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Eosinophils are di�erentiated by bone marrow multipotent progenitor cells

and are further released into peripheral blood after maturation. Human

eosinophils can exhibit unique multi-leaf nuclear morphology, which are filled

with cytoplasmic granules that contain cytotoxicity and immune regulatory

proteins. In recent years, many studies focused on the origin, di�erentiation

and development process of eosinophils. It has been discovered that the

eosinophils have the regulatory functions of innate and adaptive immunity, and

can also function in several diseases, including asthma, chronic obstructive

pulmonary diseases, acute respiratory distress syndrome, malignant tumors

and so on. Hence, the role and e�ects of eosinophils in various diseases are

emphasized. In this review, we comprehensively summarized the development

and di�erentiation process of eosinophils, the research progress of their related

cytokines, diseases and current clinical treatment options, and discussed the

potential drug target, aiming to provide a theoretical and practical basis for

the clinical prevention and treatment of eosinophil-related diseases, especially

respiratory diseases. To conclude, the guiding significance of future disease

treatment is proposed based on the recent updated understandings into the

cell functions of eosinophils.

KEYWORDS
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Introduction

Eosinophils are differentiated by bone marrow multipotent progenitor cells and are

further released into peripheral blood after maturation under the actions of interleukin-

5 (IL-5) and interleukin-33 (IL-33). After a short stay in peripheral blood, eosinophils

migrate to the lungs, thymus and gastrointestinal tract (1, 2).

During the occurrence and development of related diseases, eosinophils are recruited

to the disease lesions and exert their cellular functions under the influence of the local

microenvironment. It has been reported that eosinophils play an effective role in allergic

diseases and anti-parasitic infections (3). Recently, studies have explored inflammatory

cytokines and biomarkers in several diseases (4, 5). The further discovery of
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different eosinophil subtypes and related cytokines and media

has enriched the cognition of their cellular functions, including

anti-tumor effects, regulation of hematopoietic stem cell

homeostasis (6, 7).

In this review, we summarized the development and

differentiation process of eosinophils, the research progress

of their related cytokines, diseases and current clinical

treatment options, and discussed the potential drug target,

aiming to provide a theoretical and practical basis for the

clinical prevention and treatment of eosinophil-related diseases,

especially respiratory diseases.

Origin and di�erentiation of
eosinophils

Eosinophils, along with neutrophils and basophils, are major

members of granulocytes. Granulocyte/monocyte progenitor

(GMP) is their common progenitor. GMP could differentiate

into eosinophile lineage-committed progenitor (EoP) under

the regulation of transcription factors, including PU.1, C/EBP,

and GATA-1. Later, EoP continues to differentiate into mature

eosinophils under the regulation of GM-CSF, IL-5 and IL-

33 (Figure 1) (8). In addition, it has been reported that

some regulatory factors could effectively regulate eosinophil

differentiation. For instance, eosinophil differentiation can be

inhibited by rapamycin through a pathway independent of the

IL-5 signaling pathway in mice (9). Xia et al. demonstrated that

protein tyrosine phosphatase SHP2 could regulate IL-5 levels

through Erk signaling pathway to regulate the differentiation

of eosinophils (10). Exogenous interleukin-17A (IL-17A) could

also inhibit the differentiation of eosinophils (11).

FIGURE 1

Di�erentiation of mature eosinophils.

