.frontiersin.org 2
strictly sensory with a classic “9+0” configuration, but anecdotal
findings of non-”9+0”microtubule arrangements from rodent islet
cilia EM studies have challenged this assumption (22–25, 30).
More recently, complete 3D tomography maps of primary cilia
from various cell types have revealed dynamic rearrangements of
ciliary microtubules along the axoneme (31–33), suggesting that
the capture of 9 + 0 or non-9+0 cilia cross-sections may be
sampling-dependent and that both structures may exist within
primary cilia, even within a single cilium. Consistent with these
ultrastructural observations, we have recently reported on motile
properties and non-9+0 configuration of human b-cell primary
cilia, which depend on active dynein-ATP forces and are required
for insulin secretion (34)(preprint on bioRxiv, manuscript in late-
stage review). Together these new evidence preliminarily suggest
that islet primary cilia may possess both sensory and motile
capacity and that both functions may be important to islet
hormone secretion.

b-cells comprise the largest group of endocrine cells in the islets
of Langerhans and display unique cytoarchitectural arrangements
TABLE 1 | Mouse models used in studying pancreatic islet cilia .

Mouse model Pancreas
pathology

Obesity Glucoseregulation Glucagonsecretion Insulinsecretion Somatostatinsecretion References

Whole body
Tg737orpk +/+

Pancreatic mass
↓

Ductal dilation

No - - - - Cano et al.
(2004) (8)

Whole body
Tg737orpk +/+

Acinar fibrosis
Normal islet size

No Fasting serum
glucose ↓

Glucose tolerance ↓

– – – Zhang et al.
(2005) (9)

Whole body
Alms1 KO

Islet hypertrophy Yes Fed & fasting serum
glucose ↑

Glucose tolerance ↓

- Fed serum insulin ↑ - Collin et al.
(2005) (10)
Arsov et al.
(2006) (11)

b-cell-specific
Pdx1-Cre Kif3a
KO/cKO

Acinar-to-ductal
metaplasia
Lipomatosis
Ductal cysts

Normal islet size

No Normal glucose
tolerance

- - - Cano et al.
(2006) (12)

Whole body
Kif3a cKO

Not evaluated Yes Fasting serum
glucose ↑

- Fed serum insulin ↑ - Davenport et al.
(2007) (14)

Whole body
Rfx3 KO

a-cell mass ↓
b-cell mass ↓
PP cells ↑

Ghrelin cells ↓

No Fasting serum
glucose ↑

Glucose tolerance ↓

- ex vivo GSIS ↓ - Ait-Lounis et al.
(2007) (13)

b-cell-specific
Pdx1-Cre LKB1
cKO

b-cell size ↑
Altered b-cell

polarity

No Normal fed & fasting
serum glucose

Glucose tolerance ↑

- ex & in vivo GSIS ↑ - Granot et al.
(2009) (15)

Whole body
Bbs4 KO

Normal islet size Variable Glucose tolerance ↓
Fasting serum
glucose ↑

- Elevated or normal
fasting serum insulin

- Eichers et al.
(2006) (21)
Gerdes et al.
(2014) (16)

b-cell-specific b-cell mass ↓ No Glucose tolerance ↓ - Fasting serum insulin ↓ - Volta et al.
(2019) (17)

Pdx1-Cre IFT88
cKO (bICKO)

ex & in vivo GSIS ↓

b-cell-specific
Ins1-Cre IFT88 KO/
cKO (bCKO)