Eosinophil-related molecules

Particulate proteins from
eosinophil-derived granules

Eosinophil-derived granule proteins (EDGPS) mainly

consist of main basic protein (MBP), eosinophil cation protein

(ECP), eosinophil-derived neurotoxin (EDN), and eosinophilic

peroxidase (EPO). MBP is located at the center of the granules

and exists in the form of two homologous proteins, MBP-1 and

MBP-2. MBP is small in size and consists of a single chain of

117 amino acid residues, which is highly alkaline that is toxic

to both parasites and bacteria (12). ECP and EDN are initially

found to be acidophilic granulocyte-related RNA enzymes

that are associated with neurotoxicity. They can exhibit RNA

hydrolyze capabilities, and their homologous gene sequences

only exist in primate genomes (13). ECP is a single-stranded

cation protein that is homologous to lychee RNA, which

exhibit toxicity to worms and can bind to bacterial cell wall

components such as lipid polysaccharides (14). In addition,

ECP can also affect the proliferation of T lymphocytes and B

lymphocytes, thereby promoting the degranulation of mast cells,

and regulate the classical activation pathway of complements

(15). EDN is a single-stranded peptide with antiviral properties

and the ability to degrade single-stranded RNA, which can

also serve as a biomarker for the activation and degranulation

of eosinophils in patients with asthma (16, 17). EPO is a

hemoglobin-containing halogen peroxidase that catalyzes the

reactions of halides present in plasma and pseudohalides, which

promote asthma-related characteristic phenotypes through

post-translational modification of proteins in the airway of

asthma using carbonylation (6, 18).
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TABLE 1 Eosinophils-related cytokines and their roles.

Cytokines Related

pathway and

molecules

Roles to eosinophils

IL-3 - Functioning in allergic inflammation by

activating eosinophils and basophils.

CD32, CD13, CD48

and so on

Promoting the expression of eosinophil

proteins.

- Correlated with the levels of eosinophil

granule proteins.

IL-5 Pim-1, c-fos, c-jun

and NF-κb

Regulating the survival, immune

response and proliferation

differentiation.

T helper 2 and

CD34+

Functioning in Th2 immune response

and CD34+ ancestral cells

differentiation.

IL-33 ST2 Inducing a type 2 immune response.

ST2/IL-33 axis Increasing the number of eosinophiles.

CCL11/Eotaxin - Inducing the fetching of eosinophils in

allergic reactions.

- Reducing allergic inflammatory

reactions in the intestines, skin and

airways.

Ca2+ Activating intracellular Ca2+ activity,

granules and respiratory bursts.

IL-13 - Activating the matrix metalloproteinase

to prevent excessive allergic

inflammation.

B cells Inducing antibody type conversion in B

cells to produce IgE.

Cytokines associated with eosinophils

Eosinophils can synthesize, store and secrete various

cytokines. In eosinophils, many cytokines, chemokines and

growth factors are stored preformed in particles, ready for

immediate release, unlike other granulocytes. Specific particles

are rich in cytokines, including IL-2, IL-3, IL-4, IL-5, IL-6, IL-

13, IL-33, interferon-γ (IFN-γ), GM-CSF, and tumor necrosis

factor-α (TNF-α). Convergence factors include RANTES,

Eotaxin, andMIP-1 alpha, while growth factors include stem cell

factors and transforming growth factors (TGF) (Table 1).

IL-3

IL-3 can promote the production of not only eosinophils,

basophils and mast cells, but also granulocytes, monocytes, and

macrophages. For the ability to drive the entire myelopoiesis

spectrum, IL-3 was firstly known as multi-CSF (19). T cells

and mast cells are the main cellular sources of IL-3 (20).

IL-3 takes a great important part in allergic inflammation

by activating eosinophils and basophils (21). Eosinophils are

strongly correlated with IL-3, it is known that IL-3 and GM-CSF

play essential roles in the early stage of eosinophil differentiation,

and IL-5 plays a role in the end stage of eosinophil maturation

(22, 23). Compared to IL-5 and GM-CSF, several studies have

shown that IL-3 is more able to promote the expression of

eosinophil proteins like CD32, CD13, CD48 and so on (24).

In addition, a research has demonstrated that the amounts of

sputum IL-3 are strongly correlated with levels of eosinophil

granule proteins, and decreased lung function (25).

IL-5

IL-5 is an important cytokine and has exhibit many

physiological functions, including prolongation of survival,

induction, activation, and degranulation of eosinophils.

Eosinophils could express IL-5Rα at high level on their surface

and release a large amount of IL-5 (26). When IL-5 is engaged

with IL-5R, a range of proteins are induced phosphorylation,

which further activating Pim-1, c-fos, c-jun and NF-κb that

could regulate the survival, immune response, and proliferation

differentiation of eosinophils (27–29). However, it has been

shown that a systemic increase in IL-5 does not necessarily lead

to pathological conditions that are mediated by eosinophils (30).

Besides, IL-5 plays an important role in the development of the

Th2 immune response and is essential for the differentiation of

CD34+ ancestral cells into eosinophils (31, 32).