b-cell mass ↓
d-cell mass ↑

No Fasting serum
glucose ↑

Glucose tolerance ↓

Fed serum glucagon
↑

Glucagon secretion
↑

Fed serum insulin ↓
ex & in vivo GSIS ↓

Somatostatin secretion ↑ Hughes et al.
(2020) (18)
June 2022 | Volume 13
Orpk: Oak ridge polycystic kidney; Alms1: Alstrom syndrome 1; Pdx1: Pancreatic and duodenal homeobox 1; Rfx3: Regulatory factor X3; Kif3a: Kinesin family member 3A; LKB1: Liver
kinase B1; Bbs4: Bardet-Biedl syndrome 4; IFT88: Intraflagellar transport 88; Ins1: Insulin 1; cKO: Conditional knockout; GSIS: Glucose-stimulated insulin secretion
↑, Increase; ↓, Decrease; -, Not evaluated.
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that underlie their function. There exist significant differences in
the cellular composition and arrangements of rodent versus
human islets, but in both species, b-cell polarity and
connectivity are important for insulin secretion. b-cells establish
physical connections with both other b-cells and non-b-cells,
including glucagon-secreting a-cells and somatostatin-secreting
d-cells. Groups of b-cells are often organized in rosette-like
clusters around the islet vasculature, with their bases abutting
the arteriole and the cell vertex pointing to the venous capillaries,
which gives directionality to insulin secretion (35–37). This artery-
to-vein axis helps to establish polarity of the b-cell and defines the
apical, basal, and lateral surfaces of the b-cells as distinct
functional domains (37–39). The primary cilium is preferentially
located on the lateral surface of the b-cell, extending into a luminal
space and toward the vascular apogee (15, 37). This intercellular
lumen contains the elaborate canaliculi system where interstitial
fluid flows, connecting the arterial to the venous blood vessels and
likely representing an important site of glucose uptake by b-cells
(40). It also provides a space for multiple primary cilia from
adjacent cells to potentially interact (37) and form homotypic
(b-b) and heterotypic (b-non-b) cilia connections. Therefore, the
location of primary cilia in this intra-islet canaliculi space is
meaningful to their function as cellular sensors, hormone
regulators, and cell-cell communications devices.
CILIA AND PANCREATIC
ISLET DEVELOPMENT

The intraflagellar transport (IFT) complex is essential for the
assembly and maintenance of all cilia, primary or motile (41). A
key protein component of this complex, IFT88 (also called
polaris, Tg737, and orpk), is localized throughout the ciliary
basal body and axoneme and plays a key role in ciliogenesis by
transporting the building blocks of the ciliary axoneme and
membrane (42, 43). Loss of IFT88 causes missing cilia,
manifesting most saliently as polycystic kidney disease in both
mouse and humans (43, 44). Limited by the early lethality in
whole-body Tg737orpk mouse models, effects of homozygous
IFT88 mutation on the pancreas have been mostly studied
developmentally by histology in embryonic pancreata, showing
reduced cilia number and aberrant cilia architecture, with
simultaneous acini loss and ductal cell proliferation and cyst
formation (8) (Table 1). An endocrine defect was revealed upon
dynamic metabolic testing in young (2-week-old) homozygous
IFT88 mice showing reduced tolerance of both short-term
fasting and acute glucose challenge compared with age-
matched wild-type mice (9). Collectively, these observations in
Tg737orpk mice were the first to link cilia defects to pancreatic
pathology, revealing a role of primary cilia in the development
and maintenance of both exocrine and endocrine compartments
(8, 9).

Primary cilia formation requires transcriptional control, most
prominently by the regulatory factor X (RFX) family proteins.
Among these, RFX3 has important roles in directing the
biogenesis of primary cilia, motile cilia, and nodal cilia, where
Frontiers in Endocrinology | www.frontiersin.org 3
Rfx3-deficient mice exhibit growth retardation and laterality
defects (13, 45–47). In the mouse pancreas, RFX3 expression is
restricted to endocrine cells during embryogenesis and in adult
animals, where it regulates the expression of cilia-related genes
including Dync2li1 and Ift88 (13). Rfx3 inactivation during
pancreatic development causes loss of cilia and altered islet
cellular composition, including smaller islet size with reduced
number of a-, b-, and ghrelin-positive cells and disorganized
cytoarchitecture (13) (Table 1). In adult mice, RFX3-dependent
cilia loss leads to reduced insulin content and secretion, as well as
fasting hyperglycemia and glucose intolerance (13). These
findings implicated a strong role of the ciliogenesis
transcription factor RFX3 in pancreatic islet development and
showed that cilia formation is required for proper endocrine cell
differentiation and function.
TWO HUMAN CILIOPATHIES AND THEIR
MOUSE MODELS

Human ciliopathy syndromes caused by ciliary gene mutations
lead to pleiotropic clinical manifestations, including kidney
disease, retinal degeneration, hearing loss, cognitive
impairment, hypogonadism, and metabolic defects. In
particular, Alström syndrome (ALMS) and Bardet-Biedl
syndrome (BBS), two autosomal recessive disorders, exhibit
prominent metabolic features including accelerated obesity,
insulin resistance, and type 2 diabetes (2, 6, 7). Much of the
genetic basis for both ALMS and BBS has been elucidated, and
animal models have been developed to probe gene-specific
disease mechanisms. ALMS is a monogenic disease strongly
resembling human type 2 diabetes with severe insulin
resistance (4, 7). The ALMS protein is a component of the
human centrosome (48); Alms1 gene-trapped mice form normal
size and number of cilia but exhibit faulty vesicle docking to the
ciliary base and impaired intracellular trafficking (10). These
animals develop metabolic changes including obesity,
hypercholesterolemia, hyperinsulinemia, insulin resistance, and
hyperglycemia. Specific to pancreatic pathology, these mice
exhibit compensatory islet beta cell hyperplasia in response to
insulin resistance and resultant increased demand for insulin
secretion (10) (Table 1). Another ALMS mouse model, the fat
aussie mouse with exon 8 Alms1 deletion, develops spontaneous
diabetes with elevated fasting glucose and glucose intolerance,
where even massive islet hyperplasia cannot produce enough
insulin to match the demand (11). Islet function in these models,
however, was not examined in isolation, independent of the
whole-body metabolic defects, so it remained unclear whether
Alms1-dependent ciliary changes and the diabetes phenotype
seen in rodent models were related to intrinsic b-cell or
islet dysfunction.

In contrast to ALMS, BBS is a genetically heterogeneous
disease that is linked to loss-of-function pathogenic variants in
over 26 causative genes. Many of these genes encode subunits of
the BBSome protein complex, which regulates ciliary cargo
trafficking (49, 50). Examinations of whole-body knockout and
June 2022 | Volume 13 | Article 922983
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knockin mouse models for the genes Bbs1-8 and Bbs10 have
revealed conserved phenotypes of obesity or increased fat mass,
hyperphagia and decreased caloric expenditure, which likely
result from a combination of neuroanatomical changes and
peripheral metabolic organ defects (51–59), in addition to non-
metabolic abnormalities that are not discussed herein. Among
these mouse models, Bbs4-null mice have been most studied for
their metabolic phenotypes, which include abnormal lipid
profiles, liver dysfunction, and defects in glucose regulation
(16, 21). When examined in isolation ex vivo, Bbs4-null islets
show blunted first-phase insulin secretion, suggesting that the
loss of ciliary function produces islet-intrinsic defects (Table 1).
Intriguingly, Bbs4 mice show defects in ciliary targeting of both
the insulin receptor (IR) and of the G protein-coupled receptor
(GPCR) somatostatin receptor 3 (SSTR3) (16, 60), raising the
possibility that, in pancreatic islets, primary cilia may
regulate paracrine or autocrine signaling via locally secreted
hormones such as insulin and somatostatin following glucose
stimulation. These early models demonstrated the complexity of
the potential roles of primary cilia in fine-tuning islet cell
crosstalk which awaited clarification from islet cell-specific cilia
knockout models.
KIF3A AS A REGULATOR OF
PANCREATIC FUNCTION