IL-33

IL-33 belongs to the IL-1 cytokine family and is a ligand of

the transmembrane protein ST2 encoded by the IL-1rl1 gene

(33). In a stable state, IL-33 is located in nuclei and is associated

with chromoplast by chromoplast binding matrix sequence,

which promotes cell stability by serving as a transcription

inhibitor (34). Since IL-33 does not contain a signal sequence,

the secretion manner of IL-33 is different from conventional

cytokines (35). After mechanical damage, necrosis cell death,

and the activation of cells through the ATP signaling pathway

without cell death, IL-33 would be released into extracellular

space (36, 37). By activating immune cells that express ST2 in

the mucosa organs throughout the body, IL-33 could induce a

type 2 immune response, which promotes the growth of blood

and tissue eosinophils by IL-5-mediated pathway (33, 38–41).

Johnston et al. revealed that the ST2/IL33 axis is the best way for

proliferation of eosinophils, and this can be achieved by raising

the surface IL-5Rα of eosinophils (41). IL-33 expression is closely

related to the increase of peripheral hemophilic granulocytes.

Smith et al. demonstrated that IL-33 gene sequence led to a

decrease of IL-33 protein levels. In addition, a decrease in

the number of peripheral blood eosinophils in mice was also

observed (42).

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.954721
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tao et al. 10.3389/fpubh.2022.954721

CCL11/Eotaxin

CCL11/Eotaxin is an important acidophil-specific

chemokine, which is involved in the chemotaxis of eosinophils

to tissue, and could serve as an efficient activator inducing

the fetching of eosinophils in allergic reactions (43). The

expression of CCL11/Eotaxin in eosinophils is associated with

intracellular particles (44). knocking out the CCL11/Eotaxin

gene could significantly reduce the accumulation of eosinophils

in tissues, thus reducing allergic inflammatory reactions in the

intestines, skin, and airways (45). Similar to CCL5/RANTES,

CCL11/Eotaxin activates intracellular Ca2+ activity, granules,

and respiratory bursts in eosinophils, indicating that it processed

in a self-secreting manner (46, 47).

IL-13

IL-13 is another important inflammatory factor released by

eosinophils, which is stored in particle crystallization as a pre-

formed medium. IL-13 has an impact on the development of

asthma airway disease and pulmonary fibrosis, and it could

also activate the matrix metalloproteinase in the airways to

prevent excessive allergic inflammation (48). IL-13 can also

induce antibody type conversion in B cells to produce IgE, which

plays an important role in allergic inflammation (49, 50). In

addition, parasites such as worms are also dependent on IL-13

for intestinal discharge from mice (51).

Eosinophil-related diseases

Asthma

Asthma is a common chronic airway inflammatory disease,

in which allergen-induced asthma occupies the majority. The

pathological characteristics of asthma are the accumulation

and activation of eosinophils in the airways. The clinical

characteristics mainly include chronic inflammation, reversible

airflow restriction, highmucus secretion, high bronchial reactive

accompanied by cough, sputum, wheezing, and other clinical

symptoms (52). It was found that the levels of eosinophils in

peripheral blood in asthma patients are closely related to the

severity of asthma (53, 54).

Elevated levels of eosinophils in peripheral blood commonly

represent severe asthma, also known as T helper 2 (Th2)

asthma (55). Since the granulocyte proteins of eosinophils could

coordinate the immune response to worms in the Th2 cytokine

cascade response, eosinophils are primarily related to parasitic

infection (56). The cascade starts with the reaction of IgE and

antigens. Although antigens could pose a threat to the host in

worm infection, the targets of IgE in patients with asthma are

relatively harmless, such as tree pollen and animal fur. However,

IgE can activate hypertrophic cells, macrophages, and basophils,

which in turn leads to the production of histamines and other

inflammatory cytokines secretion. The airway inflammatory

microenvironment of asthma has a strong chemoattraction to

mature CD4+T cells and eosinophils, which leads to severe type

Th2 asthma and is accompanied with high levels of eosinophils

in blood and sputum (57). In recent years, it was also found

that patients with classic asthma, cough-mutant asthma, and

chest tightness variant asthma usually have the common clinical

feature of eosinophilic airway inflammation. The recruitment

of mature eosinophils from peripheral circulation may be the

main mechanism for the growth of pulmonary eosinophils

(58). Additionally, circulating progenitor cells were also proved

to accumulate in the inflammatory site and differentiate into

mature immune cells to promote tissue inflammation (59–61).