The KIF3 family of proteins are key subunits of kinesin-II
motors, including KIF3A which is a ciliogenic factor that has a
varied role in islet function. KIF3A heterodimerizes with KIF3B
and 3C to form motors that transport IFT particles along the
anterograde microtubules in cilia and flagella (61). Whole-body
Kif3a null mutant mice exhibit early lethality, randomized left-
right asymmetry, and ciliary morphogenesis defects in
embryonic nodal cilia (62). To examine the role of cilia
function in adult mice, two studies generated global or tissue-
specific inducible Kif3a knockout mice (12, 14) (Table 1).
Tamoxifen-induced loss of whole-body Kif3a in adult mice
led to hyperphagia and increased weight gain, a defect
phenocopied by inducible whole-body IFT88 knockout mice
and corrected by pair-feeding (14). These mice had elevated
fasting glucose and fed insulin levels in sera, suggesting a strong
defect in glucose metabolism, though due to the global
knockout was not directly attributable to cilia action in the
pancreas. A more specific pancreatic Kif3a deletion model was
made using early and late onset Pdx1-Cre lines (63) to
temporally target cilia expression in ductal progenitor cells,
which revealed a number of exocrine pathologies including
ductal hyperplasia and dilation and acinar cell loss, but these
mice had no obvious endocrine defects and no obesity
phenotype, at least within the first three months of life (12).
A more recent study in MIN6 insulinoma cells and primary
mouse and human islets showed that shRNA knockdown of
KIF3A led to reduced ciliation and islet cell proliferation, where
the absence of cilia may disrupt cell division, but short-term
KIF3A gene silencing had no apparent effects on glucose-
Frontiers in Endocrinology | www.frontiersin.org 4
stimulated insulin secretion (19). These mixed findings
regarding the role of KIF3A in pancreatic endocrine function
may be related to differences in the Cre driver lines used,
efficiency and timing of gene knockout/knockdown, and non-
pancreatic cilia effects on metabolism. Consistent in most of
these studies was a role of KIF3-mediated ciliation in exocrine
pancreas development and maintenance. Taken together, these
results indicate that KIF3A may be an important regulator in
the exocrine pancreas, while its role in maintaining endocrine
function may depend on developmental stage and other
modifying factors such as cilia function in other metabolic
tissues and organ systems.
LKB1, CILIA POSITION, AND
b-CELL POLARITY

An interesting link between primary cilia and b-cell polarity was
revealed by a model of liver kinase B1 (LKB1) deficiency (15),
which models the genetic defect in human Peutz-Jeghers
syndrome, an autosomal dominant germline disease manifested
by intestinal polyposis and pancreato-biliary cancers (64–66).
LKB1 encodes a serine-threonine kinase that is expressed in
multiple intracellular compartments and is enriched in the
primary cilium, where its activity is postulated to induce AMPK
phosphorylation at the cilium base to regulate metabolic signaling
(67). In mouse pancreas, deletion of LKB1 in adult islets leads to a
repositioning of primary cilia from the b-cell lateral surface to the
opposite pole of the cell, away from the intrarosette capillary.
Meanwhile, there is a corresponding change in the anatomical
relationship of b-cells to blood vessels, with altered b-cell polarity
where the nucleus is abnormally located at the cell base near islet
capillaries, and decreased GLUT2 expression on the b-cell lateral
membrane where cilia and microvilli reside (15) (Table 1).
Functionally, consistent with its role as a tumor suppressor,
LKB1 inactivation in islets led to increased b-cell size and
increased insulin secretion. While there remain questions
regarding the mechanism of cell polarity shifts and potential
LKB1-dependent signaling in the b-cell cilium, these findings do
suggest that b-cell polarity and in particular b-cell cilia polarity
may be linked to cellular energy sensing and cell growth decisions.
TARGETED IFT88 DELETIONS REVEAL
CILIA ROLES IN b-CELL FUNCTION

The interpretation of early IFT88 models was limited by the
lack of pancreas- and cell-type specificity in their cilia gene
deletion. To directly test the role of IFT88 and of primary cilia
in b-cell function, two cell-specific models of IFT88 deletion
have been generated, showing comparable results (Table 1).
These include the inducible and constitutive cilia knockout
bICKO and bCKO mice that ablated IFT88 expression under
the control of Pdx1-CreER and Ins1-Cre, respectively (17, 18).
Both Cre lines target b-cell expression, and both models
June 2022 | Volume 13 | Article 922983
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showed defects in in vivo and in vitro glucose-stimulated
insulin secretion, reduced serum insulin levels, and impaired
glucose tolerance. A companion tamoxifen-inducible bCKO
mice was made using Ins1-CreERT2, and these animals
phenocopy the constitutive cilia-knockout bCKO mice in
defective first-phase insulin secretion, which in bCKO mice is
characterized as being accompanied by delayed and reduced
calcium entry into the cell (18). These results suggest a potential
hierarchical and temporal regulation between primary cilia
activation, b-cell membrane depolarization, and insulin
release, and it would be interesting to characterize
spatiotemporal relationships between b-cell ciliary and
cytosolic [Ca2+], a line of investigation that may clarify the
cilia-dependent intracellular events during GSIS.

Intriguingly, Pdx1-driven bICKO islets also revealed a defect
in EphA/ephrin-A signaling, a juxtacrine pathway known to
regulate insulin secretion (68). Loss of b-cell cilia was associated
with EphA3 receptor hyperphosphorylation and blunted
glucose-stimulated insulin secretion, rescuable by EphA5/
EphrinA5 antagonism (17). Correspondingly, diabetic human
islets as well as IFT88 knockdown in human islets also
demonstrated EphA3 hyperphosphorylation and defective GSIS
(17). In the Ins1Cre-driven bCKO cilia knockout mouse islets,
however, the use of Eph/ephrin-A5-Fc modulated insulin and
glucagon secretion levels to similar degrees as in normal control
islets, suggesting no change in sensitivity to juxtacrine
modulators (18). Despite these discrepant findings which may
have been attributable to potentially different efficiencies and
specificities of the Cre lines used (69–72) and how the
pharmacologic studies were performed, the bICKO and bCKO
models show strong agreement that IFT and cilia loss causes
abnormalities in glucose-stimulated insulin secretion that may
contribute to the development of metabolic diseases such as type
2 diabetes. To-date, these two b-cell IFT88 knockout mouse lines
are the best models for studying cilia regulation of insulin
secretion and glucose homeostasis, as these animals are viable
through adulthood, and the metabolic consequences of b-cell
cilia loss can be examined in mature islets without confounding
exocrine abnormalities.

Given that b-cells are regulated not only by glucose but also
by paracrine cues in the local islet environment, an additional
role of cilia in hormonal paracrine regulation was uncovered in
the bCKOmouse model (18). Primary cilia in islet b-cells express
both the insulin receptor and somatostatin receptor 3 SSTR3 (16,
73, 74). The ciliary localization of these receptors suggest that the
cilia may regulate b-cell responses to autocrine and paracrine
signals in the islet microenvironment. Consistent with this
notion, glucagon and somatostatin secretion in b-cell cilia
knockout islets were higher under basal low glucose
conditions, and their dynamic secretion were disrupted in the
high glucose condition, suggesting impaired paracrine sensitivity
by the b-cell and compensatory increases in hormone secretion
by a- and d-cells. Correspondingly, insulin suppression by
exogenous somatostatin was ablated in bCKO islets, showing
that cilia are required to mediate b-cell responsiveness to
somatostatin (18). Thus, when b-cells lose their cilia, they lose
Frontiers in Endocrinology | www.frontiersin.org 5
the ability to respond to extracellular glucose as well as to
paracrine signals produced by neighboring islet cells.
Collectively, these studies suggest that IFT88 and primary cilia
play a crucial role in islet hormone cross-regulation (18).
OPEN QUESTIONS IN ISLET
CILIA RESEARCH