Acute lung injury and acute respiratory
distress syndrome

Acute lung injury (ALI) and acute respiratory distress

syndrome (ARDS) are characterized by increased pulmonary

vascular permeability, severe inflammation, secondary

pulmonary edema, and refraction of hypoxia (62, 63). During

the progression of ALI and ARDS, the accumulation of

inflammatory cells and cytokines leads to the destruction of

the capillary endothelium and alveolar epithelial barrier, which

subsequently promote the development of pulmonary edema

and hypoxia (64). Willetts et al. concluded that patients with a

good prognosis of ALI have an increased number of eosinophils

in the lung compared to patients with a poor prognosis

(65). Zhu et al. revealed that early-induced and period-stable

eosinophils of ALI are located in the lung parenchyma, and

these eosinophils recruited from peripheral blood are derived

from the bone marrow. Notably, the study found that CD101

can serve as a marker for distinguishing between different

eosinophil subtypes in lipopolysaccharide (LPS)-induced

ALI animal models. And that under normal circumstances,

CD101-negative eosinophils are predominant. In addition,

CD101-negative and CD101-positive eosinophils exert different

cellular effects on the inflammatory response. CD101-negative

eosinophils could reduce LPS-induced early white blood cell

aggregation and cytokine production, while CD101-positive

eosinophils may increase LPS-induced early white blood cell

aggregation and cytokine production (66).

Eosinophil pneumonia

Eosinophil pneumonia can be divided into acute and chronic

eosinophil pneumonia. Acute eosinophilic pneumonia (AEP) is

commonly considered to be secondary to allergic reactions to

irritants and drugs, which is rarely thought to be caused by

parasitic infection (67, 68). Patients with AEP can recover on

their own without external intervention, and thus eliminating

adverse environmental exposure is the main treatment (68).
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The distinctive feature of chronic eosinophilic pneumonia

(CEP) is eosinophils infiltration into the alveolar cavity and

pulmonary interstitium.

Tumor occurrence and metastasis

The relationship between eosinophils and tumors can

be traced back to 1893 (69). An increase in tumor-related

eosinophils was found in tumor tissues. Several studies showed

an increase in tumor-associated tissue eosinophilia (TATE),

mainly in colon tumors, esophageal squamous cell carcinoma,

nasopharyngeal cancer, penile cancer, laryngeal cancer, lung

adenocarcinoma, bladder cancer, and prostate cancer (70–74).

Eosinophils are associated with necrotic regions, and there

is evidence that eosinophils have cytotoxic effects on tumor

cells both in vivo and in vitro. Through the observation of

granule protein near the tumor, Caruso et al. demonstrated

that eosinophils produce anti-tumor cytotoxic reactions through

degranulation, but the tumor-killing mechanism of eosinophils

remains unclear. A mouse tumor model with increased

peripheral eosinophils was accompanied with inhibition of

tumor development (75). In contrast, mice lacking eosinophils

showed increased tumor progression, which was associated with

a decrease in the number of tumor eosinophils. In humans,

an increase in the number of eosinophils is often observed

after immunotherapy such as IL-2, IL-4, GM-CSF, and tumor

vaccine (76–80).

Therapeutic drugs targeting
eosinophils

Glucocorticoids

Glucocorticoids (GC) are important therapeutic drugs for

acidophil-related diseases such as allergies, asthma, acidophil

gastrointestinal diseases (81, 82). Glucocorticoid receptors (GR)

come from the NR3C1-nuclear receptor sub-family 3, and the

GC diffuses through the cell membrane, enters the cell, and

binds to its receptor GR to induce the activation of the GR

signaling pathway. Once activated, GR is transferred to the

nucleus and interacts with transcription factors to inhibit the

expression of inflammatory genes and enhance the expression

of anti-inflammatory genes (83, 84). GR mainly exists in cells in

the airways in the form of GRα. The existence of GR explains

the presence of GC in the airways of most asthma patients,

as well as the significant effects of GC on inflammatory cells

and therapeutic effects on asthma (85, 86). Glucocorticoids

could promote the clearance of eosinophils by directly inducing

apoptosis and suppressing survival signals of eosinophils via

cytokines such as IL-3, IL-5, and GM-CSF (87, 88). Of note,

Shen et al. demonstrated that corticosteroids not only play an

anti-inflammatory role by regulating the release of IL-5 and

pulmonary eosinophils but also inhibit bone marrow eosinophil

production (89). IL-5 in eosinophils was also proved to protect

against glucocorticoid-induced apoptosis (90). Additionally,Wu

et al. concluded that GC can also act in synergy with iron

death inducers to induce the death of eosinophils in airway

inflammation (91).