Thusfar, we discuss established experimental models in the study
of primary cilia, ranging from whole-body to whole-pancreas to
b-cell-specific knockouts of multiple cilia genes. Systemic cilia
deletion in mice results in mixed metabolic defects due to cilia
dysfunction in multiple organs in the body, which complicate
interpretation of their phenotypes (8, 9, 12, 16). The clearest
findings to-date come from b-cell specific cilia knockouts using
the highly efficient Ins1-Cre or Pdx1-Cre, particularly in the
inducible setting (17, 18), which demonstrate a conserved role of
cilia in insulin secretion and in vivo glucose homeostasis. The
regulation of islet b-cells by their cilia goes beyond cell-
autonomous processes such as GSIS, as cilia also mediate b/d-
cell paracrine crosstalk and potentially bidirectional signaling via
Eph-ephrins and cell-cell contact (17, 18). As the islet field moves
toward an integrated understanding of cellular connectivity and
continues to build on tri-partite hormone regulation models
(75), studies on islet cell cilia should aim to elucidate both cell-
intrinsic ciliary pathways regulating glucose-stimulated hormone
secretion, as well as cilia-mediated juxtacrine and paracrine
signaling among different cell types. Therefore, we propose
several obvious “next-step” lines of investigation for studying
cilia function in islets.
a- AND d-CELL CILIA

In addition to b-cells, primary cilia also exist on a- and d-cells
(76), and it has been demonstrated that a-cell cilia contain
unique GPCRs that regulate glucagon secretion (77). It is
likely that the cilia of all three cell types harbor some
combination of insulin/glucagon/somatostatin hormone
receptors to mediate paracrine signaling. Given the dense
cytoarchitecture of islets where a-, b-, and d-cell bodies and
their cilia are in close opposition (37), primary cilia may be a
key physical structure that mediates reciprocal signaling
among adjacent a-, b-, and d-cells (Figure 1A). An a-cell-
specific cilia knockout model would be particularly useful for
studying cilia regulation of glucagon secretion, as a potential
therapeutic strategy for targeting hyperglucagonemia in
human diabetes. Extrapolating from b-cell cilia knockout
models, cilia deletion in a-cells would be expected to
produce strong defects in glucagon secretion and a-cell
responses to the paracr ine hormones insul in and
somatostatin, as well as indirectly impaired secretion of the
latter two hormones. Loss of islet cell cilia or ciliary function
would likely produce cell type-dependent effects on cell cycle
regulation and maintenance of a-, b-, or d-cell mass or
June 2022 | Volume 13 | Article 922983
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identity, as it has been demonstrated in the exocrine pancreas
where deletion of primary cilia in Kif3a-null mice induces
ductal proliferation but metaplasia and apoptosis of acinar
cells (12). Thus, another unexplored area would be to identify
the trophic or inhibitory signals that cilia provide for the
maintenance of islet a/b/d-cell mass, either for the cell it
resides on or in neighboring cell populations. Finally, as we
move toward finer understanding of ciliary action in islet cells,
future experimental models should aim to modulate ciliary
function rather than ablating the entire ciliary structure,
which would impact multiple cilia-dependent signaling
pathways and processes that may be crucial for cellular
survival and function.
NON-ENDOCRINE CILIA

In addition to endocrine cell cilia, non-endocrine cells also
possess primary cilia which may play a role in regulating islet
homeostasis. Pancreatic ductal cells are abundantly ciliated,
while cilia and ciliary regulation of cell proliferation become
lost in pancreatic cancers such as pancreatic ductal
adenocarcinoma cancer (PDAC) (26, 78). Endocrine function
is often disrupted in these cancers, suggesting deleterious
exocrine-to-endocrine signaling, while chronic hyperglycemia
in diabetes are considered risk factors for PDAC (79–82).
Thus, there likely exists bidirectional exocrine-endocrine
crosstalk amidst a shared milieu of pro-inflammatory and
growth signals, including insulin itself, that may drive both
Frontiers in Endocrinology | www.frontiersin.org 6
neoplastic transformation and b-cell dysfunction in diabetes.
There have been recent demonstrations of such bidirectional
communication between the exocrine and endocrine pancreas;
islet cell stress in diabetes has been shown to promote exocrine
acinar cell ER stress, while abnormal exocrine to b-cell crosstalk
causes b-cell dysfunction and loss in human diabetes (83–86).
Therefore, it would be of interest to examine potential reciprocal
communication between pancreatic epithelial and islet cilia
(Figure 1B). As an example, acinar cell clusters at the
exocrine-endocrine border have been shown to promote
human islet cell replication through secreted REG1a proteins
(87). These exocrine cells are in intimate contact with a- and b-
cells through a common capsule of continuous basement
membranes and extracellular matrix (ECM), and swapping of
secretory vesicles has been observed between adjacent cells (87).
It remains to be examined whether primary cilia or other
specialized subcellular compartments play a role in either
sending or receiving these exchanges. Moreover, disrupted
microenvironments that affect these cellular exchanges, such as
when the physical contact between islet cells and their cilia are
altered by inflammation or autoimmunity, may impair b-cell
function in both human type 1 and type 2 diabetes.

The islet microvasculature is richly interactive with b-cells,
which are arranged in polarized contacts with the capillaries to
optimize glucose sensing and insulin granule exocytosis (36, 88–91).
Intriguingly, islet endothelial cells also possess cilia, which have been
shown to regulate vascular function and glucose metabolism (72).
Correspondingly, Bbs4 mutant islets with their intact cilia but
defective ciliary/basal body function demonstrate delayed
A B

FIGURE 1 | A schematic diagram of b-cell cilia-modulated islet hormone regulation and putative reciprocal communication between pancreatic ductal and islet cilia.
(A) In normal pancreatic islets, a-cells secrete glucagon, stimulating insulin and somatostatin secretion. b-cells secrete insulin, inhibiting glucagon secretion and
stimulating somatostatin secretion. d-cells secrete somatostatin, inhibiting both glucagon and insulin secretion (73). In pancreatic islets without b-cell cilia, the ability
of b-cells to regulate a- and d-cells via insulin secretion is disrupted, leading to dysregulated hormone secretion from a- and d-cells. Inhibitory somatostatin effects
on b-cells are lost in the absence of b-cell cilia, leading to somatostatin insensitivity and driving compensatory increases in somatostatin secretion by d-cells (18). The
role of cilia in insulin-mediated inhibitory autocrine signalling and somatostatin-inhibited glucagon secretion await clarification using cell-specific cilia deletion models.
(B) Pancreatic ducts are ciliated and in close proximity to the cilia on pancreatic islet cells, raising the possibility that pancreatic ductal cilia may reciprocally
communicate with islet cell cilia to regulate differentiation, proliferation, and function of the pancreatic endocrine and exocrine compartments.
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revascularization during islet engraftment, impaired vascular barrier
function and glucose homeostasis, and disrupted VEGFA-VEGFR2
signaling pathway (72). These findings suggest potential
communication and reciprocal regulation between islet cell and
endothelial cell cilia, a theme that may be extended to other non-
endocrine cell types of the islet. The growing number of single cell
RNA-seq studies in human islets should make it feasible to not only
analyze expression of cilia genes in these disparate cell types, but also
to define the transcriptional signature associated with cilia
perturbation in different pancreatic compartments and to identify
cilia gene changes in human diseases such as type 2 diabetes.
CILIARY SIGNALING