Eosinophil regulation mediated by
cytokines

Monoclonal antibodies targeting IL-5 and IL-5R

IL-5 is considered to be a key regulator of disease-related

eosinophils and has an impact on the developmental stages

of multiple eosinophil lineages (92). The specific receptor of

IL-5, IL-5R is expressed at all developmental stages of the

eosinophil lineage. Therefore, IL-5 affects all stages of eosinophil

maturation, from the proliferation and differentiation of EoP to

survival and activation of mature eosinophils (93, 94).

Several studies showed that treatment targeting IL-5 could

significantly reduce levels of mature eosinophils, but have little

effect on the levels of EoP (95, 96). To date, two anti-IL5

drugs, meperizumab and relizumab have been approved by FDA.

The two monoclonal antibodies are recombinant humanized

monoclonal antibodies that could inhibit the binding of IL-5

and IL-5Rα. Biologics targeting IL-5 is designed to reduce the

survival of acidophils in tissues. Although the two monoclonal

antibodies are effective in reducing peripheral eosinophils,

they are less effective in eliminating tissue eosinophils (97,

98). Because of the decrease in eosinophils, mepolizumab and

reslizumab improve the symptoms of severe asthma, they

provide significant and clinically relevant improvements in

exacerbation rate and oral corticosteroid (OCS) reduction, thus

greatly improve the clinical treatment of asthma (99).

For IL-5Rα, FDA has approved a biologic agent targeting

IL-5 receptors called benazizumab. Benazizumab is also a

humanized monoclonal antibody that could reduce eosinophils

through a cell-mediated cytotoxic pathway (100). Therefore,

benazizumab can directly kill eosinophils, which was shown to

significantly inhibit the increase of eosinophils in tissue and

thereby improve clinical manifestations (101, 102).

Intriguingly,Both meperizumab and benralizumab can

significantly reduce the counts of peripheral eosinophils in

eosinophilic asthma, a recent study has demonstrated that

compared to meperizumab, benralizumab is able to decrease

peripheral eosinophil counts in more patients (103).

IL-33/ST2 axis regulator

IL-33 plays an important role in airway diseases (37, 39).

The levels of IL-33 are closely associated with the severity

of asthma (104, 105). The regulation of the IL-33/ST2 axis

Frontiers in PublicHealth 05 frontiersin.org

https://doi.org/10.3389/fpubh.2022.954721
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tao et al. 10.3389/fpubh.2022.954721

is a representative treatment strategy for immune disorders

associated with cytokine signaling disorders. In the past two

decades, the treatment strategies blocking the IL-33/ST2 axis

have been widely used in animal model diseases. Blocking the

IL33/ST2 axis is protective in allergic diseases, especially in the

respiratory system. There are three main therapeutic strategies

for directly blocking the binding of IL-33 to ST2, including IL-

33 neutralizing antibodies, soluble decoy receptors, and anti-ST2

receptor antibodies.

Several neutralizing antibodies against IL-33 have been

developed, which have been used in clinical trials for the

treatment of allergic diseases. Soluble receptor antagonists were

also developed to bind free IL-33. So far, at least two IL-33 bait

receptors have been developed, including a form of soluble ST2

(sST2) and the fusion protein IL-33 Trap, formed by sST2 and

the secondary protein IL-1RAcP. Anti-ST2 could be used to treat

chronic obstructive pneumonia (106). In addition to blocking

the IL-33/ST2 signaling pathway, activating the IL-33 signaling

pathway by recombinant IL-33 recombinant also has certain

therapeutic effects in some disease models (107).

Current drug development directions and
potential targets

For eosinophil-related diseases, targeted therapies have

gradually become a hot topic. Many drugs are in the process of

research and put into clinical trials.

A recent study showed that exogenous IL-17A can

significantly reduce ovalbumin-induced allergic inflammation.