The cilia-centrosome complex are important regulators of cellular
signaling. Primary cilia signaling pathways in pancreatic
development and disease have been well-studied and well-
reviewed, including Hedgehog (Hh), Wnt, Notch, and TGF-b
(76). Among these, Gli/Hedgehog signaling is strongly linked to
cilia and is shown to regulate homeostasis of both the endocrine
and endocrine pancreas (92). Recent findings have also
highlighted the importance of ciliary G protein-coupled receptor
(GPCR) signaling in metabolism which, in islet cells, are
exemplified by the free fatty acid receptor 4 (FFAR4/GPR120)
and prostaglandin E receptor 4 (PTGER4) (77). These
metabolically important GPCRs are localized in a- and b-cell
primary cilia, are distinctly druggable, and represent attractive
targets for pharmacologic manipulation. FFAR4 and PTGER4
agonists have been shown to promote ciliary cyclic AMP
(cAMP) signaling and stimulate glucagon and insulin secretion
inmouse and human islets via TULP3-assisted receptor trafficking
(77, 93). GPR120 is also an important GPCR on d-cells which has
been shown to regulate somatostatin secretion from mouse islets
(94), and activation of GPR120 signaling in d-cells stimulates
glucagon and insulin secretion (95), though it is not known
whether this receptor functions through the d cell primary cilia.
The localization or recruitment of signaling receptors to cilia and
direct visualization of downstream signaling e.g. cAMP, would
lend strong support that these are bona fide ciliary signaling
pathways. Other than peptide hormones and GPCR ligands,
cilia also signal through a variety of growth factors,
morphogens, and through the release of bioactive vesicles called
ectosomes (96, 97). As proteomic methods become more
accessible for cilia research, it would be informative to examine
the ciliary proteome or secretome on a/b/d cells to reveal
additional pathways and other bi-directional signaling
mechanisms that regulate islet cell function.

The signaling capacity of primary cilia is likely vast and
context-dependent, relying on physical proximity to signaling
partners in a compact tissue system such as pancreatic islets. For
a/b/d cells, ciliary signaling may be autocrine, juxtacrine,
paracrine, or endocrine in nature, mirroring the myriad
interactions the cilium may have with its surrounding
structures (Figure 1). While autocrine signaling via cilia has
not been formally studied in islets, the observation of dynamic
Frontiers in Endocrinology | www.frontiersin.org 7
ciliary recruitment of IR A in b-cells (16) suggest a possible role
of secreted insulin feeding back onto the cell to modulate further
secretion. In an analogous example of physical islet cell crosstalk
via cellular extensions, d-cells spread their filopodia toward other
endocrine cells to form dynamic interactions and contacts,
allowing the d-cells to reach a large number of neighbors and
thus increasing the efficiency of paracrine regulation (98).
Likewise, the long and flexible structure of primary cilia allows
them to occupy narrow spaces between islet cells, and their
putative motility deriving from non-”9+0” microtubule
arrangements would serve to amplify both adjacent and non-
adjacent cell interactions. These dynamic cilia behaviors would
add a physical dimension in islet cellular crosstalk, and studying
them in situ would benefit from future development of cilia
reporter models amenable for live-cell or intravital microscopy,
and in isolated human islets, more reliable cilia biosensors and
methods of manipulating endogenous ciliary gene expression.
Given the heterogeneity and higher degree of intermingling of a-
, b-, and d-cells in human islets (99–101), primary cilia likely play
an even more prominent role in human than mouse islets in
coordinating heterotypic cell-cell interactions and maintaining
functional integrity of the islet as a unit.
CONCLUDING REMARKS

There has been much advance in understanding the role of
primary cilia in islet function since their ultrastructural
description more than 60 years ago. Emerging consensus from
experimental models and targeted genetic knockouts reveals b-
cell-specific mechanisms of cilia-dependent insulin secretion and
paracrine/juxtacrine communication. Future studies combining
new genetic models, molecular imaging techniques, and
proteome/transcriptome analyses will bring to light additional
roles of the primary cilium in the islet microenvironment,
including GPCR signaling and dynamic cilia-cell and cilia-cilia
interactions, and the discovery of gene signatures that may reveal
potential ciliary targets to treat human type 2 diabetes and
ciliopathy-related metabolic diseases.
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