It was found that the down-regulated expression of CC

chemokine receptors 3 (CCR3), GATA binding proteins

1 (GATA-1), and GATA binding proteins 2 (GATA-2)

could inhibit the differentiation of eosinophils both in

vivo and in vitro, suggesting that exogenous IL-17 is most

likely to prevent allergic airway inflammation by inhibiting

eosinophil differentiation in the bone marrow (11). This study

highlights the importance of targeted inhibition of eosinophil

differentiation in allergic inflammation, which may be a new

therapeutic target for asthma.

It was also found that the elevated levels of Bcl-2 protein are

responsible for the persistence of eosinophils and neutrophils

during allergic airway inflammation Furthermore, the Bcl-2

inhibitor ABT-737 and ABT-199 may inhibit allergic airway

inflammation by promoting the death of inflammatory cells,

especially in asthma dominated by neutrophils and insensitive

to corticosteroids (108). Notably, nano Bcl-2 inhibitor, Nf-

ABT-199 could deliver ABT-199 specifically to mitochondria

of bronchitis cells, which was proved to significantly reduce

airway inflammation and inhibit inflammatory cell infiltration

andmucus excessive secretion by effectively inducing eosinophil

apoptosis. In addition, Nf-ABT-199 had no significant effect

on cell vitality, airway epithelial barrier, and liver function,

indicating non-toxicity and good biocompatibility (109).

Iron death inducers were explored to induce iron death

of eosinophils in mice, thereby alleviating eosinophils airway

inflammation. Interestingly, iron death inducers could act

in synergy with dexamethasone to induce the death of

eosinophils (91). The synergistic effect of iron death inducers

and glucocorticoids has advantages in the treatment of allergic

diseases, showing that iron death inducer may be a promising

treatment strategy for acidophilic airway inflammation.

Moreover, CCL6 expression was significantly increased in

asthma patients. The OVA model of asthma was constructed

using the CCL6 knockout mouse model, which significantly

reduced airway inflammation in mice. The CCL6-CCR1 axis

was involved in the process of differentiation from HSC to

eosinophils, and the use of specific CCR1 antagonist BX471 can

significantly inhibit eosinophil differentiation in both in vitro

and in vivo experiments (110). In addition, there exists evidence

that mCCL6 could activate CCR1 downstream of the Gαi

protein and related phosphorylated signaling proteins, thereby

promoting HSC differentiation, which provides sufficient

evidence for the involvement of the CCL6-CCR1 axis. Recently,

several CCR1 antagonists have been developed in the context of

inflammatory diseases, which have shown potential therapeutic

effects in clinical trials.

Conclusions and prospects

Nowadays, research on the origin, differentiation and

development process of eosinophils has been relatively mature.

The role and effects of eosinophils in various diseases have been

explored. Eosinophils play an important pathophysiological role

in the body due to its unique degranulation and related secreted

cytokines, and when it functions, it can cause the body to

produce corresponding symptoms. In recent years, the research

on different cytokines in diseases has made great progress (111,

112).

The diseases most associated with eosinophils include

asthma, acute lung injury/acute respiratory distress syndrome,

eosinophil pneumonia, parasitic infection and esophagitis. Due

to the universality of respiratory diseases, more attention is paid

to the exploration of respiratory diseases and the development

of corresponding drugs in clinical practice. In terms of drugs for

controlling eosinophils, they could be divided into traditional

glucocorticoids and cytokine regulators. Glucocorticoids focus

on inducing eosinophil apoptosis, while cytokine regulators

focus on blocking and interference of classical cytokines and

related pathways. Most future drug development directions and

targets related to eosinophils are derived from the abnormally

expressed cytokines and proteins in eosinophil-related diseases,

and also from the study of cell death mechanisms such as

iron death.
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Generally speaking, in order to develop more eosinophil-

related drugs in the future, the first step is to deepen the research

on the origin, development and differentiation of eosinophils.

Combined with the development of single cell sequencing

technology, the upstream progenitor cells of eosinophils can be

grouped to further explore the origin of eosinophils. Secondly,

we should study the cytokines related to eosinophils more

extensively, and more research on cytokines can better provide

a wide range of targets for eosinophils. Furthermore, it is also

a key point to promote the research of eosinophil-related drugs

by further accelerating clinical trials and allowing more drugs to

show their curative effects and give feedback as soon as possible,

so as to provide reference value and development direction for

more similar drugs.
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